Practical C++ Programming

Steve Oudlline

O'Rellly & Associates, Inc.
Beijing - Cambridge - K6ln - Paris - Sebastopol - Taipei - Tokyo

Pageiv

Practical C++ Programming
by Steve Oudline

Copyright © 1995 O'Rellly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Editors: Adrian Nye and Dae Dougherty
Production Editor: Nicole Gipson
Printing History:

August 1995 First Edition.
January 1997: Minor corrections.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java Seriesis atrademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellersto distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of atrademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

r’f:b

"1‘_‘_;:,_;”
This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
ORellly & Associatesis committed to using paper with the highest recycled content available
consistent with high quality.

ISBN. 1-56592-139-9 [12/98]

Pagev

Table of Contents

Preface XV
|: TheBasics 1
1. What IsC++?3 3
A Brief History of C++ 3
C++ Organization 4
How to Learn C++ 6
2. TheBasics of Program Writing 9
Programs from Conception to Execution 12
Creating a Real Program 13
Creating a Program Using a Command-Line Compiler 13
Creating a Program Using an Integrated Devel opment Environment 16
Getting Help in UNIX 32
Getting Help in an Integrated Development Environment 33
Programming Exercises 33
3 Syle 35
Comments 36
C++ Code 4 41
Naming Style 42
Coding Religion 43
Indentation and Code Format 43
Page Vi

Clarity 44

Simplicity

Consistency and Organization
Further Reading

Summary

Basic Declarations and Expressions
The Elements of a Program

Basic Program Structure

Simple Expressions

The cout Output Class

Variables and Storage

Variable Declarations

Integers

Assgnment Statements

Floating Point Numbers

Floating Point Versus Integer Divide
Characters

Programming Exercises

Answers Chapter Questions
Arrays, Qualifiers, and Reading Numbers
Arrays

Strings

Reading Data

Initializing Variables
Multidimensional Arrays

Types of Integers

Types of Floats

RREBBRAREBEBRIBEEEICEBGRIKTEZEBEE B EEEE &

6:

Constant and Reference Declarations
Qualifiers

Hexadecimal and Octal Constants
Operators for Performing Shortcuts
Side Effects

Programming Exercises

Answers to Chapter Questions

Decision and Control Statements
if Statement

else Statement

How Not to Use strcmp

Looping Statements

while Statement

Break Statement

continue Statement

The Assignment Anywhere Side Effect
Programming Exercises

Answers to Chapter Questions

The Programming Process
Setting Up

The Specification

Code Design

The Prototype

The Makefile

Page vii

85

R I8 I8 I8 19 IR

92
92

8 K 8 R

H|H
)
=

=
Q
N

o
@

Testing

Debugging

Maintenance

Revisions

Electronic Archaeology

Mark Up the Program

Use the Debugger

Use the Text Editor as a Browser
Add Comments
Programming Exercises
Simple Programming
More Control Statements
for Statement

switch Statement

switch, break, and continue
Programming Exercises

Answers to Chapter Questions

Variable Scope and Functions

Scope and Storage Class
Functions

Summary of Parameter Types
Structured Programming Basics

Recursion

105
106
108
108
109
109
110
110
110
113
115
117
117
120
125
127
128

Page vii

129
129
133
146
146
148

10.

11:

[1:
12:

Programming Exercises

Answers to Chapter Questions

The C++ Preprocessor

#define Statement

Conditional Compilation

#include Files

Parameterized Macros

Advanced Features

Summary

Programming Exercises

Answers to Chapter Questions

Bit Operations

Bit Operators

The AND Operator (&)

Bitwise OR (|)

The Bitwise Exclusive OR ()

The Ones Complement Operator (NOT) (-)
The Left and Right Shift Operators (<<, >>)
Setting, Clearing, and Testing Bits
Bitmapped Graphics

Programming Exercises

Answers to Chapter Questions
Advanced Types and Classes
Advanced Types

Structures

149
149
151
151
157
159
160
162
163
163
164
167
168
168
171
171
171
172
1/3
176
181
182
183
185
185

13:

14.

Unions

typedef

enum Type

Bit Fields or Packed Structures

Arrays of Structures

Programming Exercises

Simple Classes

Stacks

Improved Stack

Using aClass

Introduction to Constructors and Destructors
Automatically Generated Member Functions
Shortcuts

Style

Programming Exercises

More on Classes

Friends

Constant Functions

Constant Members

Static Member Variables

Static Member Functions

The Meaning of static

Programming Exercises

1838
190

Pageix
191
193
195
196
197
197
201
203
205
210
211
212
214
217
217
219
220
222
223
224
225

15:

16:

Simple Pointers
Constant Pointers

Pointers and Printing
Pointers and Arrays
Splitting Strings

Pointers and Structures
Command-Line Arguments
Programming Exercises

Answers to Chapter Questions

Advanced Programming Concepts

File Input/Output
C++ Filel/O

Conversion Routines

Binary and ASCII Files

The End-of-Line Puzzle
Binary 1/0

Buffering Problems
Unbuffered 1/0

Designing File Formats
C-Style 1/0O Routines
C-Style Conversion Routines
C-Style Binary 1/0

Programming Exercises

227
232
233
233
237
240
241
245
245

Page x
249
251
252
256
260
261
262
263
264
268

270
273
276
278

17:

18:

Answers to Chapter Questions

Debugging and Optimization

Debugging

Seria Debugging

Divide and Conquer

Debug-Only Code

Debug Command-Line Switch

Going Through the Output

Interactive Debuggers

Debugging a Binary Search

Runtime Errors

The Confessional Method of Debugging

Optimization

The Power of Powers of 2

How to Optimize

Case Study: Inline Functions Versus Norma Functions
Case Study: Optimizing a Color-Rendering Algorithm
Programming Exercises

Answers to Chapter Questions

Operator Overloading
Operator Functions
Operator Member Functions

Full Definition of the Complex Class

278
281
281
289
290
290
290
292
292
296
307
309
309
311
314
316
316
317

317

Page Xi
319
322
330
332

19:

20:

Programming Exercises
Answers to Chapter Questions
Floating Point
Floating-Point Format
Floating Additior/Subtraction
Multiplication

Division

Overflow and Underflow
Roundoff Error

Accuracy

Minimizing Roundoff Error
Determining Accuracy
Precision and Speed

Power Series

Programming Exercises
Advanced Pointers
Pointers, Structures, and Classes
delete Operator

Linked List

Ordered Linked Lists
Double-linked List

Trees

Printing a Tree

The Rest of the Program

Data Structures for a Chess Program

Programming Exercises

21:

22

23

Answers to Chapter Questions
Advanced Classes
Derived Classes

Virtual Functions

Virtual Classes

Function Hiding in Derived Classes
Constructors and Destructors in Derived Classes
Summary

Programming Exercises

Answers to Chapter Questions
Other Language Features
Exceptions

Stack Exceptions

Runtime Library Exceptions
Programming Exercises

Modular Programming
Modules

Public and Private

The extern Modifier

Headers

The Body of the Module

A Program to Use Infinite Arrays
The Makefile for Multiple Files

Using the Infinite Array

379
381
361
387

Page xii
393
395
396
398
399
399
401
403
405
410
410
413
413
414
414
416
418
418
420
424

24.

25:

Dividing a Task into Modules
Module Division Example: Text Editor
Compiler Construction
Spread sheet

Module Design Guidelines
Programming Exercises
Templates

What Is a Template?
Templates. The Hard Way
Function Specialization

Class Templates

Class Specialization

Implementation Difficulties

Summary

Programming Exercises
Portability Problems
Modularity

Word Size

Byte-Order Problem
Alignment Problerr
NUL L-Pointer Probler
Filename Problems

File Types

Page xiii

gEEEEEREE R

26:

27

28.

Summary

Answers to Chapter Questions
Putting It All Together
Requirements

Code Design

Coding

Functional Description
Testing

Revisions

A Fina Warning

Program Files

Programming Exercises
From C to C++

Overview

K&R-Style Functions

struct

malloc and free

Turning Structuresinto Classes
ssefjmp and longjmp

Summary

Programming Exercise

C++'sDustier Corners

do/while

2 BB R

2B EE R

B
=

491

N
=

Page xiv

493

29:

c 0o w >

goto

The ?.Construct

The Comma Operator
Overloading the ()Operator
Pointers to Members
Vampire Features

Answers to Chapter Questions
Programming Adages
General

Design

Declarations

switch Statement
Preprocessor

Style

Compiling

The Ten Commandments for C++ Programmers

Final Note

Answers to Chapter Questions
Appendixes

ASCII Table

Ranges

Operator Precedence Rules

Computing sine Using a Power Series

Glossary

I ndex

521

Page xv

Preface

This book is devoted to practical C++ programming. It teaches you not only the mechanics of
the language, but also style and debugging. The entire life cycle of a program is discussed,
including conception, design, writing, debugging, release, documentation, maintenance, and
revision.

Styleis emphasized. Creating a good program involves more than just typing code. It is an art
in which writing and programming skills blend to form a masterpiece. A well-written program
not only functions correctly, but also is simple and easy to understand. Comments allow
programmers to include descriptive text in their programs. Clearly written, well-commented
programs are highly prized.

A program should be as ssmple as possible. Avoid the use of clever tricks. Cleverness and
complexity can kill programs. This book stresses ssimple, practical rules. For example, the 15
operator-precedence rules in C++ can be simplified to 2:

1. Multiply and divide before you add and subtract.
2. Put parentheses around everything else.

Consider two programs. One was written by a clever programmer, using al the tricks. The
program contains no comments, but it works. The other is nicely commented and well
structured, but doesn't work. Which program is more useful ? In the long run, the "broken™ oneis
more useful because it can be fixed and maintained easily. Although the clever one works now,
sooner or later it will have to be modified. The hardest work you will ever haveto dois
modifying a cleverly written program.

Page xvi

Scope of This Handbook

This handbook is written for people with no previous programming experience, for
programmers who know C and want to upgrade their skillsto C++, and for those who already
know C++ and want to improve their programming style and reliability. Y ou should have
access to a computer and know how to use the basic functions such as the text editor and file
system.

Computer languages are best learned by writing and debugging programs. Sweating over a
broken program at two o'clock in the morning only to find that you typed = where you should
have typed == isavery effective teaching tool. Many programming examples are used
throughout this book. Most of them contain deliberate errors. Y ou are encouraged to enter the
examplesinto your computer and then run and debug them. This process introduces you to
common errors using short programs so you will know how to spot and correct such errorsin

your own larger programs. (Instructions for obtaining copies of the programs presented in this
book are located at the end of this chapter.)

Several dialects of C++ are presented:
A "generic" UNIX compiler that should work on most UNIX systems
The GNU C++ compiler, named g++ (available for most UNIX systems™)
Borland's Turbo C++ compiler for MS-DOS
Borland C++ for MS-DOS/Windows
Microsoft's Visual C++ for MS-DOS/Windows

Asfar as standard C++ is concerned there are only minor differences among the various
compilers. This book clearly indicates where compiler differences can affect the programmer.
Specific instructions are given for producing and running programs using each of these
compilers. The book also gives examples of using the programming utility make for automated
program production.

How This Book I's Organized

Y ou must crawl before you walk. In Part I: The Basics you learn how to crawl. These chapters
teach you enough to write very ssimple programs. Y ou start with the mechanics of programming
and programming style. Next, you learn how to use variables and very smple decision and
control statements.

* The GNU g++ compiler can be obtained by anonymous FTP from prep.al mit edu, or you can
contact the Free Software Foundation, Inc, at 675 Massachusetts Avenue, Cambridge, MA 02139,
(617) 876-3296.

Page xvii

At this point you will have learned enough to create very simple programs; therefore, in
Chapter 7, The Programming Process, you embark on a complete tour of the programming
process that shows you how real programs are created.

Chapter 1, What Is C++?, gives you an overvie ins the basic programming process and gives
you enough information to write a very simple program.w of C++, describesits history and
uses, and explains how the language is organized.

Chapter 2, The Basics of Program Writing, expla
Chapter 3, Style, discusses programming style. Ho

Chapter 4, Basic Declarations and Expressions, int w to comment a program is covered, as
well as how to write clear and simple code. roduces simple C++ statements. Basic variables
and the assignment statement are covered in detail along with the arithmetic operators. +, -,
*l, and%.

Chapter 5, Arrays, Qualifiers, and Reading Numbers, covers arrays and more complex

variables. The shorthand operators++, --, *=, = +=, -=, and % are described.

Chapter 6, Decision and Control Statements, explains simple decision statementsincluding if,
el se and for. The problem of == versus = is discussed.

Chapter 7, The Programming Process, takes you through the steps required for creating a
simple program, from specification through release. Structured programming, fast prototyping,
and debugging are discussed.

Part 11: Smple Programming, describes al the other simple statements and operators that are
used in programming. Y ou aso learn how to organize these statements into simple functions.

Chapter 8, More Control Statements, describes additional control statements. Included are
whi | e, break, andconti nue. The switch statement is discussed in detail.

Chapter 9, Variable Scope and Functions, introduces local variables, functions, and
parameters.

Chapter 10, The C++ Preprocessor, describes the C++ preprocessor, which gives you great
flexibility in creating code. It aso provides a tremendous number of ways for you to screw up.
Simple rules that help keep the preprocessor from becoming a problem are described.

Chapter 11, Bit Operations, discusses the logical C++ operators that work on bits.

In Part 111: Advanced Types and Classes, you learn how basic declarations and statements can
be used in the construction of advanced types such as structures, unions, and classes. Y ou also
learn about the concept of pointers.

Page xviii

Chapter 12, Advanced Types, explains structures and other advanced types. The si zeof
operator and the enum type are included.

Chapter 13, Smple Classes, introduces the concept of acl ass. Thisis one of the more
powerful features of C++. Classes allow you to group data and the operations that can be
performed on that data into one object.

Chapter 14, More on Classes, describes additiona operations that can be performed with
classes.

Chapter 15, Smple Pointers, introduces C++ pointer variables and shows some of their uses.

Advanced programming techniques are explored in Part IV: Advanced Programming
Concepts. In this section, you explore a number of C++ features that |et you create complex, yet
easy-to-use objects or classes.

Chapter 16, File Input/Output, describes both buffered and unbuffered input/output (1/0).
ASCII and binary files are discussed and you are shown how to construct asimple file. Old
C-style 1/0O operations are also included.

Chapter 17, Debugging and Optimization, describes how to debug a program, as well as how
to use an interactive debugger . You are shown not only how to debug a program, but also
how to write aprogram so that it is easy to debug. This chapter also describes many

optimization techniques to make your programs run faster and more efficiently.

Chapter 18, Operator Overloading, explainsthat C++ allows you to extend the language by
defining additional meanings for the language's operators. In this chapter, you create a complex
type and the operators that work onit.

Chapter 19. Floating Point, uses asmple decimal floating-point format to introduce the
problemsinherent in using floating points, such as roundoff errors, precision loss, overflow,
and underflow.

Chapter 20, Advanced Pointers, describes advanced use of pointers to construct dynamic
structures such as linked lists and trees.

Chapter 21, Advanced Classes, shows how to build complex, derived classes out of smple,
base ones.

Finally a number of miscellaneous features are described in V: Other Language Features.

Chapter 22, Exceptions, explains how to handle unexpected conditions within a program.

Page xix

Chapter 23, Modular Programming, shows how to split a program into several files and use
modular programming techniques. The make utility is explained in more detail.

Chapter 24, Templates, allows you to define a generic function or classthat generates afamily
of functions.

Chapter 25, Portability Problems, describes the problems that can occur when porting a
program (moving a program from one machine to ancther).

Chapter 26, Putting It All Together, details the steps necessary to take a complex program
from conception to completion. Information hiding and modular programming techniques, as
well as object-oriented programming, are stressed.

Chapter 27, From C to C++, describes how to turn C code into C++ code, and addresses
many of the traps lurking in C code that bite the C++ programmer.

Chapter 28, C++'s Dustier Corners, describesthe do/ whi | e statement, the comma operator,
and the ?: operators.

Chapter 29, Programming Adages, lists programming adages that will help you construct good
C++ programs.

Appendix A, ASCII Table, contains alist of character codes and their values.
Appendix B, Ranges, lists the numeric ranges of some C++ variable types.

Appendix C, Operator Precedence Rules, lists the rules that determine the order in which
operators are eval uated.

Appendix D, Computing sine Using a Power Series, contains a program that shows how the
computer can compute the value of the sine function.

How to Read ThisBook If You Already Know C

C++ isbuilt on the C language. If you know C, you will find much of the material presented in
Chapters 2 through 12 familiar.

C++ does introduce a number of new features, including:

An entirely new |I/O system. (The basics are described in Chapter 4, Basic Declarations
and Expressions. The new file system is discussed in detail in Chapter 16, File
Input/Output.)

Constant and reference variables. (Described in Chapter 5, Arrays, Qualifiers, and
Reading Numbers.)

Page xx

Function overloading, inline functions, reference parameters, and default parameters. (Read
Chapter 9, Variable Scope and Functions.)

Starting with Chapter 13, Smple Classes, you will begin to learn entirely new concepts.
Classes are unique to C++ and are one of the more powerful features of the language.

Font Conventions
The following conventions are used in this book:

Italic
isused for directories and to emphasize new terms and concepts when they are introduced.
Italic is aso used to highlight comments in exampl es.

Bold
isused for C keywords.

Constant Wdth
isused for programs and the elements of a program and in examples to show the contents of
files or the output from commands. A reference in text to aword or item used in an example
or code fragment is a so shown in constant width font.

Const ant Bol d
is used in examples to show commands or other text that should be typed literally by the
user. (For example, r m f 00 meansto type "rm foo" exactly asit gppearsin the text or the
example.)

Constant Italic
isused in examples to show variables for which a context-specific substitution should be
made. (Thevariablef i | enane, for example, would be replaced by some actual
filename.)

Quotes
are used to identify system messages or code fragments in explanatory text.

%

isthe UNIX C shell prompt.
isthe UNIX Bourne shell or Korn shell prompt.

isthe UNIX superuser prompt (either Bourne or C shell). We usualy use this for examples
that should be executed only by root.

Page xxi

[]

surround optional valuesin a description of program syntax. (The brackets themselves
should never by typed.)

stands for text (usually computer output) that's been omitted for clarity or to save space.

The notation CTRL-X or ~X indicates use of control characters. It means hold down the
"control" key while typing the character "x". We denote other keys similarly (e.g., RETURN
indicates a carriage return).

All examples of command lines are followed by a RETURN unless otherwise indicated.

Obtaining Sour ce Code

Y ou can obtain the source code for the programs presented in this book from O'Rellly &
Associates through their Internet server.

The example programs in this book are available electronically in a number of ways: by FTP,
Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed first. If you
read from the top down, the first one that works for you is probably the best. Use FTPif you
are directly on the Internet. Use Ftpmail if you are not on the Internet, but can send and receive
electronic mail to Internet sites (thisincludes CompuServe users). Use BITFTP if you send
electronic mail viaBITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown,
with what you should typein bol df ace.

% ftp ftp.uu. net

Connected to ftp.uu.nnet.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Narme (ftp.uu.net:joe): anonynous

331 Guest login ok, send domain style e-mail address as password.

Password: joe@ra.con (use your user nane and host here)

230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/practcpp

250 OWD command successf ul

ftp> binary (Very inportant! You nust specify binary transferfor
conpressed files)

200 Type set to |

ftp> get exanples.tar.gz

200 PORT command successful
150 Openi ng BI NARY node data connection for exanples.tar.gz.
226 Transfer conplete.

Page xxii

ftp> quit
221 Goodbye.
%

Thefileisacompressed tar archive; extract the files from the archive by typing:
% gzcat exanples.tar.gz | tar xvf -
System V systems require the following tar command instead:
% gzcat exanples.tar.gz | tar xof -
If gzcat is not available on your system, use separate gunzip and tar or shar commands.

% gunzi p exanpl es.tar.gz
% tar xvf exanples.tar

Ftpmail

Ftpmail isamail server available to anyone who can send electronic mail to and receive it
from Internet sites. This includes any company or service provider that allows email
connections to the Internet. Here's how you do it.

Y ou send mail to ftpmail @online.ora.com. In the message body, give the FTP commands you
want to run. The server will run anonymous FTP for you and mail the files back to you. To get
acomplete help file, send a message with no subject and the single word "help" in the body.

The following is a sample mail session that should get you the examples. This command sends
you alisting of thefilesin the selected directory and the requested examplefiles. Thelisting is
useful if there's alater version of the examples you're interested in.

% mai|l ftpmail eonline.ora.comr

Subj ect :

reply-to janetvgxyz.com (Whrere you want files mail ed)
open

cd /published/oreilly/nutshell/practcpp

node bi nary

uuencode

get exanples.tar.gz

quit

A signature at the end of the message is acceptable aslong as it appears after "quit.”
BITFTP

Bl TFTPisamail server for Bl TNET users. You send it electronic mail messages requesting
files, and it sends you back the files by electronic mail. Bl TFTP currently

Page xxiii

serves only userswho send it mail from nodesthat are directly on BITNET, EARN, or
NetNorth. BITFTPisa public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For acomplete
help file, send HEL P as the message body.

The following is the message body you send to BITFTP:

FTP ftp.uu.net NETDATA

USER anonynous

PASS nyname@odunk. edu Putyour Internet email address here (not your BITNETaddress)
CD / publ i shed/oreilly/ nutshell/practcpp

DI R

Bl NARY

GET exanples.tar.gz

QT

Once you've got the desired file, follow the directions under FTP to extract the files from the
archive. Since you are probably not on a UNIX system, you may need to get versions of
uudecode, uncompress, atob, and tar for your system. VMS, DOS, and Mac versions are
available.

UUCP

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible PCs and
Apple Macintoshes. The examples are available by UUCP via modem from UUNET; UUNET'S
connect-time charges apply.

Y ou can get the examples from UUNET whether you have an account there or not. If you or
your company has an account with UUNET, you have a system somewhere with a direct UUCP
connection to UUNET. Find that system, and type:

uucp uunet\ !~/ published/oreilly/nutshell/practcpp/exanples.tar.gz
your host\ ! ~/ your nane/

The backdashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should
appear sometime later (up to aday or more) in the directory /usr/spool/uucppublic

your nane. If you don't have an account, but would like one so that you can get electronic
mail, contact UUNET at 703-204-8000.

It'sagood ideato get the file /published/oreilly/ls-IR.Z as a short test file containing the
filenames and sizes of all the files available.

Once you've got the desired file, follow the directions under FTP to extract the files from the
archive.
Page xxiv

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street
Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

Acknowledgments

Thanks to Peg Kovar for her proofreading and editing help. Specia thanks to Dale Dougherty
for ripping apart my first book and forcing me to put it together correctly. | greatly appreciate
the hard work put in by Phil Straite and Gregory Satir. | especially thank all those people who
reviewed and edited my book. My thanks also go to the production group at O'Reilly &
Associates—Nicole Gipson, project manager and production editor; John Files, Juliette
Muellner, and Jane EllIn, production assistants; and Mike Sierra, book design implementor.
Finally, special thanks go to al the hard-working programmers out there whose code has taught
me so much.

Page 1

I
The Basics

Page 3

1
What [sSC++?

In This Chapter:

- ABrief Histoty of
C++

- C++ Organization

- HowtoLearn C++

Profanity is the one language that all programmers under stand.
—Anonymous

The ability to organize and process information is the key to success in the modern age.
Computers are designed to handle and process large amounts of information quickly and
efficiently. However, they can't do anything until someone tells them what to do. That's where
C++ comesin. C++ isahigh-level programming language that allows a software engineer to
efficiently communicate with a computer.

C++ isahighly flexible and adaptable language. Since its creation in 1980, it has been used for
awide variety of programs including firmware for micro-controllers, operating systems,
applications, and graphics programming. C++ is quickly becoming the programming language
of choice. Thereis atremendous demand for people who can tell computers what to do, and
C++ letsyou do so quickly and efficiently.

A Brief History of C++

In 1970 two programmers, Brian Kernighan and Dennis Ritchie, created a new language called
C. (The name came about because C was preceded by the old programming language they were
using called B.) C was designed with one goal in mind: writing operating systems. The
language was extremely ssimple and flexible and soon was used for many different types of
programs. It quickly became one of the most popular programming languages in the world.

Page 4

C had one mgjor problem, however. It was a procedure-oriented language. This meant that in
designing atypical C program, the programmer would start by describing the data and then
write procedures to manipulate that data. Programmers eventually discovered that it made a
program clearer and easier to understand if they were able to take a bunch of data and group it
together with the operations that worked on that data. Such a grouping is called an object or
class. Designing programs by designing classes is known as object-oriented design (OOD).

In 1980 Bjarne Stroustrup started working on a new language, called "C with Classes." This
language improved on C by adding a number of new features, the most important of which was
classes. This language was improved, augmented, and finally became C++.

C++ owesits success to the fact that it alows the programmer to organize and process
information more effectively than most other languages. Also, it builds on the work already
done with the C language. In fact, most C programs can be transformed into C++ programs with
little trouble. These programs usually don't use al the new features of C++, but they do work.
In thisway, C++ allows programmers to build on an existing base of C code.

C++ Organization

C++ isdesigned as a bridge between the programmer and the raw computer. The ideaisto let
the programmer organize a program in away that he or she can easily understand. The compiler
then trand ates the language into something the machine can use.

Computer programs consist of two main parts. data and instructions. The computer imposes
little or no organization on these two parts. After all, computers are designed to be as general
aspossible. Theideaisfor the programmer to impose his or her own organization on the
computer and not the other way around.

The datain a computer is stored as a series of bytes. C++ organizes those bytes into useful
data. Data declarations are used by the programmer to describe the information he or sheis
working with. For example:

int total; /! Total nunber accounts

tells C++ that you want to use a section of the computer's memory to store an integer named
t ot al . You can let the compiler decide what particular bytes of memory to use; that's a minor
bookkeeping detail you don't need to worry about.

Page 5

Thevariablet ot al isasimplevariable. It can hold only one integer and describe only one
total. A series of integers can be organized into an array. Again, C++ will handle the details,
imposing that organization on the computer's memory.

i nt bal ance[100] ; /1 Balance (in cents) for all 100 accounts

Finally, there are more complex data types. For example, arectangle might have awidth, a
height, acolor, and afill pattern. C++ lets you organize these four attributes into one group
called a structure.

struct rectangle {

int wdth; /1 Wdth of rectangle in pixels
int height; /1 Height of rectangle in pixels
color _type color; // Color of the rectangle

fill _type fill; /1 Fill pattern

}s

However, datais only one part of a program. You aso need instructions. Asfar asthe
computer is concerned it knows nothing about the layout of the instructions. It knows only what
it's doing for the current instruction and where to get the next instruction.

C++ isahigh-level language. It lets you write a high-level statement such as:
area = (base * height) / 2.0; /1 Conpute area of triangle

The compiler trandates this statement into a series of cryptic machine instructions. This sort of
statement is called an assignment statement. It is used to compute and store the value of an
arithmetic expression.

Y ou can also use control statements to control the order of processing. Statements such asthe
i f andswi t ch statements enable the computer to make simple decisions. Statements can be
repeated by using looping statements such aswhi | e and f or .

Groups of statements can be wrapped to form functions. Thus you only need to write a
general-purpose function to draw arectangle once and then you can reuse that function
whenever you want to draw a new rectangle. C++ provides arich set of standardfunctions that
perform common functions such as searching, sorting, input, and outpui.

A set of related functions can be grouped together to form amodule, and modules are linked to
form programs.

One of the mgjor goals of the C++ language is to organize instructions into reusable
components. After al, you can write programs much faster if you "borrow" most of your code
from somewhere else. Groups of reusable modules can be combined into alibrary. For
example, if you need a sort routine, you can use the standard function gsor t from thelibrary
and link it into your program.

Page 6

A computer divides the world into data and instructions. For along time, highlevel languages
such as C kept that dividing line in place. In C you can define data or write instructions, but you
can't combine the two.

One of C++'s mgjor innovationsisthe idea of combining data and instructions together in a
construct called a class or object. Object-oriented programming allows you to group data with
the operations that can be performed on that data. This concept is taken one step further in C++
by allowing you to derive new classes from existing ones.

Thislast feature is extremely powerful. It allows you to build complex classes on top of
smaller, simpler ones. It also allows you to define a basic, abstract class and then derive
specific classes from it. For example, an abstract class of shape might be used to define the
shapes rectangl e, triangle,andcircle.

Organization is the key to writing good programs. In this book, you know that the table of
contentsisin the front and the index isin the back, because that's the way books are organized.
Organization makes this book easier to use.

The C++ language lets you organize your programs using asmple yet powerful syntax. This
book goes beyond the C++ syntax and teaches you style rules that enable you to create highly
readable and reliable programs. By combining a powerful syntax with a good programming
style you can create powerful programs that perform complex and wonderful operations.

How to Learn C++

The only way to learn how to program isto write programs. You'll learn alot more by writing
and debugging programs than you ever will by reading this book. This book contains many
programming exercises, and you should try to do as many of them as possible. When doing the
exercises keep good programming style in mind. Always comment your programs, even if
you're doing the exercises only for yourself. Commenting helpsyou organize your thoughts,
and commenting your own programs is good practice for when you go into the "real world.”

Don't let yourself be seduced by the ideathat, "I'm only writing these programs for myself, so |
don't need to comment them." First of al, code that looks obvious to you when you write it can
often be confusing and cryptic when you revisit it aweek later. Writing comments also helps
you organize your ideas. (If you can write out an ideain English, you are hafway to writing it
in C++.)

Finally, programs tend to be around far longer than expected. | once wrote a program that was
designed to work only on the computer at Caltech. The program was highly system dependent.
As| was the only one who would ever

Page 7

use the program, the program would print the following message if | got the command line
wrong:

PLSTU T User is a tw't

A few years later | was astudent at Syracuse University. The secretary at the School of
Computer Science needed a program that was similar to my Caltech listing program, o |
adapted my program for her use. Unfortunately, | had forgotten about my funny little error
message.

Imagine how horrified | was when | came into the Computer Science office and was accosted
by the chief secretary. Thislady had so much power she could make the dean cringe. She
looked at me and said, "User isatwit, huh?' Luckily she had a sense of humor, or | might not
be here today.

Sprinkled throughout this book are "broken™ programs. Spend the time to figure out why they
don't work. Often the problem is very subtle, such as a misplaced semicolon or using = instead
of ==. These programs let you learn how to spot mistakesin a small program. That way when
you make similar mistakes in abig program, and you will make mistakes, you will be trained to
spot them.

Page 9

2
The Basics of Program Writing

In This Chapter:

- Programsfrom
Conception to
Execution

- Creating a Real
Program

- Creating a Program
Using a Command-
Line Compiler

- Creating a Program
Using an I ntegrated
Devel opment
Environment

- Getting Help

- Programming
Exercises

Thefirst and most important thing of all, at least for writerstoday, isto
strip language clean, to lay it bare down to the bone
—Ernest Hemingway

Computers are very powerful toolsthat can store, organize, and process a tremendous amount
of information. However, they can't do anything until someone gives them detailed instructions.

Communicating with computersis not easy. They require instructions that are exact and

detailed. Wouldn't life be easier if we could write programsin English? Then we could tell the
computer, "Add up all my checks and deposits, and then tell me the total," and the machine
would balance our checkbooks.

But English is alousy language when you must write exact instructions. The language is full of
ambiguity and imprecision. Grace Hopper, the grand old lady of computing, once commented
on the instructions she found on a bottle of shampoo:

Wash
Rinse
Repeat

She tried to follow the directions, but she ran out of shampoo. (Wash-rinse-repeat.
Wash-rinse-repeat. Wash-rinse-repedt. . . .)

Of course, we can try to write in precise English. We'd have to be careful and make sure to
spell everything out and be sure to include instructions for every contingency. If we worked
really hard, we could write precise English instructions, right?

Page 10

Asit turns out, thereis agroup of people who spend their time trying to write precise English.
They're called the government, and the documents they write are called government regulations.
Unfortunately, in their effort to make the regulations precise, the government also has made the
documents almost unreadable. If you've ever read the instruction book that comes with your tax
forms, you know what precise English can be like.

Still, even with all the extra verbiage the government puts in, problems can occur. A few years
ago California passed alaw requiring all motorcycle riders to wear a helmet. Shortly after this
law went into effect a cop stopped a guy for not wearing a helret. The man suggested the
police officer take a closer look at the law.

The law had two requirements. 1) that motorcycle riders have an approved crash helmet and 2)
that it be firmly strapped on. The cop couldn't give the motorcyclist aticket because the man
did have a helmet firmly strapped on—to his knee.

So English, with al its problems, is out as a computer language. Now, how do we
communicate with a computer?

The first computers cost millions of dollars, while at the same time a good programmer cost
about $15,000 a year. Programmers were forced to program in alanguage where all the
instructions were reduced to a series of numbers, called machine language. This language
could be directly input into the computer. A typical machine-language program looks like:

1010 1111
0011 0111
0111 0110
. and so on for several hundred instructions

Whereas machines "think" in numbers, people don't. To program these ancient machines,
software engineers would write out their programs using a ssmple language where each word
would stand for asingle instruction. This was called assembly language because the

programmers had to manually trandate, or assemble, each line into machine code.

A typical program might look like:

Program Transl ati on
MOV A 47 1010 1111
ADD A B 0011 0111
HALT 0111 0110
and so on for several hundred instructions

Thisprocessisillustrated by Figure 2-1.

Trandation was a difficult, tedious, exacting task. One software engineer decided thiswas a
perfect job for a computer, so he wrote a program, called an assembler, that would do the job
automatically.

Page 11
Assembly Assemibly Machine Language
Language { Transiation) Program
MOV A, 47 1010 1111
ADD A.B ool1 0l11

HALT 0111 ©QL1o

Figure 2-1. Assembling a pngram

He showed his new creation to his boss and was immediately chewed out: "How dare you
even think of using such an expensive machine for amere 'clerical’ task?' Given the cost of an
hour of computer time versus the cost of an hour of programmer'stime, this was not an
unreasonabl e attitude.

Fortunately, as time passed the cost of programmers went up and the cost of computers went
down. So it became more cost-effective to et the programmers write programs in assembly
language and then use a program called an assembler to trandate the prograrrs into machine
language.

Assembly language organized programsin away that was easier for the programmers to
understand. However, the program was more difficult for the machine to use. The program had
to be trandlated before the machine could execute it. This was the start of a trend. Programming
languages became more and more convenient for programmers to use and started requiring
more and more computer time to trand ate them into something useful for computers.

Over the years a series of high-level languages has been devised. These languages are
attempts to let programmers write in something that is easy for them to understand and that is
also precise and ssimple enough for computers to understand.

Early high-level languages were designed to handle specific types of applications. FORTRAN
was designed for number crunching; COBOL, for writing business reports; and PASCAL, for
student use. (Many of these languages have far outgrown their initial uses. It is rumored that
Nicklaus Wirth has said, "If | had known that PASCAL was going to be so successful, | would

have been more careful in its design.")

Later on, Brian Kernighan and Dennis Ritchie developed C and Bjarne Stroustrup turned it into
C++.

Page 12

Programs from Conception to Execution

C++ programs are written in a high-level language using letters, numbers, and the other
symbols you find on acomputer keyboard. Computers actually execute avery low-level
language called machine code (a series of numbers). So, before a program can be used, it
must undergo severa transformations.

Programs start out as an ideain a programmer’s head. He writes down his thoughts in afile,
called a sourcefile or source code, usng atext editor. Thisfileistransformed by the compiler
into an objectfile. Next aprogram called the linker takes the object file, combines it with
predefined routines from a standard library, and produces an executable program (a set of
machine-language instructions). In the following sections, you'll see how these various forms of
the program work together to produce the final program.

Figure 2-2 shows the steps that must be taken to transform a program written in a high-level
language into an executable program.

High-leved Code

:

[_ Compiler]
}

] Asgembly Language Program
I

[_ Assembler)
}

| Object Codle
1

[Linker

I

Executable Program

Library

Figure 2-2 Transformation of a high-level languageinto a program

Wrappers

Fortunately you don't have to run the compiler, assembler, and linker individually. Most C++
compilers use "wrapper" programs, which determine which tools need to be run and then run
them.

Page 13

Some programming systems go even farther and provide the developer with an integrated
development environment (1DE). The IDE contains an editor, compiler, linker, project manager,
debugger, and more in one convenient package. Both Borland and Microsoft provide IDEs with
their compilers.

Creating a Real Program

Before you can actually start creating your own programs you need to know how to use the
basic programming tools. This section will take you step by step through the process of
entering, compiling, and running a s mple program.

This section describes how to use two different types of compilers. Thefirst typeisthe
standalone or command-line compiler. This type of compiler is operated in a batch mode from
the command line. In other words, you type a command and the compiler turns your source
code into an executable program. The other type of compiler is contained in an IDE.

Most uNix systems use command-line compilers. A few IDE-type compilers are available for
UNIX, but they are rare. On the other hand almost all the compilers used with ms-pos and
Windows contain an integrated development environment. For command-line die-hards, these
compilers do contain command-line compilers as well.

Creating a Program Using a Command-Line Compiler

In this section you'll go through the step-by-step process needed to create a program using a
command-line compiler. Instruction is given for using a generic unix compiler, the Free
Software Foundation's g++ compiler, Turbo-C++, Borland C++, and Microsoft Visua C++.

However, if you are using a Borland or Microsoft compiler, you might want to skip ahead to
the section on using the IDE.

Step 1. Create a Place for Your Program

It is easier to manage things if you create a separate directory for each program you are
working on. In this case you'll create a directory called hello to hold your hello program.

InuNIX, type:

% nkdir hello
% cd hello
Page 14
In Ms-DOS, type:

C. MKDI R HELLO
C CD HELLO

Step 2: Create the Program
A program starts out as atext file. Example 2-1 shows the hello program in source form.

Example 2-1 Source for the hello.cc program

#i ncl ude <i ostream h>
int main()

{
cout << "Hello Wrld\n";

return (0);

}

Use your favorite text editor to enter the program. In uNix your file should be named hello.cc
and in ms-pos/Windows the file should be named HELLO.CPP.

WARNING

ms-Dos/Windows users should not use a word-processing
program such as Microsoft Word or WordPerfect to write their
programs. Word-processing programs add formatting codes to
the file that confuse the compiler. You must use a text editor
such as the ms-Dos EDIT program that is capable of editing
ASCII files.

Step 3: Run the Compiler

The compiler changes the source file you just created into an executable program. Each
compiler has adifferent command line. The commands for the most popular compilers are
listed below.

UNIX CC Compiler (Generic UNIX)

Most uNix-based compilers follow the same generic standard. The C++ compiler is named cc.
To compile our hello program we need the following command:

% CC -g -ohello hello.cc

The - g option enables debugging. (The compiler adds extra information to the program to
make it easier to debug.) The switch - ohel | o tellsthe compiler that the program is to be
called hel | 0, and thefinal hel | 0. cc isthe name of the source file. See your compiler
manual for details on all the possible options. There are several different C++ compilers for
UNIX, S0 your command line may be dightly different.

Page 15
Free Software Foundation's g++ Compiler

The Free Software Foundation, the gNu people, publishes a number of high-quality programs.
(See the glossary entry "Free Software Foundation™ for information on how to get their
software.) Among their offeringsis a C++ compiler called g++.

To compile a program using the g++ compiler, use the following command line:
% g++ -g -Vall -ohello hello.cc

The additional switch - Wal | turnson al the warnings.

Borland's Turbo C++in MS-DOS

Borland International makes alow-cost ms-Dos C++ compiler called Turbo-C++. This
compiler isideal for learning. The command line for Turbo-C++ is:

C>tcc -m -v -N-P-w-ehello hello.cpp

The- m tells Turbo-C++ to use the large memory model. (This PC has alarge number of
different memory models that can be used when creating programs. This book discusses none
of them. Instead we take the attitude, "Use large and don't worry about it until you become an
expert programmer.")

The - v switch tells Turbo-C++ to put debugging information in the program. Warnings are
turned on by - w; stack checking by - N. The compiler will actually compile both C and C++.
We force a C++ compile using the - P switch. Finally, - ehel | o tells Turbo-C++ to create a
program named hello, and hel | 0. cpp isthe name of the source file. See the Turbo-C++
reference manual for acomplete list of options.

Borland C++ in MS-DOS and Windows

In addition to Turbo-C++, Borland International also makes afull-featured, professional
compiler for MS-DOS/Windows called Borland C++. Its command lineis:

C.>bcc -m -v -N-P -w-ehello hello.cpp
The command-line options are the same for both Turbo-C++ and Borland C++.

Microsoft Visual C++

Microsoft Visual C++ isanother C++ compiler for ms-pos/Windows. It is not as robust or full
featured asits Borland counterpart, but it will compile most of the programs in this book.
(Version 1.5 fails to handle templates and exceptions.)

To compile, use the following command line;

C>cl /IAL/Z /W hello.cpp

Page 16

The /AL option tells the program to use the large memory model. Debugging is turned on with
the /Zi option and warnings with the /\\L option.

Step 4. Execute the Program

Now, when you run the program by typing, for example:
hell o

a the UNIX or MS-DOS prompt, the message:
Hello World

will appear on the screen.

Creating a Program Using an Integrated Development Environment

Integrated development environments provide a one-stop shop when it comes to programming.

They take a compiler, editor, and debugger and wrap them into one neat package for the
programme.

Since devel opment environments tend to change, the particular version you use may require
dightly different keystrokes.

Step 1. Create a Place for Your Program

It is easier to manage things if you create a separate directory for each program you are
working on. In this case you'll create a directory called HELLC to hold your hello program.

In Ms-DOS, type:

C. MKDI R HELLO
C. CD HELLO

Step 2: Enter, Compile, and Run Your Program
Each iDE isalittle different, so we've included separate instructions for each one.
Turbo-C++

1. Start the Turbo-C++ IDE with the command:

C TC

2. Usethe Options | Compiler | Code Generation command to pull up the Code Generation
dialog box as seen in Figure 2-3. Change the memory model to large.

3. Use the Options | Compiler | Entry/Exit command to turn stack checking on, as shown in
Figure 2-4.

Page 17

& File Edit Search Hun Conpile Debug Froject Options Window Help |
~la1

Code Generation

1 Hord aligmment

1 Duplicate strings merged
1 Unsigned characters

1 Pre-conpi led headers

-.1 Default for memory model
} Hever

1 Aluays

Figure 2-3. Code Generatlon dialog box

File Edit Search Bun Compile Debug Project Options Window Help

(=) -"u'm{ard
(lﬁu:; lay

Calling Convent ion
(=) C

{) Pazcal

stack Options

[X] Standard stack Frame
[X] Tezt stack owerl low

Gepcrate standard OS5 pr :
Figure 2-4. Entry/Exit Code Generatlon dialog box

4. Use the Options | Compiler | Messages | Display command to bring up the Compiler
Messages dialog box as seen in Figure 2-5. Select All to display all the warning messages.

5. Use the Options | Save command to save al the options you've used so far.

Page 18

= File Edit Bearch PAun Conpile Debugy Project Options Mindou Help |

atop Al ter

Stop After

S el N el

Figure 2-5 Compller M essages dial og box

6. Use the Open Project File dialog box to select a project file. In this case your project fileis
called HELLO.PRJ. The screen should look like Figure 2-6 when you're finished.

File Edit Search PBun Compile Debug FProject Optioms Windew Help

Ll

pen Project
R Ly

Directory Sep 20,1980 12:45am

Figure 2 6 Open Proj ect F|Ied|alog box

7. Pressthe Insert key to add afile to the project. The file you want to add isHELLO.CPP as
seen in Figure 2-7.

Page 19

2 File Edit Search Bun Compile Debugy FProject Options Himdow Help

e
hello.cpp

Figure 2-7. Add to Project List dialog box

8. Press ESC to get out of the "add file" cycle.

9. Press the up-arrow key to go up one line. The line with hello.cpp should now, be highlighted
asseen in Figure 2-8

8 File Fdit Search Run Compile Debug Project Options Windou Help

dit F18 Hewo

Figure 2-8 "Hello g project
10. Press Return to edit thisfile.

11. Enter the following code.

#i ncl ude <i ostream h>
int main()

{

cout << "Hello World\n";
return (0);

}
The results should look like Figure 2-9.

"= File EAIt Search Aun Conpile Debuy Project Options Mindow Help |
" FLLD . C 2

Binclude <{iostream.h:

int main()

{
cout << "Hello World.sn™:
return (0);

1

File name
+ HELLD.CFFP

F1 Help FZ Save F3 Open ALE-FD Compile F9 Hake F18 Hem
Figure 2-9. Finished project

12. Use the Run | Run command to execute the program.

Page 20

13. After the program runs, control returns to the IDE. This means that you can't see what your
program output. To see the results of the program you must switch to the user screen using

the command Window | User. Pressing any key will return you to the iDe. Figure 2-10
shows the output of the program.

14. When you are finished you can save your program with the File | Save command.

15. To exit the IpE use the File | Quit command.

Page 21

CiSHELLD Gt
Hello Borld.

Figure 2-10. User screen

Borland C++

1. Create adirectory called HELLO to hold the files for our hello program. Y ou can create a

directory using the Windows' File Manager Program or by typing the following command at
the Mms-Dos prompt:

nmkdi r \ HELLO

. From Windows, double-click on the Borland C++ icon to start the IDE The program begins

execution and displays a blank workspace as seen in Figure 2-11.

3. Select the Project | New Project item to create a project for our program. Fill in the "Project

Path and Name:" blank with c:\hello\hello.ide. For the Target Type select EasyWin[.exe].
The Target Model is set to Large. The results are shown in Figure 2-12.

4. Click on the Advanced button to bring up the Advanced Options dialog. Clear the. r ¢ and

. def itemsas shown in Figure 2-13.

5. Click on OK to return to the New Target diaog.

6.

Press Al t - F10 to bring up node sub-menu shown in Figure 2-14.

7. Select Edit Node Attributes to bring up the dialog shown in Figure 2-15. In the Style Sheet

blank, select the item "Debug Info and Diagnostics." Click on OK to return to the main
window.

Page 22

EI;Ill: L dit El:ur;h !11:\': Eroject u:hug Tool _E,pﬂum Yindow J'_'lclp

e ez e e — g

Figure 2-11 Borland C++ initial screen

i o |- R W]
rile Edit | :

E_E Project Path and Name: = P
{e-\hellothello ide | V‘ﬂc -

Targed Home:
Corvel
helly | x
Toaget Type: Standard Libtasios: | B2
|_Erowse. | g
faie: I Iru.] H
Lifa]
Shalic Li-rm [Foe .dil] [85] bl
Lkb]
7 |

Target Expert

Figure 2-12. New Target dialog box

Page 23

— . e —— : -1-

[File Edit| = Mew Target

_| TargetExpert

1 =etoninsd B T
Figure 2-13 Advanced Options dialog box

Bordand G+ - hello

Add node
Delete node

| % Make node

[Build node

1 Link

i Special
TargetExpert...
Edit pode attributes...
| Editlocal gptians...

L= Virw nntinns hirrarchr

Figure 2-14. Tafget Options sub-menu

e

Page 24

..:[. - UurlandCﬂ -helle) |- ﬁi-

Lile Edit &ur-:h 'I{Inr E’Tujccl | Dchug [nnl i thl-urm Window Htlp___

[imkTasget

Mode Tppa: [eu:)

| Assiona s -M hl‘ﬁ IO I-I:J...!Tll'l...l:lﬂl

Figure 2-15 Node Attributesdialogbox

8. Go to the Project Options dialog by selecting the Options | Project Options item. Go down to
the Compiler item and click on the "+" to expand the options.

Turn on the Test stack overflow option shown in Figure 2-16. Click on OK to save these
options.

9. Click on OK to return to the main window. Press the down arrow to select the hello[.cpp]
item in the project (seein Figure 2-17).

10. Press Return to start editing the file hello.cpp. Typein the following code:

#i ncl ude <i ostream h>
int main()

{
cout << "Hello World\n";

return (0);

}
When you have finished, your screen will look like Figure 2-18.

11. Compile and run the program by selecting the Debug | Run menu item. The program will
run and display "Hello World" in awindow, as shown in Figure 2-19.

Page 25

| Borland Co+ - hello [=fa]
1 G Dab el [
.bm;a. Elpf_i'ung —
Topics: Debugging
+ Ducctosics | PP BRI L
P oyl ¥ Standard slack hame
* Code E‘w-lhm ¢ Teal stack oyedion
* Flaatindg Peand ¥ Dut-of-fine infine lunctions
[m 'h-F‘
g Lime pumbes
*Debugeeng ¥ Debug infosmation in DBJz
* Py heendhers: n i s
1 6 it Compedes . ¥ Browsed rolevence mformation in OB):
K2 32-bit Compiles
Ko Lo s Oiplione
L (b ks
ke s ages
irknt
* Libw asian
* Resowces
* Busld Abtoibates
= bake

" Project : chellothello.ide

Figure 2-17. Hello Project

Page 26

= . Borland C++- helle
| File Ldll hcan:h View Fmp:cr Debug Tool Iapliulm ‘Window Help

Gl L T B 1E
BE

cihellothello.cpp

~ Project: ctheliothetiodde |<|a

¥ Insert Modted
Figure 2-18 "Hello World"program

| Borland Cee - hello BE
1 Eile l;'_dlt S:an:h 'l[ltw Pmiu:t D:hug]nu-l Qpﬂnna 'ﬂ'rnduw Ht|p

: S B - "j"‘
;I‘E Hilln borld El
] masn |
1

‘:' cout -~

| relurm |

1

1

el et
-T Projed : chhellothello.ide -

o [= haolbo [exe]
PR] hello [.cpp] code tize=38 beei=5 data nee=13

i Program runnang

Figure 2-19 "Hello World " after execution

Page 27
Microsoft Visual C++

1. Create adirectory called HELLO to hold the files for our hello program. Y ou can create a

directory using the Windows File Manager Program or by typing the following command at
the Ms-DOS prompt:

nkdi r \ HELLO

2. From Windows, double-click on the Visual C++ icon to start the IDE. A blank workspace
will be displayed as shown in Figure 2-20.

* Microsoft Visual C++

. YEY
Figure 2-20 Microsoft Visual C++ initial screen

3. Click on Project | New to bring up the New Project dialog shown in Figure 2-21.

Fill in the Project Name blank with \hello\hello.mak. Change the Project Type to QuickWin
application [.EXE].

4. Visual C++ goesto the Edit dialog to allow you to name the source filesin this project (see
Figure 2-22). In this case we have only file hello.cpp. Click on Add to enter the name in the
project and then click on Close to tell Visua C++ that there are no morefilesin the

program.

5. Select Options | Project Options to bring up the Project Options dialog shown in Figure
2-23.

Click on the Compiler button to change the compiler options.

Page 28

.- .Hll‘'f.ﬂh)ﬂ 'H'.i;ual Ce N

FII: Edlrt “View l'mjrn:t Hrmn'se Debug Tools Options Window Help

| O EE [E S 00 O

Project Nome: [\hello\hello. mask | | Browse... | | ok |

I LR Tl G uickWin apphcation (EXE) | |
i 1] Use Microsoft Foundation Clastes TR

|
i FerHelp, press F1 NUM I

Figure 2-21 Project create screen

Mll:rusuh Visual G4+ - HELLOMAK,

Ll|¢ Ldit Yiew I-‘ru;cd Drowse _Debug Tools Options Window MHelp ._

L EL

Fila Hame: Dinectosies:
m T a.é:\.._....— [el]

= hella

| |

' List Files of Trpe: Driyes:
Sowcs eteppiems) 4] [Elcimidas 6 (#)
Biles in Project:
P -
i I Add Al t
l o Doiate

MU

Figure 2-22 Project edit dialog box

Page 29

= T T T on
| File Edit Wiew Project Hrowse Debug Tools Opfions Window Help

TS = 85 e O Ml

== Project Options I
Projact Type: [(2 AT
|] U Mecrosol Foundstson Clazses | Cancel
“Customize Build Opton:] [Busd Mode f
| @ Dobug e
= UI'*H ! | Rokeats
|
|
| ‘
i i
| |
] |
| [For Help, prezs Fi MM "

Figure 2-23 Project Options dialog box

6. Go down to the Custom Optionsitem in the Category and change the warning level to 4 as
shown in Figure 2-24.

7. Change to the Memory Model category and change the memory model to large (see Figure
2-25).

8. Close the diaog by clicking on the OK button. This brings you back to the Project Options
dialog. Click on OK to dismissthis dialog as well.

9. Select "File | New" to start a new program file. Typein the following lines:

#i ncl ude <i ostream h>

int main()

{
cout << "Hello Wrld\n";
return (0);

}

Y our results should look like Figure 2-26.
10. Usethe File | Save As menu item to save the file under the name hello.cpp.

11. Use the Project | Build command to compile the program. The compiler will output
messages as it builds. When it is finished your screen should look like Figure 2-27.

Page 30

Buid Oplions: @ Debug Specitic O Rebesse Specific O CommontoBoth [0k
ey o]
fnologa fG2 MMg MW S8 PAM D D _DEBUG™ JFR SFACHELLD PDE™ [t

|

i
3] [Use Project Defauts

Categoys FCabegory Seblings: Custom Options

Code Gianeralion

Custom Dptsona [Ces)

Dobug Dptions [[] Enstie Function-Level Linking

Lizting Files i

Hemony Model [l HuickWin Suppart

Ogptmizat

:F-'Em ﬁEﬁdhn [Epsinste Duphicate Strings

et 24et® || Warming Levet [EXNIM 8] [Wasnings as Enors

.thnme:S:;¥phq [¥] Suporess Display of Sign-0n Banner

Oither Dptions: {FdHELLD. PDE™ |

For Help, preas F1 S Rt By viad St I VP et r

Figure 2-24 Compiler Options dialog box

. Microsoft Visunl Ceb - HELLOMAK.
File Edit View Project Hrowse [Debug Tools Options Window Help |

Bl 1@ cleks (1) Enlw]] i

- _<1» CAHELLOWELLOCPP [~

M
{ [Ematzalizing
Compilimg. .
k= “hello~halle. cpp
Linking
inding rescurces
reating brovser database. .
EEE = 0 errer(s). 0 varning(s)

_ |
[Cmi uﬂ

HELLD EXE - 0 arrars), 0 -warning(s) READ NUM 00008 001
Figure 2-25 Memory Model options

Page 31

| Tile

Microsoft Visual Coé - HELLOMAK,

Edit Wiew Project Browse Debug Tools

Options Window Help

S | 1 @) Sleks 1 HEe]

<iostrean. b

oot ‘Hells Vorld-n®
£ A

LE)

3|

HUN 00005 D02

. Microsoft Visusl Co+ - HELLOMAK.
File Edit View Project Browse

Figure 2-26 Visual C++ with "Hello World" entered

Debug Tools Options Window Help ¥

Bl L] [® ek T Ee@L]

M
{ [Ematzalizing
Compilimg. .
k= “hello~halle. cpp
} Emﬁ.:m
inding rescurces
Creating brovser database. .

ELLO EXE - O errer(s). 0 varning(s)

=1

- _<1» CAHELLOWELLOCPP [~

=

HELLO EXE -0 arrar(s), 0 warning(s) READ

Figure 2-27. Visua C++ build screen

NUM D0OCE 001

Page 32

12. The program can now be started with the Debug | Go command. The results appear in

Figure 2-28.

e Edit View PFroject Hrowse [Debug Teols Options ‘Window Help

[:' ' * Microsoft Visual Co+ [run] - HELLO.EXE Tefs]
i
| @l []l) Bte] G0 Clolulo)

T CAHELLOWMELLO.CPR ==
€2 Qutput ' w|a]

fFile Edit ¥iew State ‘Window Help
i -] SudinfStdoulStderr

= L e s e o

" [Finished |

HUK BIOM M

Figure 2-28 "Hello World" results

Getting Help in UNIX

Most uNix systems have an online documentation system called the "man pages.”" These can be
accessed with the man command. (UNIx uses man as an abbreviation for "manual.") To get
information about a particular subject, use the command:

man subj ect

For example, to find out about the classes defined in the i ost r ean package, you would type:

man i ostream

The command also has a keyword search mode:

man -k keyword

To determine the name of every man page with the word "output” in itstitle, use the command:

man -k out put

Page 33

Getting Help in an Integrated Development Environment

Integrated development environments such as Turbo-C++, Borland C++, and Microsoft C++
have a Help menu item. Thisitem activates a hypertext-based Help system.

Programming Exercises
Exercise 2-1. On your computer, typeinthehel | o program and execute it.

Exercise 2-2: Take severa programming examples from any source, enter them into the
computer, and run them.

Page 35

3
Style

In This Chapter:

- Comments

- C++ Code

- Naming Style

- Coding Religion

- Indentation and Code
Format

- Clarity

- Simplicity

- Consistency and
Organization

- Further Reading

- Summary

Thereis no programming language, no matter how structured, that will
prevent programmer s fromwriting bad programs
—L. Fon

It isthe nobiliy, of their style which will make our writers of 1840
unreadabl e forty years from now
—Stendhal

This chapter discusses how to use good programming style to create a smple. easy-to-read
program. It may seem backward to discuss style before you know how to program, but styleis
the most important part of programming. Style is what separates the gems from the junk. It is
what separates the programming artist from the butcher. Y ou must learn good programming
stylefirst, before typing in your first line of code, so everything you write will be of the highest
quality.

Contrary to popular belief, programmers do not spend most of their time writing programs. Far
more time is spent maintaining, upgrading, and debugging existing code than is ever spent on
creating new work. The amount of time spent on maintenance is skyrocketing. From 1980 to
1990 the average number of linesin atypica application went from 23,000 to 1.2 million. The
average system age has gone from 4.75 to 9.4 years.

To make mattersworse, 74% of the managers surveyed at the 1990 Annual Meeting and
Conference of the Software Maintenance A ssociation reported that they "have systemsin their
department that have to be maintained by specific individuals because no one else understands
them."

Page 36

Most software is built on existing software. | recently completed coding for 12 new programs.
Only one of these was created from scratch; the other 11 are adaptations of existing programs.

Programmers believe that the purpose of a program isonly to present the computer with a
compact set of instructions. Thisis not true. Programs written only for the machine have two
problems:

They are difficult to correct because sometimes even the author does not understand them.

Modifications and upgrades are difficult to make because the maintenance programmer
must spend a considerable amount of time figuring out what the program does from its code.

Comments

Ideally, a program serves two purposes: First, it presents the computer with a set of
instructions and, second, it provides the programmer with a clear, easy-to-read description of
what the program does.

Example 2-1 contains aglaring error. It isan error that many programmers still make and one
that causes more trouble than any other problem. The program contains no comments.

A working but uncommented program is atime bomb waiting to explode. Sooner or later
someone will have to modify or upgrade the program, and the lack of comments will make the
job ten times more difficult. A well-commented, simple program isawork of art. Learning
how to comment is as important as learning how to code properly.

C++ hastwo flavors of comments. The first type startswith / * and endswith */ . This type of
comment can span multiple lines as shown:

/[* This is a single-line coment. */
/*

* This is a nultiline comrent.

*/

The other form of comment begins with // and goes to the end of the line:

/1 This is another form of comment.
/1 The // must begin each line that is to be a comment.

Page 37

The advantage of the/ * */ comment styleisthat you can easily span multiple lines,
whereaswiththe/ / style you have to keep putting the/ / on each line. The disadvantage of
[* *[isthat forgetting a*/ can realy screw up your code.

Which flavor should you use? Whichever one makes your program as clear and as easy to read
as possible. Mostly, it's a matter of taste. In thisbook weusethe/ * */ style comments for
big, multiline comments while the // style is reserved for comments that take up only asingle
line.

Whatever comment style you decide to use, you must comment your programs. Example 3-1
shows how the "hello world" program looks after comments are added.

Example 3-1. hello2/hello2.cc

/***

* hello -- programto print out "Hello World".
* Not an especially earth-shattering program

Aut hor: Steve Qualline
Pur pose: Denonstration of a sinple program

Usage:
Run the program and t he nessage appears

*
*
*
*
*
*
*
*
*
khkkhkkhkhkhhhkhhhkhhhkhhhkhhhhhkhhhkhdhkhhhkhhhkhhhhhhhhkhhkhkhdhkhdkhr*xk **x%

*
*
*
*
*
*
*
*

/
#i ncl ude <i ostream h>
main ()

{
/] Tell the world hello

cout << "Hello World\n";
return (0);

}

In this program, the beginning comments are in a box of asterisks (*) called a comment box.
Thisis done to emphasize the more important comments, much like bold characters are used for
the headings in this book. Less important comments are not boxed. For example:

/1l Tell the world hello
cout << "Hello World\n";

To write aprogram, you must have a clear idea of what you are going to do. One of the best
ways to organize your thoughts is to write them down in alanguage that is clear and easy to
understand. Once the process has been clearly stated, it can be trandated into a computer

program.

Understanding what you are doing is the most important part of programming. | once wrote two
pages of comments describing a complex graphics algorithm. The comments were revised
twice before | even started coding. The actual instructions

Page 38

Poor Person's Typesetting

In typesetting you can use font style and size, bold, and italic to make different parts of your
text stand out. In programming, you are limited to a single, monospaced font. However, people
have come up with ingenious ways to get around the limitations of the typeface.

Some of the various commenting tricks are;

/**

khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhkhhhhhhhhhhhdhdhkhdhkrdhkrdd rkk **x%

*xxxxxxk WARNING This is an exanple of a i
*ok kR k ok kK war ni ng nessage that grabs the *okok ok ok k
*ok kR k ok kK attention of the progranmer. *okok ok ok k

khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhkhhhhhdhhhhhhdhhhhdhkrdhkhdk hkk **x%

khkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhkhhhhhhhhhhhdhdhkhdhkrdhkhdk r*k **x%

N > Anot her, less inportant warning<---------

[[>>>>>>>>>>>> Maj or section header <<<<<<<<<<<LLLLL<L<L

/**

* W use boxed coments in this book to denote the *
* begi nning of a section or program *

**I

/* __ *
* This is another way of draw ng boxes
L2 */
/*

* This is the beginning of a section

* ANANNANN NN NANN NANNANNNANNNAN AN N NANNANNNAN

*

* In the paragraph that foll ows we explain what

* the section does and how it worKks.

*

* A nedium |l evel comment explaining the next

dozen or so lines of code. Even though we don't have
* the bold typeface we can **enphasi ze** words.
*/

/1 A sinple comrent explaining the next |ine

took only half a page. Because | had organized my thoughts well (and was lucky), the program

worked the first time.

Y our program should read like an essay. It should be as clear and easy to understand as
possible. Good programming style comes from experience and practice. The style described in
the following pagesis the result of many years of programming experience. It can be used asa
starting point for developing your own style. These are not rules, but only suggestions. The only

rules are: Make your program as clear, concise, and simple as possible.

At the beginning of the program is a comment block that contains information about the
program. Boxing the comments makes them stand out. The list that follows contains some of the
sections that should be included at the beginning of your program. Not al programs will need
all sections, so use only those that apply.

Heading
The first comment should contain the name of the program. Also include a short description
of what it does. Y ou may have the most amazing program, one that dices, dices, and solves
al the world's problems, but it isuselessif no one knows what it does.

Author
You've goneto alot of trouble to create this program. Take credit for it. Also, if someone
else must later modify the program, he or she can come to you for information and help.

Purpose
Why did you write this program? What does it do?

Usage
In this section give a short explanation of how to run the program. In an ideal world, every
program comes with a set of documents describing how to use it. The world is not ideal.
Oualline's law of documentation states: 90% of the time the documentation islost. Out of the
remaining 10%, 9% of the time the revision of the documentation is different from the
revision of the program and therefore completely useless. The 1% of the time you actually
have documentation and the correct revision of the documentation, the documentation will
be written in Japanese.

To avoid falling prey to Oualline's law of documentation, put the documentation in the
program.

References
Creative copying is alegitimate form of programming (if you don't break the copyright laws
in the process). In the real world, it doesn't matter how you get aworking program, aslong
asyou get it; but, give credit where credit is due. In this section you should reference the
original author of any work you copied.

Page 40

File formats
List the filesthat your program reads or writes and a short description of their format.

Restrictions
List any limits or restrictions that apply to the program, such as: The data file must be
correctly formatted; the program does not check for input errors.

Revision history
This section contains a list indicating who modified the program and when and what
changes have been made. Many computers have a source control system (uUNix: Rcs and
sccs; Ms-Dog/Windows: MKS-RCs, Peve) that will keep track of thisinformration for you.

Error handling
If the program detects an error, what does it do with the error?

Notes
Include special comments or other information that has not aready been covered.

The format of your beginning comments will depend on what is needed for the environment in
which you are programming. For example, if you are a student, the instructor may ask you to
include in the program heading the assignment number, your name, student identification
number, and other information. In industry, a project number or part number might be included.

Comments should explain everything the programmer needs to know about the program, but no
more. It is possible to overcomment a program. (Thisisrare, but it does happen.) When
deciding on the format for your heading comments, make sure there is areason for everything
you include.

I nserting Comments—The Easy Way

If you are using the unix editor vi , put the following in your .exrc file to make it
easier to construct boxes.

. abbr #b /**

: abbr #e **/

Thesetwo linesdefinevi abbreviations #b and #e, so that typing #b<r e
t ur n> at the beginning of ablock will cause the string:

/**

to appear (for beginning a comment box). Typing #e<r et ur n> will end a box.
The number of stars was carefully selected so the end of the box isaligned on a
tab stop.

Page 41

C++ Code

The actual code for your program consists of two parts. variables and executable instructions.
Variables are used to hold the data used by your program. Executable instructionstell the

computer what to do with the data. C++ classes are a combination of data and the instructions
that work on the data. They provide a convenient way of packaging both instructions and data.

A variable is aplace in the computer's memory for storing avalue. C++ identifies that place by
the variable name. Names can be any length and should be chosen so their meaning is clear.
(Actuadly, alimit does exist, but it is so large that you probably will never encounter it.) Every
variable in C++ must be declared. (Variable declarations are discussed in Chapter 9, Variable
Scope and Functions.) The following declaration tells C++ that you are going to use three
integer (i nt) variablesnamed p, q, andr :

int p,q,r;

But what are these variables for? The reader has no idea. They could represent the number of
angels on the head of apin, or the location and acceleration of a plasmabolt in a game of
Space Invaders. Avoid abbreviations. Exs. abb. are diff. to rd. and hd. to ustnd. (Excess

abbreviations are difficult to read and hard to understand.)

Now consider another declaration:

i nt account _nunber;
i nt bal ance_owed,;

Now we know that we are dealing with an accounting program, but we could still use some
more information. For example, isthebal ance_owed in dollars or cents? It would be much
better if we added a comment after each declaration explaining what we are doing.

i nt account _nunber; /1 1Index for account table
i nt bal ance_owed,; /1 Total owed us (in pennies)

By putting a comment after each declaration we, in effect, create a mini-dictionary where we
define the meaning of each variable name. Since the definition of each variableisin aknown
place, it's easy to look up the meaning of a name. (Programming tools, such as editors,
cross-referencers, and gr ep, can also help you quickly find a variable's definition.)

Units are very important. | was once asked to modify a program that converted plot datafiles
from one format to another. Many different units of length were used throughout the program
and none of the variable declarations was

Page 42

commented. | tried very hard to figure out what was going on, but it was impossible to
determine what units were being used in the program. Finally, | gave up and put the following
comment in the program:

/**

* Note: | have no idea what the input units are, nor *
* do | have any idea what the output units are, *
* but | have discovered that if | divide by 3 *
* the plots | ook about the right size. *

**I

One problem many beginning programmers have is that they describe the code, not the variable.
For example:

int top_limt; /1 Top limt is an integer [bad commrent]

It'sobviousfromthecodethat t op_| i m t isaninteger. What | want to know iswhat is
top limt.Tel me

int top_limt; /1 Nunber of itens we can | oad before |osing data

Y ou should take every opportunity to make sure your program is clear and easy to understand.
Do not be clever. Cleverness makes for unreadable and unmaintainable programs. Programs,
by their nature, are extremely complex. Anything you can to do to cut dowr on this complexity
will make your programs better. Consider the following code, written by avery clever
programme.

while ("\n'" I'= *p++ = *q++);

It isalmost impossible for the reader to tell at a glance what this mess does. Properly written

thiswould be;

while (1) {
*destination_ptr = *source_ptr;
++destinati on_ptr;
++source_ptr;
if (*(destination_ptr-1) == "'\n")
break; // exit the loop if done

}

Although the second version is longer, it is much clearer and easier to understand. Even a
novice programmer who does not know C++ well can tell that this program has something to
do with moving data from a source to a destination.

The computer doesn't care which version is used. A good compiler will generate the same
machine code for both versions. It is the programmer who benefits from the verbose code.

Naming Style

Names can contain both uppercase and lowercase letters. In this book we use all lowercase
names for variables (e.g., source_ptr, current i ndex). All uppercase

Page 43

isreserved for constants (e.g., MAX_| TEMS, SCREEN_W DTH). This convention isthe
classic convention followed by most C and C++ programs.

Many newer programs use mixed-case names (e.g., Recor dsl nFi | e). Sometimes they use
the capitalization of the first |etter to indicate information about the variable. For example,
recor dsl nFi | e might be used to denote alocal variable while Recor dsl nFi | e would
denote aglobal variable. (See Chapter 9, Variable Scope and Functions, for information about
local and global variables.)

Which naming convention you useis up to you. It is more a matter of religion than of style.
However, using a consistent naming style is extremely important. In this book we have chosen
thefirst style, lowercase variable names and uppercase constants, and we use it throughout the
book.

Coding Réligion

Computer scientists have devised many programming styles. These include structured
programming, top-down programming, and goto-less programming. Each of these styles hasits
own following or cult. | use the term "religion” because people are taught to follow the rules
blindly without knowing the reasons behind them. For example, followers of the goto-less cult
will never use a goto statement, even when it is natural to do so.

The rules presented in this book are the result of years of programming experience. | have
discovered that by following these rules, | can create better programs. Y ou do not have to
follow them blindly. If you find a better system, by all meansuseit. (If it really works, drop me
aline. I'd like to useit, too.)

Indentation and Code For mat

To make programs easier to understand, most programmers indent their programs. The general
rule for a C++ program isto indent one level for each new block or conditional. In Example
3-1there are three levels of logic, each with its own indentation level. Thewhi | e statement is
outermost. The statements inside thewhi | e are at the next level. The statement inside thei f
(br eak) isat theinnermost level.

There are two styles of indentation, and a vast religious war is being waged in the
programming community asto which is better. The first isthe short form:

while (! done) {
cout << "Processing\n";
next _entry();

Page 44

if (total <= 0) {
cout << "You owe not hi ng\n";
total = 0;
} else {
cout << "You owe " << total << " dollars\n";
all totals = all totals + total

}

In this case, most of the curly braces are put on the same line as the statements. The other style
puts the curly braces on lines by themselves:

while (! done)

{
cout << "Processing\n";
next _entry();
}
if (total <= 0)
{
cout << "You owe not hi ng\n";
total = O;
}
el se
cout << "You owe " << total << " dollars\n";
all totals = all totals + total
}

Both formats are commonly used. Y ou should use the format you feel most comfortable with.
This book uses the short form.

The amount of indentation is left to the programmer. Two, four, and eight spaces are common.
Studies have shown that a four-space indent makes the most readable code. Y ou can choose
any indent size aslong as you are consistent.

Clarity
A program should read like atechnical paper. It should be organized into sections and

paragraphs. Procedures form a natural section boundary. Y ou should organize your code into
paragraphs. It isagood ideato begin a paragraph with atopic sentence comment and separate
it from other paragraphs by a blank line. For example:

/1 poor progranm ng practice
tenp = box_xl;

box xI = box_x2;
box_x2 = tenp;
tenp = box_yl;
box_yl = box_y2;
box_y2 = tenp;

Page 45
A better version would be:

/*
* Swap the two corners
*/

/* Swap X coordi nate */
tenp = box_x1

box_xI = box_x2;

box_x2 = tenp;

/* Swap Y coordinate */

tenp = boxyl;

box_yl = boxy2;

box_y2 = tenp;
Simplicity

Y our program should be smple. Some general rules of thumb are;

- A single function should not be longer than one or two pages. (See Chapter 9, Variable
Scope and Functions.) If it getslonger, it can probably be split into two simpler functions.
This rule comes about because the human mind can hold only so much in short-term memory.
Three pages is about the most the human mind can wrap itself around in one sitting.

- Avoid complex logic such as multiple nested i f s. The more complex your code, the more
indentation levels you will need. About the time you start running into the right margin, you
should think about splitting your code into multiple procedures and thus decreasing the level
of complexity.

- Did you ever read a sentence, like this one, where the author went on and on, stringing
together sentence after sentence with the word "and,” and didn't seem to understand the fact
that several shorter sentences would do the job much better, and didn't it bother you?

C++ statements should not go on forever. Long statements should be avoided. If an equation
or formulalooks like it is going to be longer than one or two lines, you probably should split
it into two shorter equations.

- Split large single code files into multiple smaller ones. (See Chapter 23, Modular
Programming, for more information about programming with multiple files.) In general |

like to keep my files smaller than 1,500 lines. That way they aren't too difficult to edit and
print.

- When using classes (see Chapter 13, Smple Classes), put one class per module.

- Findly, the most important rule: Make your program as smple and easy to understand as
possible, even if it means breaking some of the rules. The goal

Page 46

isclarity, and the rules given in this chapter are designed to help you accomplish that goal.
If the rules get in the way, get rid of them. | have seen one program with a single statement
that spanned more than 20 pages. However, because of the specialized nature of the
program, this statement was ssimple and easy to understand.

Consistency and Organization

Good styleis only one element in creating a high-quality program. Consistency is aso afactor.
This book is organized with the table of contents at the front and the index at the back. Almost
every book printed has a similar organization. This consistency makesit easy to look up a
word in the index or find a chapter title in the table of contents.

Unfortunately the programming community has developed a variety of coding styles. Each has
its own advantages and disadvantages. The trick to efficient programming in agroup isto pick
one style and then use it consistently. That way you can avoid the problems and confusion that
arise when programs written in different styles are combined.

Good styleis nice, but consistency is better.

Further Reading
In this chapter we have touched only the basics of style. Later chapters expand
on this base, adding new stylistic elements as you learn new elements of the

language.

Summary

A program should be concise and easy to read. It must serve as a set of computer instructions,
but also as areference work describing the algorithms and data used inside it. Everything
should be documented with comments. Comments serve two purposes. First, they describe your
program to any maintenance programmer who has to fix it and, second, comments help you
remember what you did.

Classdiscussion 1: Cregate a style sheet for class assignments. Discuss what comments should
go into the programs and why.

Classdiscussion 2: Analyze the style of an existing program. Is the program written in a
manner that is clear and easy to understand? What can be done to improve the style of the
program?

Page 47

Exercise 3-1: Go through al the other programming exercises in this book and write comment
blocks for them. Thiswill serve several purposes. First, it will give you practice commenting.
Second, it will short-circuit the old programmer's excuse, "But | didn't have time to put in the
comments.”

Page 49

4
Basic Declarations and Expressions

In This Chapter:

- TheElementsof a
Program
Simple Expressions
The cout Output
Class
Basic Program
Structure
Variablesand
Storage
Variable
Declarations
Integers
Assignment
Statements
Floating Point
Numbers
Programming
Exercises
Answersto Chapter
Questions

A journey of a thousand miles must begin with a single step
—Lao-Zi

If carpenters made buildings the way programmers make programs, the
first woodpecker to come along would destroy all of civilization
—Anonymous

The Elements of a Program

If you are going to construct a building, you need two things: the bricks and a blueprint that tells
you how to put them together. In computer programming you also need two things. data
(variables) and instructions (code). Variables are the basic building blocks of a program.

Instructions tell the computer what to do with the variables,

Comments are used to describe the variables and instructions. They are notes by the author
documenting the program so it is clear and easy to read. Comments are ignored by the
computer.

In construction, before we can start we must order our materials: "We need 500 large bricks,
80 half-size bricks, and 4 flagstones." Similarly, in C++ you must declare all variables before
you can use them. Y ou must name each one of your "bricks' and tell C++ what type of "brick"
to use.

After the variables are defined you can begin to use them. In construction the basic structureis
aroom. By combining many rooms we form abuilding. In C++ the basic structure is a function.
Functions can be combined to form a program.

Page 50

An apprentice builder does not start out building the Empire State Building. He startson a
one-room house. In this chapter you will concentrate on constructing simple, one-function
programs.

Basic Program Structure

The basic elements of aprogram are the data declarations, functions, and comments. Let's see
how these can be organized into a smple C++ program.

The basic structure of a one-function programis.

/***************************************

* Headi ng comments *

***************************************/

dat a decl arati ons
mai n()

{

execut abl e statenents
return(0);

}

The heading commentstell the programmer al about the program. The data declarations
describe the data that the program is going to use.

Our single function isnamed mai n. Thename mai n isspecial, because it is the first function
called. Any other functions are called directly or indirectly from rmai n. Thefunction mai n
begins with:

mai n()

{
and ends with:

return(0);

}
Thelinereturn (0);isusedtotell the operating system (uNix or Mmspos/Windows) that

the program exited normally (status=0). A nonzero status indicates an error—the bigger the
return value, the more severe the error. Typically 1 isused for most ssmple errors, such as a
missing file or bad command-line syntax.

Now let'stake alook at the "Hello World" program (Example 3-1).

At the beginning of the program is acomment box enclosed in /* and */. Following thisis the
line:

#i ncl ude <i ostream h>

Page 51

This statement signals C++ that you are going to use a set of standard classes called the I/0
stream classes. Thisisatype of datadeclaration.” Later you usethe classcout from this
package. (We define a class more completely in Chapter 13, Smple Classes, but until we
know more well treat cout asa"black box" that sends data to the console.)

The nmai n routine contains the instruction:

cout << "Hello Wrld\n";

which is an executable statement instructing C++ to print the message"Hel | o Wér | d" onthe
screen. C++ uses a semicolon to end a statement in much the same way we use a period to end
a sentence. Unlike with line-oriented languages such as BASIC, the end of aline does not end a
statement. The sentencesin this book can span severa lines—the end of alineistreated asa
space separating words. C++ works the same way. A single statement can span severa lines.
Similarly, you can put severa sentences on the same line, just as you can put several C++
statements on the same line. However, most of the time your program is more readable if each
statement starts on a separate line.

We are using the standard class cout (console out) to output the message. A standard classis
ageneraly useful C++ object that has already been defined and put in the standard library. A
library is acollection of classes, functions, and data that have been grouped together for reuse.
The standard library contains classes and functions for input, output, sorting, advanced math,
and file manipulation. See your C++ reference manual for a complete list of library functions
and standard classes.

"Hello World" is one of the simplest C++ programs. It contains no computations, merely
sending a single message to the screen. It is a starting point. Once you have mastered this
simple program, you have done a great deal of things right. The program isnot as simple as it
looks. But once you get it working, you can move on to create more complex code.

Simple Expressions

Computers can do more than just print strings. They can also perform calculations.
Expressions are used to specify simple computations. C++ has the five simple operators listed
in Table 4-1.

* Technically, the statement causes a set of data declarations to be taken from an include file Chapter
10, The C++ Preprocessor, discussesincludefiles.

Page 52

Table 4-1. Smple Operators

Operator Meaning

* Multiply

/ Divide

+ Add

- Subtract

% Modulus (remainder after division)

Multiply (*), divide (/), and modulus (%) have precedence over addition (+) and subtraction
(-). Parentheses may be used to group terms. Thus:

(1 +2) * 4
yields 12. while:
1+2* 4
yields 9.
The program in Example 4-1 computes the value of the expression (1 + 2) * 4.
Example 4-1 Smple Expression
mai n()
{

(1 +2) * 4
return(0);

Although we calcul ate the answer, we don't do anything with it. (This program will generate a
"null effect" warning to indicate that there is a correctly written, but useless, statement in the
program.)

If we were constructing a building, think about how confused a worker would be if we said,
"Take your wheelbarrow and go back and forth between the truck and the building site.”

"Do you want me to carry bricks in the wheelbarrow?"
"No. Just go back and forth."

Y ou need to output the results of your calculations.

Page 53

The cout Output Class

The standard cl ass variable cout isused to output data to the console. We'll learn what a
classislater in Chapter 13, Smple Classes. But for now all we have to know isthat the
operator <<* tells C++ what to output. So the statement:

cout << "Hello World\n";

tells C++ to takethe string "Hel | o Wor | d\ n" and write it to the console. Multiple <<
operators may be used together. For example, both the following lines output the same

message:

cout << "Hello World\n";
cout << "Hello " << "World\n";

Expressions can aso be output this way, such as:

cout << "Half of " << 64 << " is " << (64 / 2) << "\n";
When thisis executed it will write:

Hal f of 64 is 32

on the console. Note that we had to put a space after the "of" in "Half of.” There also is a space
on either side of the "is" string. These spaces are needed in the output to separate the numbers
from the text. Suppose we didn't put the spaces in and the code looked like:

/1 Probl em code
cout << "Half of" << 64 << "is" << (64 / 2) << "\n";

At first glance this code |ooks perfectly normal. There are spaces around each of the numbers.
But these spaces are not inside any string, so they will not be output. The result of this codeis:

Hal f of 64i s32

Omitting needed spaces is a common first-time programming mistake. Remember, only the text
inside the quotation marks will be outpuit.

Variables and Storage
C++ alowsyou to store valuesin variables. Each variable is identified by avariable name.

Additionally, each variable has a variable type. The type tells C++ how the variable is going
to be used and what kind of numbers (real, integer) it can hold.

* Technically << isthe left shift operator; however, thecout class has overloaded this operator and
made it the output operator (See Chapter 16, File Input/Output, for a complete discussion of 10
classes and Chapter 18. Operator Overloading, for adefinition of overloading.)

Page 54

Names start with aletter or underscore (_) followed by any number of letters, digits, or
underscores. Uppercase is different from lowercase, so the names "sam,” "Sam," and "SAM"
specify three different variables. To avoid confusion, it is better to use different names for
variables and not depend on case differences.

Most C++ programmers use all lowercase variable names. Some names, such asi nt
whi l e, for,andfl| oat , have a special meaning to C++ and are considered reserved
words. They cannot be used for variable names.

Thefollowing is an example of some variable names:

aver age /1 average of all grades

pi [/l pi to 6 decinal places

nunmber _of _students // nunber of students in this class
The following are not variable names:

3rd_entry // Begins with a nunber

al | $done // Contains a "$"

the end /1 Contains a space

i nt /! Reserved word

Avoid variable names that are similar. For example the following illustrates a poor choice of
variable names:

t ot al /] total nunber of itens in current entry
total s /]l total of all entries
A much better set of namesis:

entry total // total nunber of itens in current entry

all_total // total of all entries

Variable Declar ations

Before you can use avariablein C++, it must be defined in a declaration statement. A
variable cannot be used unlessit is declared.

A variable declaration serves three purposes.
1. It defines the name of the variable.
2. It defines the type of the variable (integer, real, character, etc.).
3. It gives the programmer a description of the variable.
The declaration of avariable answer can be:
int answer; /1 the result of our expression

The keyword int tells C++ that this variable contains an integer value. (Integers are defined
below.) The variable nameisanswer . The semicolon is used to indi-

Page 55
cate the statement end, and the comment is used to define this variable for the programmer.

The general form of avariable declaration is:

type nane; /1 conment

Typeisone of the C++ variabletypes (i nt, fl oat, etc.) Nameisany validvariable
name. The comment explains what the variable is and what it will be used for. Variable
declarations come just before the mai n() line at the top of a program. (In Chapter 9, Variable
Scope and Functions, you will see how local variables may be declared elsewhere.)

Integers

One variable typeisinteger. Integers (also known as whole numbers) have no fractional part or
decimal point. Numbers such as 1, 87, and -222 are integers. The number 8.3 is not an integer
because it contains a decimal point. The general form of an integer declaration is:

int nane; /] comrent

A calculator with an eight-digit display can only handle numbers between 99,999,999 and
-99,999,999. If you try to add 1 to 99,999,999, you will get an overflow error. Computers
have smilar limits. The limits on integers are implementation dependent, meaning they
change from computer to computer.

Calculators use decimal digits (0-9). Computers use binary digits (0-1) called bits. Eight bits
make abyte. The number of bits used to hold an integer varies from machine to machine.
Numbers are converted from binary to decimal for printing.

On most UNIX machines integers are 32 bits (4 bytes), providing arange of 2,147,483,647
(2%- 1) to -2,147,483,648 (-2%). On the PC in Turbo C++, only 16 bits (2 bytes) are used, so
therangeis 32,767 (2*- 1) to -32,768 (-2%).

Question 4-1: The following will work on a UNIX machine but willfail on a PC

int zip; /1 zip code for current address
zip = 92126;

Why does this fail? What will be the result when run on a PC?

Page 56

Assignment Statements

Variables are given a value through the use of assignment statements. Before a variable can be
used it must be declared. For example:

int answer; /1l Result of a sinple conputation
The variable may then be used in an assignment statement, such as:
answer = (1 + 2) * 4;

The variable answer on the left side of the equals sign (=) is assigned the value of the
expression (1 + 2) * 4 ontheright sSde. The semicolon ends the statement.

When you declare avariable, C++ allocates storage for the variable and puts an unknown
value insideit. Y ou can think of the declaration as creating a box to hold the data. When it
startsout it is amystery box containing an unknown quantity. Thisisillustrated in Figure 4-1A.
The assignment statement computes the value of the expression and drops that value into the
box as shown in Figure 4-1B.

J Q int answer;

| -~ | The variable answer has not been assigned a
| value. (Sowe puta "?" in it fo indicate that it's
in an unknown state.)

The variable answer is assigned the value of
the expression {1+2) =4. The box is shown
containing the value 12,

Figure 4-1. Declaration and assignment statements
The genera form of the assignment statement is:
vari abl e = expression;

The equals sign (=) is used for assignment, not equality.

Page 57

In Example 4-2 the variable t er i is used to store an integer value that is used in two later
expressions. Variables, like expressions, can be output using the output operator <<, so we use
this operator to check the results.

Example 4-2 tterm/tterrm.cc

#i ncl ude <i ostream h>

int term /1 termused in two expressions
mai n()
{
term= 3 * 5;
cout << "Twi ce << term<< " is "<< 2*term<< "\n";
cout << "Three tines " << term<< " is " << 3*term<< "\n";
return (0);
}

Floating Point Numbers

Real numbers are numbers that have afractional part. Because of the way they are stored
internally, real numbers are also known as floating point numbers. The numbers 5.5, 8.3, and

-12.6 are dl floating point numbers. C++ uses the decimal point to distinguish between floating
point numbers and integers, so a number such as 5.0 is afloating point number while5isan
integer. Floating point numbers must contain a decimal point. Numbers such as 3.14159, 0.5,
1.0, and 8.88 are floating point numbers.

Although it is possible to omit digits before the decimal point and specify anumber as .5
instead of 0.5, the extra 0 makesit clear that you are using afloating point number. A similar
rule appliesto 12. versus 12.0. Floating point zero should be written as 0.0.

Additionally, afloating point number may include an exponent specification of the form etexp.
For example, 1.2e34 is shorthand for 1.2*10%.
The form of afloating point declaration is:

float variabl e; /1 commrent

Again, thereisalimit on the range of floating-point numbers the computer can handle. The
range varies widely from computer to computer. Floating point accuracy is discussed further in
Chapter 19, Floating Point.

Floating point numbers may be output using cout . For example:

cout << "The answer is " << (1.0 / 3.0) << "\n";

Page 58

Floating Point Versus Integer Divide

The division operator is special. Thereis avast difference between an integer divide and a
floating-point divide. In an integer divide, the result is truncated (any fractiona part is
discarded). For example, the integer divide value of 19/10is 1.

If either the divisor or the dividend is a floating-point number, afloating point divideis
executed. In this case 19.0/10.0is 1.9. (19/10.0 and 19.0/10 are a so floating-point divides,
however, 19.0/10.0 ispreferred for clarity.) There are several examplesin Table 4-2.

Table 4-2 Expression Examples

Expression Result Result Type
1+2 3 Integer
1.0+20 3.0 Floating point
19/10 1 Integer
19.0/10.0 19 Floating point

C++ allows the assignment of an integer expression to afloating-point variable. It will
automatically perform the integer-to-floating-point conversion and then make the assignment. A
similar conversion is performed when assigning a floating point number to an integer. Floating
point numbers are truncated when assigned to integer variables.

Example 4-3 float/float1c

i nt integer; // an integer
float floating; // a floating point nunber

mai n()

{
floating = 1.0 / 2.0; /1 assign floating 0.5
integer = 1/ 3; /1 assign integer O
floating = (1/ 2) + (1/ 2); // assign floating 0.0
floating = 3.0 / 2.0; /1 assign floating 1.5
integer = floating; /] assign integer 1
return (0);

}

Notice that the expression 1/ 2 isan integer expression resulting in an integer divide and an
integer result of O.

Page 59

Question 4-2: Why does Example 4-4 print "The value of 1/3is0"? What must be done to this
program to fix it?

Example 4-4. float2/float2.cc

#i ncl ude <i ostream h>
float answer; // the result of the divide

main ()

{

answer = 1/3;
cout << "The value of 1/3 is " << answer << "\n";
return (0);

}

Characters

The type char represents single characters. The form of a character declaration is:
char vari abl e; /| comrent

Characters are enclosed in single quotationmarks (). "A', 'a' and ' ! ' are
character constants. The backslash character (\) is called the escape character. It isused to
signal that a special character follows. For example, the character \'t can beusedto
represent the single character "tab." \n is the new-line character. It causes the output device to
go to the beginning of the next line, smilar to areturn key on atypewriter. The character \ \ is
the backdash itself. Finally, characters can be specified by \nnn where nnn is the octal code
for the character. Table 4-3 summarizes these special characters. For afull list of ASCII
character codes, see Appendix A.

Table 4-3. Special Characters

Character Name Meaning

\b Backspace Move the cursor to the left one character

\ f Form feed Go to top of anew page

\'n New line Gotothe next line

\r Return Go to the beginning of the current line

\t Tab Advance to the next tab stop (eight-column
boundary)

\' Apostrophe or single The character '

quotation mark

\" Double quote The character"
\nnn The character nnn The character number nnn (octal)
\NN The character NN The character number NN (hexadecimal)
Page 60
NOTE

While characters are enclosed in single quotes (), a
different data type, the string, is enclosed in double
quotes ("). A good way to remember the difference
between these two types of quotes is that single
characters are enclosed in single quotes Strings can have
any number of characters (including double quote
characters), and they are enclosed in double quotes.

Example 4-5 reverses three characters.

Example 4-5 print3/print3 cc

#i ncl ude <i ostream h>

char char1; [/l first character
char char2; /! second character
char char 3; /! third character

mai n()
{
charl
char 2 'B';
char 3 'C;
cout << charl << char2 << char3 << " reversed is "<<
char3 << char2 << charl << "\n";
return (0);

A

}

When executed, this program prints:

ABC reversed is CBA
Boolean

The C++ Draft Standard defines a boolean type, bool, that can have the value true or false.
Most compilers do not yet support this new type, so we will not discussit here. Instead, it can
be found in Chapter 28, C++'s Dustier Corners, under the section "Vampire Features."

Programming Exer cises
Exercise 4-1: Write aprogram to print your name, Social Security number, and date of birth.

Exercise 4-2: Write aprogram to print ablock E using asterisks (*), wherethe Eis7
characters high and 5 characters wide.

Page 61

Exer cise 4-3. Write a program to compute the area and circumference of arectangle 3 inches
wide by 5 incheslong. What changes must be made to the program so it works for arectangle
6.8 inches wide by 2.3 incheslong?

Exercise 4-4: Write aprogram to print "HELLO" in big block letters where each letter is 7
characters high and 5 characters wide.

Answersto Chapter Questions

Answer 4-1: The largest number that can be stored in an int on a UNIX machineis
2,147,483,647. When using Turbo-C++ the limit is 32,767. The zip code 92126 is larger than
32,767, so it ismangled and the result is 26,590.

This problem can be fixed by using alongint instead of just an i nt . The various types of
integers are discussed in Chapter 5, Arrays. Qualifiers, and Reading Numbers.

Answer 4-2: The problem concernsthe division: 1/3. The number 1 and the number 3 are both
integers, so thisis an integer divide. Fractions are truncated in an integer divide. The
expression should be written as:

answer = 1.0/ 3.0

Page 63

5
Arrays, Qualifiers, and Reading Numbers

In This Chapter:

- Arrays
Strings
Reading Data
Initializing
Variables
Multidimensional
Arrays
Types of | ntegers
Types of Floats
Declarations
Qualifiers
Hexadecimal and
Octal Constants
Operatorsfor
Performing
Shortcuts
Programming
Exercises

That mysterious independent variable of political calculations, Public
Opinion.
—Thomas Henery Huxley

Arrays

So far in constructing our building we have named each brick (variable). That isfinefor a
small number of bricks, but what happens when we want to construct something larger? We
would like to point to a stack of bricks and say, "That's for the left wall. That's brick 1, brick 2,
brick 3...."

Arrays alow usto do something similar with variables. An array is a set of consecutive
memory locations used to store data. Each item in the array is called an element. The number
of elementsin an array is called the dimension of the array. A typical array declarationis:

/1 List of data to be sorted and averaged
i nt data_list[3];

Thisdeclaresdat a_| i st to bean array of thethreeelementsdata_| i st[0],

data list [1],anddata_I|ist[2], whichareseparate variables. To reference an
element of an array, you use anumber called the index (the number inside the square brackets
[1). C++ isafunny language and likesto start counting at O, so these three elements are
numbered O0-2.

Page 64
NOTE

Common sense tells you that when

you declare dat a_| i st to be three
elements long, data |ist[3]
would be valid. Common sense is
wrong and data |ist[3] is
illegal.

Example 5-1 computes the total and average of five numbers.

Example 5-1. fivefive cc

#i ncl ude <i ostream h>

float data[5]; /] data to average and total
float total; /] the total of the data itens
fl oat average; /1 average of the itens
main ()
{

data[0] = 34.0;

data[1] = 27.0;

data[2] = 46.5;

data[3] = 82.0;

data[4] = 22.0;

total = data[0] + data[l] + data[2] + data[3] + data[4];
average = total / 5.0;

cout << "Total "<< total << " Average " << average << '\n';
return (0);

}
This program outputs:

Total 211.5 Average 42.3

Strings

Srings are arrays of characters. The special character ' \O' (NUL) is used to indicate the end of
astring.

Example:

char name[4] ;

main ()

{
namg[0] ='S';
namg[1] = 'a';
name[2] = 'ni;
namg[3] = '\0';
return (0);

}

Page 65

This creates a character array four e ements long. Note that we had to allocate one character
for the end-of-string marker.

String constants consist of text enclosed in double quotes (*). Y ou may have already noticed
that we've used string constants extensively for output with the cout standard class. C++ does
not allow one array to be assigned to another, so you can't write an assgnment of the form:

namre = "Sant'; /1 1llegal

Instead you must use the standard library function st r cpy to copy the string constant into the
variable. (st r cpy copiesthe whole string including the end-of string character.) To initiaize
the variable nane to "San™ you would write:

#i ncl ude <string. h>
char nare[4] ;
mai n()

{
strcpy(nane, "Sam'); /1 Legal

return (0);
NOTE

The line #i ncl ude <string. h> is needed to
inform C++ that you are using the string function
library.

C++ uses variable-length strings. For example, the declaration:
#i ncl ude <string. h>
char string[50];
mai n()
{
strepy(string, "Sanl);

createsan array (st r i ng) that can contain up to 50 characters. The size of the array is 50, but
the length of the string is 3. Any string up to 49 characterslong can be stored in st r i ng. (One
character isreserved for the NULL that indicates the end of the string.)

There are several standard routines that work on string variables. These are listed in Table
5-1.

Table 5-1 String Functions

Function Description

strcpy(stringl, string2) | Copiesstring2into stringl
strcat(stringl, string2) | Concatenatesstring2 onto theend of stringl

(Table 5-1 continued on next page)

Page 66
Table 5-1 String Functions (Continued from previous page)

Function Description

length = strlen(string) Getsthe length of astring

strenp(stringl, string2) | Oifstringlequal s_string2; otherwise, nonzero

Example 5-2 illustrates how st r cpy isused.

Example 5-2 str/sam cc

#i ncl ude <i ostream h>
#i ncl ude <string. h>

char nane[30]; // First nane of soneone

mai n()

{
strcpy(nane, "Sam');

cout << "The nane is " << nane << '\n';
return (0);

}

Example 5-3 takes afirst name and a last name and combines the two strings. The program
works by initializing the variablef i r st to the first name (Steve). The last name (Oualline) is
put inthe variablel ast . To congtruct the full name, the first name is copied into

full _name.Thenstrcat isusedtoadd aspace. Wecall st r cat again to tack on the last
name.

The dimension of the string variablesis 100 because we know that no one we are going to
encounter has a name more than 99 characters long. (If we get a name more than 99 characters
long, our program will screw up and split the namein two.)

Example 5-3 name2/man2 cc

#i ncl ude <string. h>
#i ncl ude <i ostream h>

char first[100]; /1 first nane
char last[100]; /1 last name
char full_nane[100]; /1 full version of first and | ast nane
main ()
{
strepy(first, "Steve"); /1 Initialize first nane
strcpy(last, "Qualline"); /1 Initialize |last nane
strepy(full _nane, first); /] full = "Steve"
/1 Note: strcat not strcpy
strcat (full _name, " "); /1 full " St eve"

strcat (full _name, last); /1 full "Steve Qualline"

Page 67

Example 5-3. name2/man2.cc (Continued)

cout << "The full nanme is " << full _nane << '\n';
return (0);

}
The output of this programiis:

The full nane is Steve Qualline

Reading Data

So far you've learned how to compute expressions and output the results. Y ou need to have
your programs read numbers as well. The output class variable cout uses the operator << to
write numbers. The input class variable ci n uses the operator >> to read them. For example,
the code:

cin >> price >> nunbero_on_hand;

reads two numbers. pri ce and nunber _on_hand. Theinput to this program should be two
numbers, separated by white space. For example, if you type:

325
thenpri ce getsthevaue 32 and nunber _on_hand getsb5.
NOTE

This does not give you very precise control over
your input. C++ does a reasonable job for simple
input. If your program expects a number and you
type <ent er > instead, the program will skip the
<ent er > (it's white space) and wait for you to
type a number. Sometimes this may lead you to think
your program'’s stuck.

In Example 5-4, we use ci n to get anumber from the user and then we double it:

Example 5-4 double/double.cc

#i ncl ude <i ostream h>

char l'i ne[100]; [/ input line fromconsole
i nt val ue; /1 a value to double

main ()

{

cout << "Enter a val ue:

cin >> val ue;

cout << "Twice " << value << " is " << value * 2 << '\n';
return (0);

Page 68

This program asks the user for a single number and doubles it. Notice that thereis no \n at the
endof Ent er a val ue: . Thisisbecause we do not want the computer to print a newline
after the prompt. For example, a sample run of the program might look like:

Enter a value: 12
Twice 12 is 24

If wereplaced Ent er a val ue: withEnter a val ue: \n theresult would be:

Enter a val ue:
12
Twice 12 is 24

Question 5-1: Example 5-5 is designed to compute the area of a triangle, given itswidth
and height. For some strange reason, the compiler refuses to believe that we declared the
variablew dt h. The declaration isright there on line two, just after the definition of
height. Why isn't the compiler seeing it?

Example 5-5 comment/comment.cc

#i ncl ude <i ostream h>

i nt hei ght ; /* the height of the triangle
i nt wi dt h; /* the width of the triangle */
i nt ar ea; /* area of the triangle (conputed) */
mai n()
{

cout << "Enter width height? ";

cin >> width >> height;

area = (width * height) / 2;

cout << "The area is " << area << '\n';

return (0);
}

The genera form of aci n statement is.
cin >> variabl e;
Thisworksfor all types of ssimple variablessuchasi nt, fl oat, andchar.
Reading strings is alittle more difficult. To read a string, use the statement:
cin.getline(string, sizeof(string));
For example:
char nane[100] ; /1 The nane of a person
cin.getline(nane, sizeof(name));

Wediscusstheget | i ne andsi zeof functionsin Chapter 16, File Input/Output.

Page 69

When reading a string, the ci n class considers anything up to the end-of-line part of the string.

Example 5-6 reads a line from the keyboard and reports the line's length.

Example 5-6 len/len cc

#i ncl ude <string. h>
#i ncl ude <i ostream h>

char line[100]; // Aline of data

mai n()

{
cout << "Enter a line:";
cin.getline(line, sizeof(line));

cout << "The length of the line is: " << strlen(line) << '\n';
return (0);

}
When we run this program we get:

Enter a line:test
The length of the line is: 4

Initializing Variables

C++ alows variablesto beinitialized in the declaration statement. For example. the following
statement declares the integer count er and initializesit to 0.

int counter(0); /1 nunber cases counted so far
The older C style syntax is also supported:
int counter = O; /'l nunber cases counted so far

Arrays can also be initialized in asimilar manner. The element list must be enclosed in curly
braces ({}). For example:

/1 Product nunbers for the parts we are making
int product_codes[3] = {10, 972, 45);

Thisis equivalent to:

product codes[0] = 10;
product codes[1] = 972;
product codes[2] = 45;

The number of elementsin the curly braces ({}) does not have to match the array size. If too
many numbers are present, awarning will beissued. If there are not enough numbers, the extra
elementswill beinitialized to 0.

Page 70

If no dimension is given, C++ will determine the dimension from the number of elementsin the
initialization list. For example, we could have initialized our variable pr oduct _codes with
the statement:

/1 Product nunbers for the parts we are naking
int product_codes[] = {10, 972, 45};

Strings can be initialized in asimilar manner. To initialize the variable nane to the string
"Sam" we use the statement:

char nanme[] = {'S, 'a", 'm, "\0'};

C++ has aspecia shorthand for initializing strings, by using double quotes (*) to simplify the
initialization. The previous example could have been written:

char nane[] = "Sani;

The dimension of nane is 4, because C++ allocates a place for the \O' character that ends the
string.

C++ uses variable-length strings. For example, the declaration:
char string[50] = "Sant;

createsan array (st r i ng) that can contain up to 50 characters. The size of the array is 50, and
the length of the string is 3. Any string up to 49 characterslong can be stored in st r i ng. (One
character isreserved for the NUL that indicates the end of the string.)

NOTE

Our statement initialized only 4 of the 50 values
in string. The other 46 elements are not
initialized and may contain random data.

Multidimensional Arrays

Arrays can have more than one dimension. The declaration for atwo-dimensional array is:
type vari abl e[si zel] [size2]; // coment

Example:

/1 a typical matrix
int matrix[2][4];

Notice that C++ does not follow the notation used in other languagesof matri x [10, 12].

To access an dement of themat r i X we use the notation:

matrix[1][2] = 10;

Page 71

C++ alows you to use as many dimensions as needed (only limited by the amount of memory
available). Additional dimensions can be tacked on.

four _di nensi ons[10][12][9][5];

Initidlizing multidimensional arrays is similar to initializing single-dimension arrays. A set
of curly braces{} encloses each element. The declaration:

/] a typical matrix
int matrix[2][4];

can be thought of as a declaration of an array of dimension 2 whose elements are arrays of
dimension 4. Thisarray isinitialized as follows:

/] a typical matrix
int matrix[2][4] =

{1, 2, 3, 4},
{10, 20, 30, 40}
b
Thisis shorthand for:
matri x[0][0] = 1;
matrix[0][1] = 2;
matrix[0][2] = 3;
matri x[0][3] = 4;
matrix[1][0] = 10;
matrix[1][1] = 20;
matrix[1][2] = 30;
matrix[1][3] = 40;

Question 5-2: Why does the following program print incorrect answers?

Example 5-7 array/array.cc

#i ncl ude <i ostream h>

int array[3][5] = { /1 Two di nensional array
{o 1, 2, 3, 4},
{10, 11, 12, 13, 14},
{20, 21, 22, 23, 24}

b

mai n()

{
cout << "Last elenment is " << array[2,4] << '\n';
return (0);

}

When run on a Sun 3/50 this program generates:

Last elenent is 0x201e8

Y our answers may vary.

Page 72

Types of Integers

C++ is considered a medium-level language because it allows you to get very close to the
actual hardware of the machine. Some languages, such as BASIC, go to great lengths to
completely isolate the user from the details of how the processor works. This consistency

comes at agreat loss of efficiency. C++ lets you give detailed information about how the
hardware is to be used.

For example, most machines let you use different-length numbers. Simple BASIC alowsthe
programmer to use only one number type. This smplifies the programming, but BASIC
programs are extremely inefficient. C++ allows the programmer to specify many different kinds
of integers, so the programmer can make best use of the hardware.

The type specifier int tells C++ to use the most efficient size (for the machine you are using) for
the integer. This can be 2 to 4 bytes depending on the machine. Sometimes you need extra digits
to store numbers larger than are allowed in anormal int. The declaration:

[ong int answer; /1 the answer of our calcul ations

isused to alocate along integer. The long quantifier informs C++ that you wish to allocate
extra storage for the integer. If you are going to use small numbers and wish to reduce storage,
use the quantifier short.

short int year; /1 Year including the 19xx part

C++ guarantees that the storage for short <= int <=long. In actua practice, short amost
always alocates 2 bytes; long, 4 bytes; and int, 2 or 4 bytes. (See Appendix B for numeric
ranges.)

Long integer constants end with the character "L." For example:
long int var = 1234L; /1 Set up a long variable

Actually you can use either an uppercase or alowercase "L." Uppercase is preferred since
lowercase easily gets confused with the digit "1."

long int funny = 121; /1 1s this 12<l ong> or one hundred twenty-one?

Thetypeshort i nt uses2 bytes, or 16 bits. Fifteen bits are used normally for the number
and 1 bit for the sign. This givesit arange of -32,768 (-2%°) to 32,767 (2*° - 1). An unsi gned
short i nt usesal 16 bitsfor the number, giving it the range of 0 to 65,535 (2 - 1). All

i nt declarations default to si gned, so that the declaration:

signed long int answer; // final result

Page 73
isthe same as:
[ong int answer /1 final result

Finally thereisthe very short integer, the type char . Character variables take up 1 byte. They
can aso be used for numbers in the range of-128 to 127 or 0 to 255. Unlike integers, they do
not default to signed; the default is compiler dependent.”

Question: Isthe following character variable signed or unsigned?
char foo

ANSWers:

a It'ssigned.
b. It'sunsigned.
c. It'scompiler dependent.

d. If you aways specify si gned or unsi gned you don't have to worry about problems like
this.

Reading and writing very short integersisalittle tricky. If you try to useachar variablein an
output statement, it will be written, as a character. Y ou need to trick C++ into believing that
thechar variableisan integer. This can be accomplished with thei nt operator. Example
5-8 shows how to write out a very short integer as a number.

Example 5-8 two2/tuo2 cc

#i ncl ude <i ostream h>

signed char ch; // Very short integer
/1l Range is -128 to 127

int main()

{
ch = 37,
cout << "The nunber is " << int(ch) << '\n';
return (0);

}

We start by declaring a character variable ch. Thisvariableis assigned the value 37. Thisis
actually an integer, not a character, but C++ doesn't care. On the next line we write out the
value of the variable. If we tried to write ch directly, C++ would treat it as a character. The
codei nt (ch) tels C++, "Treat this character as an integer."

* Turbo-C++ even has a command-line switch to make the default for typechar either signed or
unsigned
Page 74

Reading a very short integer is not possible. You must first read it asashor t i nt and then
assign it to avery short integer.

Summary of Integer Types

| ong i nt declarations allow the programmer to explicitly specify extra precision whereitis
needed (at the expense of memory). short i nt numbers save space but have amore limited
range. The most compact integers have type char . They also have the most limited range.

unsi gned numbers provide away of doubling the range at the expense of eliminating
negative numbers. The kind of number you use will depend on your program and storage
requirements. The range of the various types of integersislisted in Appendix B.

Types of Floats

Thef | oat typealso comesin various flavors. float denotes normal precision (usually 4
bytes). doubl e indicates double precision (usually 8 bytes). Double precision gives the
programmer twice the range and precision of single-precision (f | oat) variables.

The quantifier | ong doubl e denotes extended precision. On some systems thisis the same
asdoubl e; on others, it offers additional precision. All types of floating-point numbers are
aways signed.

On most machines, single-precision floating-point instructions execute faster (but less
accurately) than double precision. Double precision gains accuracy at the expense of time and
storage. In most casesf | oat isadequate; however, if accuracy is a problem, switch to
doubl e (see Chapter 19, Floating Point).

Constant and Reference Declar ations

Sometimes you want to use a value that does not change, such as p. The keyword const
indicates a variable that never changes. To declare avalue for pi we use the statement:

const float Pl = 3.1415926; /!l The classic circle constant
NOTE

By convention variable names use lowercase only while constants use
uppercase only. However, there is nothing in the language that requires this,
and severa programming systems use a different convention.

Page 75

Constants must be initialized at declaration time and can never be changed. For example, if we
tried to reset the value of Pl to 3.0 we would generate an error message:

PI = 3.0; /1 1llega
Integer constants can be used as a size parameter when declaring an array:

const int TOTAL_MAX = 50; /1 Max. nunber of elements in total |ist
float total |ist[TOTAL_MAX]; /1 Total values for each category

NOTE

C++ allows you to use integer expressions when declaring an array. For
example,youcansaytotal |ist[10] ortotal |ist[7+3].
However, some compilers, such as Borland-C++ Version 3.1, won't allow
integer constantsin this type of expression. For example:

const int first_part = 3;
const int second part = 7;

float total [3+7]; /1 Works even in Borland C++ Version

float total 2[first_part + 7]; // Fails in Borland C++ version 3.1
float total 3[firstpart + secondpart]; // Also fails

Another special variable typeisther ef er ence type. A typical reference declaration is:

int count; /1 Nunber of itens so far
int &ctual _count = count; // Another nane for count

The special character "&" isused to tell C++ that act ual _count isareference. The
declaration causes the names count and act ual _count to refer to the same variable. For
example, the following two statements are equivalent:

count = 5;
actual _count = 5;

/1 "Actual count" changes too
/1 "Count" changes too

In other words, a simple variable declaration declares a box to put datain. A reference
variable slaps another name on the box, asillustrated in Figure 5-1.

count
actual_ count

Figure 5-1. Reference variables

Page 76

Thisform of the reference variable is not very useful. In fact, in actual programming it is
almost never used. In Chapter 9, Variable Scope and Functions, you'll see how another form
of the reference variable can be very useful.

Qualifiers

Asyou've seen, C++ allows you to specify a number of qualifiersfor variable
declarations. Qualifiers may be thought of as adjectives that describe the type that
follows. Table 5-2 summarizes the various qualifiers.

Table 5-2 Qualifiers and Smple Types

Special Class Sze Sign Type

volatile register long signed int

<blank> static short unsigned float
extern double <blank> char
auto <blank> <blank>
<blank>

Special

Thevol ati | e keyword isused for specialized programming such as I/O drivers and shared
memory applications. It is an advanced modifier whose use is far beyond the scope of this

book.

vol atile
Indicates a special variable whose value may change at any time

<blank>
Normal variable

Class

The class of avariableisdiscussed in detail in Chapter 9, Variable Scope and Functions. A
brief description of the various classes follows:

register
Thisindicates a frequently used variable that should be kept in a machine register. See
Chapter 17, Debugging and Optimization.

static
The meaning of this word depends on the context. This keyword is described in Chapter 9,
Variable Scope and Functions, and Chapter 23, Modular Programming.

Page 77

extern
The variable is defined in another file. See Chapter 23 for more information.

auto
A variable allocated from the stack. This keyword is hardly ever used.

<blank>
Indicates that the default class (aut 0) is selected.

Size
The size quaifier allows you to select the most efficient size for the variable.

| ong
Indicates alarger than normal integer. (Some nonstandard compilers use long double to
indicate avery large floating-point variable.)

short
A smadller than normal integer.

doubl e
A double-size floating-point number.

<blank>
Indicates a normal size number.

Sign
Numbers can be si gned or unsi gned. Thisqualifier appliesonly to char andi nt types.
Floating-point numbers are always signed. The default issi gned for i nt and undefined for

characters.

Type
This specifies the type of the variable. Simple typesinclude:
i nt

Integer

fl oat
Floating-point number

char
Single characters, but can also be used for very short integers

Page 78

Hexadecimal and Octal Constants

Integer numbers are specified as a string of digits, such as 1234, 88, -123, and so on. These are
decimal (base 10) numbers: 174 or 17410. Computers deal with binary (base 2) numbers:
101011102. The octal (base 8) system easily converts to and from binary. Each group of three
digits (22 = 8) can be transformed into asingle octal digit. Thus 10101110z can be written as
10 101 1102 and changed to the octal 256s. Hexadecimal (base 16) numbers have asimilar
conversion, but 4 bits at atime are used. For example, 100101002 is 1000 0100, or 84s.

The C++ language has conventions for representing octal and hexadecimal values. Leading
zeros are used to signal an octal constant. For example, 0123 is 123 (octal) or 83 (decimal).
Starting a number with "Ox" indicates a hexadecimal (base 16) constant. So Ox15is 21
(decimal). Table 5-3 shows several numbersin all three bases.

Table 5-3 Integer Examples

Base 10 Base 8 Base 16
6 06 0x6
9 011 0x9
15 017 OxF

Question 5-3: Why does the following program fail to print the correct zip code? What does
it print instead?

long int zip; /1 Zip code

mai n()

{
zip = 02137L; /1l Use the zip code for Canbridge MA

cout << "New York's zip code is: " << zip << '\n';
return(0);

}

Operatorsfor Performing Shortcuts

C++ not only provides you with arich set of declarations, but also gives you alarge number of
special-purpose operators. Frequently a programmer wants to increment (add 1 to) avariable.
Using anormal assignment statement, this would look like:

total _entries = total _entries + 1;

Page 79

C++ provides you a shorthand for performing this common task. The ++ operator is used for
incrementing.

++total _entries;

A similar operator, - - , can be used for decrementing (subtracting 1 from) avariable.
--nunber | eft;
/1 |Is the sane as
nunber | eft = nunber left - 1;

But suppose you want to add 2 instead of 1. Then you can use the following notation:
total _entries += 2;

Thisisequivaent to:

total _entries = total _entries + 2;

Each of the simple operators shown in Table 5-4 can be used in this manner.

Table 5-4 Shorthand Operators

Operator Shorthand Equivalent Statement
4= X += 2; X =X + 2

.= X -= 2; X =X - 2

*= X *= 2; X =X * 2

/= X /=2 X =x 1/ 2;

O X % 2; X = X %2;

Side Effects

Unfortunately, C++ allows the programmer to use side effects. A side effect is an operation that
is performed in addition to the main operation executed by the statement. For example, the
followingislegal C++ code:

size = 5;
result = ++size;

The first statement assigns si ze the value of 5. The second statement:
1. Incrementssi ze (side effect)
2. Assignsr esul t thevalueof si ze (main operation)
But in what order? There are four possible answers:
1l.resul t isassignedthevalueof si ze (5), and then si ze isincremented.

result isbandsi ze is6.

Page 80
2. si ze isincremented, and then r esul t isassigned thevalue of si ze (6).
result is6andsi ze is6.
3. The answer is compiler dependent and varies from computer to computer.
4. 1f you don't write code like this, you don't have to worry about these sorts of questions.

The correct answer is 2: The increment occurs before the assignment. However, 4 isamuch
better answer. The main effects of C++ are confusing enough without having to worry about
side effects.

NOTE

Some programmers highly value compact code. This is a holdover
from the early days of computing when storage cost a significant
amount of money. It is my view that the art of programming has
evolved to the point where clarity is much more vauable than
conrpactness. (Great novels, which alot of people enjoy reading, are
not written in shorthand.)

C++ actually provides two forms of the ++ operator. Oneisvariable ++ and the other is
++variable. Thefirst:

nunber
resul t

5;
nunber ++;

evaluates the expression and then increments the number, sor esul t is5. The second:

5.

nunber ;
++nunber ;

resul t

increments first and then evaluates the expression. In thiscaser esul t is6. However, using
++ or -- in thisway can lead to some surprising code:

0=--0- 0--;

The problem with thisis that it looks like someone is writing Morse code. The programmer
doesn't read this statement, he decodesiit. If you never use ++ or - - as part of any other

statement, but always put them on aline by themselves, the difference between the two forms of
these operatorsis not noticeable.

NOTE

The prefix form ++variable is preferred over the suffix form
variable ++ because it allows the compiler to generate dlightly
simpler code.

Page 81

More complex side effects can confuse even the C++ compiler. Consider the following code
fragment:

val ue = 1,
result = (value++ * 5) + (value++ * 3);

This expression tells C++ to perform the steps:
1. Multiply val ue by 5and add 1 toval ue.
2. Multiply val ue by 3and add 1 toval ue.
3. Add the results of the two mulltiples together.

Steps 1 and 2 are of equal priority, unlike the previous example, so the compiler can execute
themin any order it wants to. Suppose it decides to execute step 1 first, as shown in Figure
5-2.

result = (value++ * 5) + (value++ * 3);

.+ 0PI,
Evaluale 157 expression OPesation .

1

Figure 5-2. Expression evaluation, method 1

But it may execute step 2 first, as shown in Figure 5-3.

By using the first method, we get aresult of 11; using the second method the result is 13. The
result of this expression is ambiguous. By using the operator ++ in the middle of alarger
expression, we created a problem. (Thisis not the only problem that ++ and - - can cause. We
will get into more trouble in Chapter 10, The C++ Preprocessor.)

To avoid trouble and keep the program simple, always put ++ and - - on aline by themselves.

Page 82

result = (value++ * 5) 4+ (value++ * 3);
++ operabion
-) Fuatuale 15t engrossion
Fuaivate ond pipression. »". o
" 1 [+ 2
- o _ .= o
) | x5 value |
H 1. o’ ‘ P
| value |~ S
N A
P s ':-‘l
]-Il + ad
AN 4

13

Programming Exer cises

Exercise 5-1: Write aprogram that converts Celsius to Fahrenheit.
F=9,C+32

Exer cise 5-2: Write a program to calculate the volume of a sphere, 4/5pre.

Exer cise 5-3: Write a program to print out the perimeter of arectangle given its height and
width.

perimeter = 2 (width+height)
Exercise 5-4: Write a program that converts kilometers per hour to miles per hour.
miles = (kilometers -0.6213712)

Exercise 5-5: Write a program that takes hours and minutes as input and outputs the total
number of minutes (1 hour 30 minutes = 90 minutes).

Exercise 5-6: Write a program that takes an integer as the number of minutes and outputs the
total hours and minutes (90 minutes = 1 hour 30 minutes).

Answersto Chapter Questions

Answer 5-1: The programmer accidentally omitted the end-comment symbol (*/) after the
comment for height. The comment continues onto the next line and

Page 83

engulfs the width variable declaration. Example 5-9 shows the program with the comments
underlined.

Example 5-9. tempconv ¢

#i ncl ude <i ostream h>

i nt hei ght ; /* The height of the triangle

i nt Wi dt h; /* The width of the triangle*/

i nt ar ea; /* Area of the triangle (conputed) */
mai n()

{

cout << "Enter width and height? "

cin >> width >> height;

area = (width * height) / 2;

cout << "The area is " << area << '\n';
return (0);

}

Answer 5-2: The problem iswith the way we specified the element of the array: ar r ay[2,4].
This should have been written: ar r ay[2] [4].

The reason that the specification ar r ay[2, 4] does not generate asyntax error isthat it is
lega (but strange) C++. Thereis acomma operator in C++ (See C++'s Darker Corners) so the
expression 2, 4 evaluatesto4. Soarr ay[2, 4] isthesameasar r ay[4] . C++ treats this
as a pointer (See Simple pointers) and written shows up as a memory address.

Answer 5-3: The problem isthat the zip code 02137 begins with a zero. That tells C++ that
02137 isan octal constant. When we print it, we print in decimal. Because 021378 is 111910
the program prints.

New York's zip code is: 1119

Page 85

6
Decision and Control Statements

In This Chapter:

- if Statement
€lse Statement
How Not to Use
strcmp
L ooping Statements
while Statement
Break Statement
continue Statement
The Assignment
Anywhere Side
Effect
Programming
Exercises
Answersto Chapter
Questions

Once a decision was made, | did not worry about it afteruard
—Harry Truman

Calculations and expressions are only asmall part of computer programming. Decision and
control statements also are needed, to specify the order in which statements are to be executed.

So far you have congtructed linear programs, which are programs that execute in a straight
line, one statement after another. In this chapter you will see how to change the control flow of
aprogram with branching statements and looping statements. Branching statements cause one
section of code to be executed or not, depending on a conditional clause. Looping statements
are used to repeat a section of code a number of times or until some condition occurs.

if Statement

Thei f statement allows you to put some decision making into your programs. The general
formof thei f statement is:

if (condition)
st at enent ;

If the expression is true (nonzero) the statement will be executed. If the expression is zero, the
statement will not be executed. For example, suppose you are writing a billing program. At the
end, if the customer owes nothing or if he has credit (owes a negative amount) you want to print
amessage. In C++ thisis written:

if (total _owed <= 0)
cout << "You owe nothing.\n";
Page 86

The operator <= isarelational operator that represents less than or equal to. This statement
reads "if thet ot al _owed islessthan or equal to zero, print the message." The complete list
of relational operatorsisfoundin Table 6-1.

Table 6-1. Relational Operators

Operator M eaning

<= Lessthan or equa to

< Lessthan

> Greater than

>= Greater than or equal to
== Equa

I= Not equal

Multiple relational expressions may be grouped together with logical operators. For example,
the statement:

if ((oper_char == 'Q) || (oper_char == "'q"))
cout << "Quit\n";

usesthe logical OR operator (| |) to cause theif statement to print "Quit" if oper _char is
either alowercase """ or an uppercase "Q." Table 6-2 lists the logical operators.

Table 6-2 Logical Operators

Operator Usage M eaning

Logical OR (||) (exprl) | | (expr2) Trueif exprl or expr2 istrue

Logical AND (&&) | (exprl) && (expr2) Trueif exprl and expr2 aretrue

Logicd NOT (!) I(expr) Returnsfalseif expr istrue or
returnstrueif exprisfase

Multiple statements after the if may be grouped by putting them inside curly braces ({}). For
example:

if (total _owed <= 0) {
++zero_count;
cout << "You owe nothing.\n";

}

For readability, the statements enclosed in curly braces are usually indented. This allows the
programmer to quickly tell which statements are to be conditionally executed. Asyou will see
later, mistakes in indentation can result in programs that are misleading and hard to read.

Page 87

else Statement

An dternative form of theif statement is:

if (condition)
st at enent ;
el se
st at enent ;

If the condition istrue, the first statement is executed. If it isfalse, the second statement is
executed. In our accounting example, we wrote out a message only if nothing was owed. In rea
life we probably want to tell the customer how much he owesif there is a balance due.

if (total _owed <= 0)
cout << "You owe nothing.\n";
el se
cout << "You owe " << total owed << dol lars\n";

Note to PASCAL programmers. Unlike PASCAL, C++ requires you to put a semicolon at the

end of the satement beforethe el se.

Now consider this program fragment:

if (count < 10) [1f #1
if ((count %4) == 2) [1f #2
cout << "Condition: Wiite\n";
else // (Indentation is wong)
cout << "Condition: Tan\n";

Therearetwoi f statementsand oneel se. Towhichi f doestheel se belong? Pick one:
1. Itbelongstoi f #1.
2. Itbelongstoi f #2.
3. You don't have to worry about this situation if you never write code like this.

The correct answer is 3. According to the C++ syntax rules, the el se goeswith the nearest

i f,s02issyntactically correct. But writing code like this violates the KISS principle (Keep It
Simple, Stupid). It is best to write your code as clearly and ssimply as possible. This code
fragment should be written as:

if (count < 10) { [1f #1
if ((count %4) ==2) /] If #2
cout << "Condition: Wite\n";
el se
cout << "Condition: Tan\n";

Page 88

From our original example, it was not clear which i f statement had the el se clause; however,
adding an extra set of braces improves readability, understanding, and clarity.

How Not to Use strcmp

Thefunction st r cnp compares two strings and returns zero if they are equa and nonzero if
they are different. To check whether two strings are equal, we use the code:

/1 Check for equa

if (strenp(stringl, string2) == 0)
cout << "Strings equal\n";

el se
cout << "Strings not equal\n";

Some programmers omit the comment and the == 0 clause, leading to the following, confusing
code:

if (strcnp(stringl, string2))
cout << "...... "

At first glance, this program obviously compares two strings and executes the cout statement
if they are equal. Unfortunately, the obviousiswrong. If the strings are equal st r cnp returns
zero, and the cout isnot executed. Because of this backwards behavior of st r cnp, you
should be very careful in your use of st r cnp and always comment its use.

L ooping Statements

Computers not only do calculations, but also will do them over and over and over. To get a
computer to repeat its work, you need aloop statement. Looping statements have many uses.
For example, loops are used to count the number of words in a document or to count the number
of accounts that have past due balances.

while Statement

Thewhi | e statement is used when the program needs to perform repetitive tasks. The general
form of awhi | e statement is:

whil e (condition)
st at enent ;

The program will repeatedly execute the statement inside the whi | e until the condition
becomes false (0). (If the conditionisinitially false, the statement will not be executed.)

Page 89

For example, Example 6-1 computes all the Fibonacci numbers that are less than 100. The
Fibonacci sequenceis.

112358,
The terms are computed from the equations:

1
1
2=1+1
3=2+1
5=3+2
etc.
In general termsthisis:
fn="Fna +fho

Thisisamathematical equation using math-style variable names (f n). Mathematicians use this
very terse style of naming variables. In programming, terse is dangerous, so we trandate these
names into something verbose for C++.

f, trandatesto nextnumber
f.1 trandatesto current_number
f., trandatesto old _number

So in C++ code, the equation is expressed as.
next nunber = current nunber + ol d _nunber;
We want to loop until our current termis 100 or larger. Thewhi | e loop:

while (current_nunber < 100)

will repeat our computation and printing until we reach this limit.

In our whi | e loop we compute the value of cur r ent _nunber and print it Next we need to
advance one term.

This completes the body of the loop. The first two terms of the Fibonacci sequence are 1 and 1.
We initialize our first two terms to these values.

Figure 6-1 shows what happens to the variables during the execution of the program. At the
beginning cur r ent _nunber andol d_nunber are 1. We print the value of the current
term. Then the variable next _nunber iscomputed (value 2). Next we advance one term by
putting next _nunber intocurrent _nunber andcurrent nunber into

ol d_nunber . Thisisrepeated until we compute the last term and the whi | e loop exits.

Page 90
Example 6-1 shows this written as C++ code.
Example 6-1 fib/fib cc

#i ncl ude <i ostream h>

i nt ol d_nunber; [/ previous Fibonacci nunber
i nt current _nunber; /1 current Fibonacci nunber

i nt next _nunber; /1 next nunber in the series
mai n()

{
/1 start things out

ol d_nunber = 1;
current _nunber = 1

cout << "I\n"; // Print first nunber
while (current _nunmber < 100) {

cout << current_nunber << '\n';
next _nunber = current _nunber + ol d_nunber;

ol d_nunber = current_nunber;
current _nunber = next_nunber;

}

return (0);

— cout << current_number << '\n‘;
| | next number = current_number + old_number;

. 2. ¥

old_number = current_number; current number = next_ number;

Figure 6-1 Fibonacci execution

Page 91

Break Statement

We have used awhi | e statement to compute Fibonacci numbers less than 100. The loop exits
when the condition at the beginning becomes false. Loops aso can be exited at any point
through theuse of 8 br eak statement.

Suppose you want to add a series of numbers and you don't know how many numbers are to be
added together. Y ou need some way of |etting the program know it has reached the end of the
list. In Program 6-2 you use the number zero (0) to signa the end of thelist.

Note that the whi | e statement begins with:
while (1) {

The program will loop forever because the whi | e will exit only when the expression 1is
zero. The only way to exit thisloop isthrough abr eak statement.

When we see the end-of-list indicator (zero), we use the statement:

if (item==0)
br eak;

to exit the loop.
Example 6-2 total/total .cc

#i ncl ude <i ostream h>

i nt total; /1 Running total of all numbers so far
i nt item /] next itemto add to the |ist
mai n()
{
total = 0;
while (1)

cout << "Enter # to add \n";

cout << " or O to stop:";
cin >> item

if (item==0)
br eak;

total += item

cout << "Total: " << total << '\n';
}
cout << "Final total " << total << '\n';
return (0);

Page 92

continue Statement

Thecont i nue statement isvery smilar to the br eak statement, except that instead of
terminating the loop, it starts executing the body of the loop over from the top. For example, if
you modify the previous program to total only numbers larger than O, you get Example 6-3.

Example 6-3. total 2/total 2 cc

#i ncl ude <i ostream h>

i nt total; /1 Running total of all nunbers so far
i nt item /1 next itemto add to the |ist

i nt mnus_itens; // nunber of negative itens

main ()
{
total = O;
mnus_itens = 0;
while (1) {
cout << "Enter # to add\n";
cout << " or O to stop:";
cin >> item

if (item==0)
br eak;

if (item< 0) {
++m nus_i t ens;
conti nue;
}
total += item
cout << "Total: " << total << '\n';

}
cout << "Final total " << total << '\n';

cout << "with << mnus_itens << " negative itens omtted\n";
return (0);

}
The Assignment Anywher e Side Effect

C++ dlows the use of assignment statements almost anyplace. For example, you can put

assignment statements inside another assignment statement:

/1 don't programlike this
average = total value / (nunber_of _entries = last - first);

Page 93
Thisis the equivaent of saying:

/1 programlike this
nunmber _of _entries = last - first;

average = total _value / nunberofentries;

Thefirst version buries the assignment of nunber _of _ent ri es insde the expression.
Programs should be clear and simple and should not hide anything. The most important rule of
programming is KEEP IT SMPLE.

C++ aso dlows you to put assignment statementsin thewhi | e conditional. For example:

/1 do not programlike this
while ((current_nunber = [ast_nunber + ol d_nunber) < 100)
cout << "Term" << current_nunber << '\n';

Avoid thistype of programming. Notice how much clearer the logic isin the following
version:

/1 programlike this
while (1) {
current _nunber = | ast_nunber + ol d _nunber;

if (current_nunber >= 100)
br eak;

cout << "Term" << current_nunber << '\n';

}

Question 6-1: For some strange reason, the program in Example 6-4 thinks that everyone
owes a balance of O dollars. Why?

Example 6-4. balance/balance cc

#i ncl ude <i ostream h>
i nt bal ance_owed; /1 anmount owed

main ()

{
cout << "Enter nunber of dollars owed:";
cin >> bal ance_owed;

i f (balance_owed = 0)
cout << "You owe nothing.\n";
el se
cout << "You owe " << balance owed << " dollars.\n";

return (0);

Page 94

Sample output:

Enter nunber of dollars owed: 12
You owe O dol |l ars.

Programming Exer cises

Exercise 6-1:. Write aprogram to find the square of the distance between two points. Find the
distance only if you want to do the independent research needed to perform a square root in

CH++.

Exercise 6-2: A professor generates letter grades using Table 6-3.

Table 6-3 Grade Values

% Correct

0-60

61-70

71-80

81-90

91-100

Grade

F

D
C

vy}

Given anumeric grade, print the |etter.

Exer cise 6-3: Modify the previous program to print out a+ or - after the letter grade based on
the last digit of the score. The modifiers are listed in Table 6-4.

Table 6-4 Grade-Modification Values

Last digit Modifier
1-3 -

4-7 <blank>
8-0 +

For example, 81=B-, 94=A, and 68=D+. Note: An Fisonly an F. Thereisno F+ or F-.

NOTE

Programmers frequently have to modify code that someone else
wrote. A good exerciseis to take someone else's Exercise 6-2 and
modify it.

Exer cise 6-4: Given an amount (less than $1.00), compute the number of quarters, dimes,
nickels, and pennies needed.

Exercise 6-5: A leap year isany year divisible by 4 unlessit isdivisible by 100, but not 400.
Write aprogram to tell whether ayear isaleap year.

Page 95

Exercise 6-6: Write aprogram that, given the number of hours an employee worked and his
hourly wage, computes his weekly pay. Count any hours over 40 as overtime at
time-and-a-half.

Answersto Chapter Questions

Answer 6-1: This program illustrates the most common C++ error and one of the most
frustrating. The problem is that C++ allows assignment statements inside of if conditionals. The
Statement:

if (bal ance_owed = 0)

uses asingle equal sign instead of the double equal. C++ will assign bal ance_owed the
value 0 and then test the result (which is zero). If the result were nonzero (true), thei f clause
would be executed. Since theresult is zero (false). the el se clause is executed and the
program prints the wrong answer.

The statement
i f (balance_owed = 0)
isequivalent to

bal ance_owed = O;

if (balanced_owed != 0)
The statement should be written:
i f (balance_owed == 0)

Thisisthe most common error that beginning programmers make. It is aso one of the most
difficult and frustrating to find.

| once taught a course in C programming. One day about a month after the course had ended |
saw one of my former students on the street. He greeted me and said, "Steve, | have to tell you
the truth. During the class | thought you were going a bit overboard on this=vs. == bug, until
now. You see, | just wrote the first C program for my job, and guess what mistake | made.”

Onetrick many programmers use isto put the constant first in any == statement. For example:
if (0 == bal anced_owed)

In thisway, if the programmer makes a mistake and putsin = instead of ==, the result is:
if (0 = bal ancedowed)

which causes acompiler error. (You can't assign bal ance_owed to 0.)

Page 97

7
The Programming Process

In This Chapter:

- Setting Up
The Specification
Code Design
The Prototype
The Makefile
Testing
Debugging
Maintenance
Revisions
Electronic
Archaeol ogy
Mark Up the
Program
Programming
Exercises

It'sjust a simple matter of programming.
—Any Boss Who Has Never Written a Program

Programming is more than just writing code. Software has alife cycle. It is born, grows up,
becomes mature, and finally dies, only to be replaced by a newer, younger product.
Understanding this cycle is important because as a programmer you will spend only asmall
amount of time actually writing new code. Most programming time is spent modifying and
debugging existing code. Software does not exist in avacuum; it must be documented,
maintained, enhanced, and sold. In this section we take alook at a small programming project
using one programmer. Larger projects that involve many people are discussed in Chapter
23, Modular Programming. Although the final code is fewer than a hundred lines, the
principles used in its construction can be applied to progranrs with thousands of lines of code.
Figure 7-1 illustrates the software life cycle.

The mgjor stepsin making a program are:

- Requirements. Programs start when someone gets an idea and assigns you to implement it.
The requirement document describes, in very general terms, what is wanted.

- Specification. A description of what the program does. In the beginning, a Preliminary
Specification is used to describe what the program is going to do. L ater, as the program
becomes more refined, so does the specification. Finally, when the program i< finished, the
specification serves as a complete description of what the program does.

Page 98

.;) Ruris.l'm

Figure 7-1. Softwarelife cycle

- Code design. The programmer does an overall design of the program. The design should
include major agorithms, class definitions, module specifications, file formats, and data
structures.

- One thing cannot be over-stressed; " Think before you act." Studies have shown that a good
design can result in aprogram that is 1/10 of the size of a poorly designed one. Thisis
especiadly true when using C++, where design-

Page 99

ing good objectsis critical to writing agood program. (Y ou will find out what objects are
in Chapter 13, Smple Classes.) Note: "Think before you act" is good advice not only for
coding, but also for lifein general.

Coding. The next step iswriting the program. Thisinvolves first writing a prototype and
then filling it in to create the full program.

Testing. The programmer should design atest plan and use it to test the program. It isa
good idea, when possible, to have someone else test the program.

Debugging. Unfortunately, very few programs work the first time. They must be corrected
and tested again.

Release. The program is packaged, documented, and sent out into the world to be used.
Maintenance. Programs are never perfect. Bugs will be found and will need correction.

Revisng and updating. After aprogram has been working for awhile, the users will want
changes, such as more features or more intelligent algorithms. At this point a new
specification is created and the process starts again.

Setting Up

The operating system allows you to group filesin directories. Just asfile folders serve asa
way of keeping paperstogether in afiling cabinet, directories serve as away of keeping files
together. In this chapter you will be creating a simple calculator program. All the filesfor this
program will be stored in adirectory named cal c. To create adirectory in uNix, execute the
following commands:

% cd -
% nkdir calc

In MS-DOS, type:

C\>cd\
C\> nkdir calc

To tell the operating system which directory you want to use, in uNix type the command:
% cd ~/calc
In Ms-DOS, type:

C\>cd \calc
C \CALC>

Page 100

More information on how to organize directories can be found in your operating system
documentation.

The Specification

For this chapter we are going to assume that you have been given the assignment to "write a
program that acts like afour-function calculator." Typically, the specification you are givenis
vague and incomplete. It is up to you to refine it into something that exactly defines the program
you are going to produce.

The first step isto write a document called The Preliminary Users' Specification, which
describes what your program is going to do and how to useit. This document does not describe
the internal structure of the program or the algorithm you plan to use. A sample specification
for the four-function calculator is:

Cal c
A four-function cal cul at or
Prelimnary Specification

Dec. 10, 1994 Steve CQual line

Warning: This is a prelimnary specification. Any resenbl ance to any
software living or dead is purely coincidental

Calc is a programthat allows the user to turn his $10, 000 conputer
into a $1.98 four-function cal cul ator. The program adds, subtracts,
nmul tiplies, and divides sinple integers.

When the programis run, it zeros the result register and displays its
contents. The user can then type in an operator and nunber. The result
i s updated and displayed. The foll owi ng operators are valid:

Qper at or Meani ng

+ Addi tion
- Subtracti on
* Mul tiplication

/ Di vi si on

Example (user input isin boldface)

calc

Result: O

Enter operator and nunber: + 123
Result: 123

Enter operator and nunber: - 23
Result: 100

Page 101
Enter operator and nunber: / 25
Result: 4
Enter operator and nunber: * 4
Result: 16

The preliminary specification serves two purposes. First, you should give it to your boss (or
customer) to make sure that what he thought he said and what you thought he said agree.
Second, you can circulate it among your colleagues to see whether they have any suggestions or
corrections.

This preliminary specification was circulated and received the comments: 1) "How are you

going to get out of the program?' and 2) "What happens when you try to divide by 07"
So anew operator is added:

q- quit
and we add another paragraph:

Dividing by O results in an error message and the result register is
| eft unchanged.

IV + 111 =VII

A collegeinstructor once gave his students an assignment to "write a
four-function calculator.” One of his students noticed that thiswas a pretty
loose specification and decided to have alittle fun. The professor didn't say
what sort of numbers had to be used, so the student created a program that
worked only with Roman numeras (1V + 11l = VII). The program came with a
complete user manual—written in Latin.

Code Design

After the preliminary specification has been approved, you can start designing code. In the
code-design phase, you plan your work. In large programming projects involving many people,
the code would be broken up into modules for each programmer. At this stage, file formats are
planned, data structures are designed, and major algorithms are decided upon.

This ssimple calculator uses no files and requires no fancy data structures. What's left for this

phase is to design the mgor agorithm. Outlined in pseudo-code, a shorthand halfway between
English and real code, itis:

Loop
Read an operator and nunber
Do the cal cul ation

Page 102

Di splay the result
End- Loop

The Prototype

Once the code design is completed, you can begin writing the program. But rather than try to
write the entire program at once and then debug it, you will use a method called fast
prototyping. This consists of writing the smallest portion of the specificati on you can
implement that will still do something. In our case, you will cut the four functions down to a
one-function calculator. Once you get this small part working, you can build the rest of the
functions onto this stable foundation. Also, the prototype gives the boss something to look at
and play around with so he has a good idea of the direction the project is taking. Good
communication is the key to good programming, and the more you can show someone, the
better. The code for the first version of the four-function calculator is found in Example 7-1.

Example 7-1 calc/calc cc

#i ncl ude <i ostream h>

i nt result; /1 the result of the calcul ations
char oper_char; // the user-specified operator
i nt val ue; /1 value specified after the operator
int main()
{
result =0; // initialize the result
/1 Loop forever (or till we hit the break statenent)
while (1) {
cout << "Result: " << result << '\n';
cout << "Enter operator and nunber: ";
cin >> oper_char
cin >> val ue;
if (oper_char ="'+")
result += val ue;
} else {
cout << "Unknown operator " << oper_char << '\n';
}
}
return (0);
}

The program begins by initializing the variable r esul t to zero. The main body of the
program is aloop starting with:

while (1) {

Page 103

Thiswill loop until abr eak statement is reached. The code:

cout << "Enter operator and nunber: ";
cin >> oper_char >> val ue;

asks the user for an operator and number. These are parsed and stored in the variables

oper _char andval ue. (Thefull set of 1/O operations such as << and >> are described in
Chapter 16, File Input/Output.) Finally, you start checking the operators. If the operator isa
plus (+), you perform an addition using the line:

if (oper_char ="'+") {
result += val ue;

So far you only recognize the plus operator. As soon as this works, you will add more
operators by adding morei f statements.

Finaly, if anillegal operator is entered, the line:

} else {
cout << "Unknown operator " << oper_char << '\n';

}

writes an error message telling the user he made a mistake.

The Makefile

Once the source has been entered, it needs to be compiled and linked. Up to now we have been
running the compiler manually. Thisis somewhat tedious and proneto error. Also, larger
programs consist of many modules and are extremely difficult to compile by hand. Fortunately,
both uNix and Turbo-C++ have a utility called make that handles the details of compilation.

For now, just use this example as a template and substitute the name of your program in place
of cal c. The make program is discussed in detail in Chapter 23, Modular Programming.
Basically, make looks at the file called Makefile for a description of how to compile your

program and runs the compiler for you.

For aunix system using the generic CC compiler, the Makefile should be:

[File: calcl/makefile.unx]
#
Makefile for many UN X conpil ers using the
"standard" command nanme CC

#

Ccc=CC
CFLAGS=-¢g
all: calc

calc: calc.cc

$(CO $(CFLAGS) -0 calc calc.cc

cl ean:
rmcal c

If you are using the Free Software Foundation's g++ compiler, the Makefileis:

[File: calcl/makefile.gnu]

#

Makefile for the Free Software Foundations g++ conpiler
#

CC=g++

CFLAGS=-g -wal

all: calc

calc: calc.cc
$(CO $(CFLAGS) -0 calc calc.cc

cl ean:
rmcal c

For Turbo-C++, the Makefile should be:

[File: calcl/makefile.tcc]
#

Page 104

Makefile for Borland' s Turbo-C++ conpil er

#

CC=t cc

#

Fl ags

-N -- Check for stack overfl ow
-v -- Enabl e debuggi ng

-w -- Turn on all warnings

-m -- Large node

#

CFLAGS=-N -v -w -ni
all: calc.exe

cal c. exe: calc.cpp
$(CC) $(CFLAGS) -ecalc calc.cpp

cl ean:
erase cal c. exe

For Borland C++, the Makefile is the same except the compiler is named bcc.

Finaly, for Microsoft Visual C++, the Makefileis:

[File: calcl/makefile.nsc]

#

Makefile for Mcrosoft Visual C++
#

CC=cl

#

Fl ags

AL -- Conpile for |arge nodel
Zi -- Enabl e debuggi ng

WL -- Turn on warni ngs

#

CFLAGS=/ AL /Zi IW
all: calc.exe

cal c. exe: calc.cpp
$(CO $(CFLAGS) calc.cpp

cl ean:
erase cal c. exe

NOTE

Microsoft Visual C++ does supply anake program
as part of its package; however, the make command
has been renamed to nmake.

Page 105

To compile the program, just execute the command make. (Under Microsoft Visual C++ use
the command nmake.) make determines what compilation commands are needed and execute

them.

mak e uses the modification dates of the files to determine whether or not a compilation is

necessary. Compilation creates an object file. The modification date of the object fileis later
than the modification date of its source. If the source is edited, its modification date is updated,
making the object file out of date. make checks these dates and, if the source was modified
after the object, mak e recompiles the object.

Testing

Once the program is compiled without errors, you can move on to the testing phase. Now isthe
time to start writing atest plan. This document issmply alist of the steps you perform to make
sure the program works. It iswritten for two reasons.

If abug isfound, you want to be able to reproduceit.

If you ever change the program, you will want to retest it to make sure new code did not
break any of the sections of the program that were previoudy working.

The test plan starts out as:

Try the foll owi ng operations

+ 123 Result should be 123
+ 52 Result should be 175
x 37 Error message shoul d be out put

Page 106
Running the program you get:

Result: O

Enter operator and nunber: + 123
Result: 123

Enter operator and nunber: + 52
Result: 175

Enter operator and nunber: x 37
Resul t: 212

Something is clearly wrong. The entry "x 37" should have generated an error message but
didn't. Thereisabug in the program, so you begin the debugging phase. One advantage to
making a small working prototype isthat you can isolate errors early.

Debugging

First you inspect the program to seeif you can detect the error. In such asmall program it is not
difficult to spot the mistake. However, let's assume that instead of a 21-line program, you have
amuch larger one containing 5,000 lines. Such a program waould make inspection more
difficult, so you need to proceed to the next step.

Most systems have C++ debugging programs, but each debugger is different. Some systems
have no debugger. In that case you must resort to a diagnostic print statement. (More advanced
debugging techniques are discussed in Chapter 17, Debugging and Optimization.) The
techniqueis simple: Put acout where you're sure the datais good (just to make sureit really
isgood). Then put acout wherethe datais bad. Run the program and keep putting in

cout ' s until you isolate the area in the program that contains the mistake. The program, with

diagnostic cout lines added, looks like:

cout << "Enter operator and nunber: ";
cin >> val ue;
cin >> oper_char

cout << "## after cin" << operator << '\n';

if (oper_char ="'+") {
cout << "## after if " << operator << '\n';
result += val ue;

NOTE

The ## a the beginning of each cout lineflagsthe
line asadebug line. Thismakesit easy to tell the
temporary debug output from the real program outpui.
Also, when you finally find the bug the ## makesiit
easy to find and remove the debug lines with your
editor.

Page 107

Running the program again resultsin:

Result: O
Enter operator and nunber: + 123
Resul t: 123

Enter operator and nunber: + 52
after cin +

after if +

Result: 175

Ent er operator and nunber: x 37
after cin x

after if +

Result: 212

From this you see that something is going wrong with thei f statement. Somehow the variable
operator isan x going in and a+ coming out. Closer inspection reveals that you have the old
mistake of using = instead of ==. After you fix this bug, the program runs correctly. Building on
this working foundation, you add in the code for the other operators, -, *,and /, to create
Example 7-2.

Example 7-2 calc3/calc3.c

#i ncl ude <i ostream h>

i nt result; /1 the result of the calcul ations
char oper_char; // the user-specified operator

i nt val ue; /1 val ue specified after the operator
main ()

{

result = 0; // initialize the result

/1 loop forever (or until break reached)
while (1) {
cout << "Result: " << result << '\n';

cout << "Enter operator and nunber: ";
cin >> oper_char

if ((oper_char == "'q") || (oper_char == "'Q))
br eak;

cin >> val ue;

if (oper_char == "+")
result += val ue;
} else if (oper_char == "'-") {
result -= val ue;
} else if (oper_char == "'*")
result *= val ue;
} else if (oper_char =="'/")
if (value == 0)
cout << "Error: Dyvide by zero\n";
cout << " operation ignored\n";
} else
result /= val ue;
} else {

cout << "Unknown operator " << oper_char << '\n';

Page 108
Example 7-2. calc3/cal c3.c (Continued)
}
}
return (0);

}
Y ou expand the test plan to include the new operators and try it again.

+ 123 Result should be 123

+ 52 Result should be 175

x 37 Error message shoul d be out put
- 175 Result shoul d be zero

+ 10 Result should be 10

/5 Result shoul d be 2

/ 0 Di vide by zero error

* 8 Result should be 16

q Program shoul d exit

Testing the program, you find much to your surprise that it works. The word "Preliminary” is
removed from the specification and the program, test plan, and specification are rel eased.

M aintenance

Good programmers put their programs through along and rigorous testing process before
releasing it to the outside world. Then the first user tries the program and amost immediately
finds a bug. This starts the maintenance phase. Bugs are fixed, the program istested (to make
sure the fixes didn't break anything), and the program is released again.

Revisons

Although the program is officialy finished, you are not finished with it. After itisin usefor a
few months, someone will come to us and ask, "Can you add a modulus operator?' So you
revise the specifications, add the change to the program, update the test plan, test the program,
and release it again.

As time passes, more people will come to you with additional requests for changes. Soon the
program has trig functions, linear regressions, statistics, binary arithmetic, and financia
calculations. The design is based on the idea of one-character operators. Soon you find
yoursalf running out of charactersto use. At this point the program is doing work far beyond
what it was initially designed to do. Sooner or later you reach the point where the program
needs to be scrapped and a new one written from scratch. At this point you write a new
Preliminary Specification and start the process over again.

Page 109

Electronic Archaeology

Unfortunately, most programmers don't start a project at the design step. Instead they are
immediately thrust into the maintenance or revision stage. This means the programmer is faced
with the worst possible job: understanding and modifying someone else's code.

Contrary to popular belief, most C++ programs are not written by disorganized orangutans
using Zen programming techniques and poorly commented in Esperanto. They just look that
way. Electronic archeology isthe art of digging through old code to discover amazing things
(like how and why the code works).

Y our computer can aid greatly in your search to discover the true meaning of someone else's
code. Many tools are available for examining and formatting code. (Be careful with your
selection of tools, however. Many C tools have yet to be upgraded for C++. See earlier
sections on revisions.) Some of these tools include:

Cross-refer ences. These programs have nameslikexr ef , cxref ,and cr oss. System
V uNix hasthe utility cscope. They print out alist of variables and where the variables
are used.

Program indenters. Programs such ascb and indent i ndent aprogram "correctly"
(correct indentation is something defined by the tool maker).

Pretty printers. A pretty printer suchasvgri nd or cpri nt typesets source code for
printing on alaser printer.

Call graphs. On Sysem V unix theprogram cf | ow analyzes the structure of the program.
On other systems there is a public domain utility, cal | s, that produces call graphs,
showing who calls whom and who is called by whom.

Classbrowsers. A class browser allows you to display the class hierarchy so you can tell
what components went into building the class aswell asits structure. You'll learn what a
classisin Chapter 13, Smple Classes.

Which tools should you use? Whichever ones work for you. Different programmers work in

different ways. Some techniques for examining code are listed below. Choose the ones that
work for you and use them.

Mark Up the Program

Take a printout of the program and make notes all over it. Usered or blueink so you can tell
the difference between the printout and the notes. Use a highlighter to emphasize important
sections. These notes are useful; put them in the program as comments, and then make a new
printout and start the process over again.

Page 110

Use the Debugger

The debugger isagreat tool for understanding how something works. Most debuggers allow
you to step through the program one line at atime, examining variables and discovering how
things really work. Once you find out what the code does, make notes and put them in as
comments.

Usethe Text Editor as a Browser

One of the best tools for going through someone else's code is your text editor. Suppose you
want to find out what the variable sc is used for. Use the search command to find the first
place sc isused. Search again and find the second. Continue searching until you know what the
variable does.

Suppose you find out that sc is used as a sequence counter. Since you're already in the editor,
you can easily do aglobal search-and-replace to change the variable sc to
sequence_count er . (Disaster warning: Make sure sequence_count er isnot already
defined as a variable before you make the change. Also make sure you do aword replacement
or you'll find you replaced sc in places you didn't intend.) Comment the declaration and you're
on your way to creating an understandable program.

Add Comments

Don't be afraid to put any information you have, no matter how little, into the comments. Some
of the comments I've used include:

int state; /!l Controls sone sort of state nachine
int rnxy; /1 Something to do with color correction?

Finaly, thereis acatch-al comment:
int idn; [l 2?7

which means, "I have no idea what this variable does." Even though the purpose is unknown, it
is now marked as something that needs more work.

As you go through someone else's code adding comments and improving style, the structure
will become clearer to you. By inserting notes (comments), you make the code better and easier
to understand for future programmers.

Suppose you are confronted with the following program written by someone from the "The
Terser the Better" school of programming. Y our assignment is to figure out what this program
does. First you pencil in some comments as shown in Figure 7-2.

#include <icstream. h=
#include <stdlib.h=

maini(}

/*Hot Really*/

feturn (o) ;

int = h, c, n;

char line[80];

[__T______H,,,aa*" lJibd
while (1)

cout << *Bingoin®:

Yol 1" as var name

trll

7

g = rand{) % 100 + 1;
1 = 0; . w
h = 100; it vars
c = 0;
while (1} [
cout << "Bounds * << 1 << " = ®* << h << "hp';

cout << *Valuel® << c =< *]% &;

L2 Tat
cin =» n; :Wofmm
if (n == g)
break;
if (m < g} '
1 = n; ad st bound £
elae -
h = n: L = Lovser
! h - higher

Figure 7-2. A terse program

Page 111

This mystery program requires some work. After going through it and applying the principles
described in this section, you get the well-commented, easy-to-understand version shown in

Example 7-3.

Example 7-3 guess/good.cc

/**

* guess -- a sinple guessing gane *
* *
* Usage: *
* guess *
* *
* A random nunber is chosen between 1 and 100. *
* The player is given a set of bounds and *
* nust choose a nunber between them *
* I f the player chooses the correct nunber, he w ns*
* O herwi se, the bounds are adjusted to reflect *
* the players guess and the gane conti nues *
* *
* Restrictions: *
* The random nunber is generated by the statnent *
* rand() % 100. Because rand() returns a nunber *
* *

0 <= rand() <= maxint

this slightly favors

Page 112
Example 7-3 guess/good cc (Continued)

* t he | ower nunbers. *

**I

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
i nt nunber _to_guess; // Random nunber to be guessed

i nt low limt; /1 Current lower limt of player's range
i nt high limt; /1 CQurrent upper limt of player's range
i nt guess_count; /1 Nunber of times player guessed
i nt pl ayer _nunber; /1 Nunber gotten fromthe player
char 1ine[80]; /1 Input buffer for a single line
mai n()
while (1)
/*
* Not a pure random nunber; see restrictions
*/

nunber _to_guess = rand() % 100 + 1

/1 Initialize variables for |oop
low limt = 0;

high_limt = 100;

guess_count = O;

while (1) {
/1 Tell user what the bounds are and get his guess
cout << "Bounds " << lowlimt << " - " << high_limt << '\n';

cout << "Value[" << guess_count << "]? "
++guess_count;
cin >> player_nunber;

/1 Did he guess right?
i f (player_nunber == nunber_to_guess)
br eak;

/1 Adjust bounds for next guess

i f (player_nunber < nunber_to_guess)
low limt = player_nunber;

el se
high limt = player_nunber;

{

cout << "Bingo\n";
{
return (0);

Page 113

Programming Exer cises

For each assignment, follow the software life cycle from specification through release.

Exercise 7-1. Write aprogram to convert English units to metric (e.g., milesto kilometers,
galonsto liters, etc.). Include a specification and a code design.

Exercise 7-2: Write a program to perform date arithmetic, such as how many days there are
between 6/1/90 and 8/3/92. Include a specification and a code design.

Exercise 7-3: A seria transmission line can transmit 960 characters a second. Write a
program that will calculate how long it will taketo send afile, giventhefile'ssize. Try itona
400MB (419,430,400 byte) file. Use appropriate units. (A 400MB file takes days.)

Exercise 7-4: Write aprogram to add an 8% sales tax to a given amount and round the result to
the nearest penny. Exercise 7-5: Write a program to tell whether anumber is prime.

Exer cise 7-6: Write a program that takes a series of numbers and counts the number of positive
and negative values.

Page 115

|l Simple Programming

Page 117

8
More Control Statements

In This Chapter:

- for Statement
switch Statement
switch, break, and
continue
Programming
Exercises
Answersto Chapter
Questions

Grammar, which knows how to control even kings
—Moliére

for Statement

Thef or statement allows you to execute a block of code a specified number of times. The
genera form of thef or statement is:

for (initial-statenment; condition; iteration-statenent)
body- st at enent ;

thisisequivaent to:

initial-statenent;

while (condition) {
body- st at enent ;
iteration-statenent;

}

For example, Example 8-1 usesawhi | e loop to add five numbers.

Example 8-1 total 6/total 6w cc

#i ncl ude <i ostream h>

int total; /]l Total of all the nunbers
int current; /!l Current value fromthe user
int counter; /1 While | oop counter
mai n() {

total = O;

counter = O;
while (counter < 5)

Example 8-1. total6/total 6w.cc (Continued)

cout << "Nunber? ";

cin >> current;
total += current;

++count er;

}

cout << "The grand total is " << total << '\n';
return (0);

}

The same program can be rewritten using af or statement as seen in Example 8-2.

Example 8-2 total 6/total 6 cc

#i ncl ude <i ostream h>

int total; /!l Total of all the nunbers
int current; /!l Current value fromthe user
int counter; /1 For | oop counter
mai n() {

total = O;

for (counter = 0; counter < 5; ++counter) {
cout << "Nunber? ";

Page 118

cin >> current;
total += current;

}
cout << "The grand total is " << total << '\n';
return (0);

}

Notethat count er goesfrom 0to 4. Normally you count fiveitemsas 1, 2, 3, 4, 5. Y ou will
get along much better in C++ if you change your thinking to zero-based counting and count five
itemsasO, 1, 2, 3, 4. (One-based counting is one of the main causes of array overflow errors.
See Chapter 5, Arrays, Qualifiers, and Reading Numbers.)

Careful examination of the two flavors of this program reveals the similarities between the two
versions, as shown in Figure 8-1.

Many older programming languages do not alow you to change the control variable (in this
case count er) inside theloop. C++ is not so picky. Y ou can change the control variable
anytime you wish—you can jump into and out of the loop and generally do things that would
make a PASCAL or FORTRAN programmer cringe. (Even though C++ gives you the freedom
to do such insane things, that doesn't mean you should do them.)

Page 119

main{l {

L

counter = 0;
H while {counter < 5)

Ao

| ++oountery——
| »
l cout << "The grand total 3z " < total << "‘\n’;
H return (0);

fore{counter = 0; countar < 5; ++counter) |
0o,

H

coub << "The grand total is * << total << '‘\n';

return (0] ;

Figure 8-1. Similarities between while and for
Question 8-1: Example 8-3 containsan error.

Example 8-3. cent/cent.cc

#i ncl ude <i ostream h>
/*
* This program produces a Cel sius to Fahrenheit conversion
chart for the nunmbers 0 to 100

*

*

* Restrictions:
* This programdeals with integers only, so the
* cal cul ati ons may not be exact.

*/

/1 The current Celsius tenperature we are working with
int celsius;

mai n() {
for (celsius = 0; celsius <= 100; ++cel sius);
cout << "Celsius: " << celsius <<
Fahrenheit: " << ((celsius * 9) / 5 + 32) << '\n';
return (0);
}

When run, this program prints out:
Cel sius: 101 Fahrenheit: 213

and nothing more. Why?

Page 120

Question 8-2: Example 8-4 reads a list of five numbers and counts the number of threes and
sevensin the data. Why does it give us the wrong answers?

Example 8-4 seven/seven.cc.

i ncl ude <i ostream h>

i nt seven_count; /1 Nunber of sevens in the data
int data[5]; /1 The data to count 3 and 7 in
int three count; /1 Nunber of threes in the data
i nt index; /1 Index into the data

mai n() {

seven_count

0;
t hree_count 0

cout << "Enter 5 nunbers\n";
cin >> data[1l] >> data[2] >> data[3] >>
data[4] >> data[5];

for (index = 1; index <= 5; ++index)
if (data[index] == 3)
++t hr ee_count ;
if (data[index] == 7)
++seven_count;

cout << "Threes " << three_count << " Sevens " << seven _count << '\n';
return (0);

}
When we run this programwith the data 3 73 0 2, the results are:

Threes 4 Sevens 1

(Your results may vary.)

switch Statement

Thesw t ch statementissimilartoachainof i f - el se statements. The general form of a
SW t ch statement is:

swi tch (expression)
case constantl:
st at enent

br eak;
case constant 2:
st at enent

/1 Fall through

defaul t:

Page 121

st at enent
br eak;

case constant 3:
st at enent

br eak;
}
Thesw t ch statement evaluates the value of an expression and branchesto one of thecase

labels. Duplicate labels are not allowed, so only one case will be selected. The expression
must evaluate to a integer, character, or enumeration.

case labels can bein any order and must be constants. The def aul t label can be put
anywhereintheswi t ch.

When C++ seesaswi t ch statement, it evaluates the expression and then looks for a matching
case labdl. If noneisfound, thedef aul t label isused. If nodef aul t isfound, the
statement does nothing.

A br eak statement insideaswi t ch tells the computer to continue the execution after the
swi t ch. If thebr eak isnot there, execution continues with the next statement.

NOTE

Thesw t ch statement isvery smilar to the PASCAL case
statement. The main differences are that while PASCAL alows only
one statement after the label, C++ allows many. C++ keeps
executing until it hitsabr eak statement. In PASCAL you can't "fall
through" from one case to another. In C++ you can.

The calculator program in Chapter 7, The Programming Process, contains a series of
i f-el se gatements.

if (operator == "+) {

result += val ue;

} else if (operator == "-') {
result -= val ue;

} else if (operator == "*")
result *= val ue;

} else if (operator =="/")
if (value == 0)

cout << "Error: Dyvide by zero\n";
cout <<" operation ignored\n";
} else
result /= val ue;
} else {
cout << Unknown operator " << operator << '\n';

Page 122

This section of code can easily be rewritten asaswi t ch statement. Inthisswi t ch, we use a
different case for each operation. Thedef aul t clause takes care of all the illegal operators.

Rewriting the program using aswi t ch statement makes it not only smpler, but also easier to
read as seen in Example 8-5.

Example 8-5 calc-swi/calc3.cc

#i ncl ude <i ostream h>

i nt result; /1 The result of the cal cul ations
char oper_char; [// The user-specified operator
i nt val ue; /1 Value specified after the operator
main ()
{

result = 0; /1 Initialize the result

/1 Loop forever (or until break reached)
while (1) {
cout << "Result: " << result << '\n';
cout << "Enter operator and nunber: ";
cin >> oper_char >> val ue;

if ((oper_char == 'q') || (oper_char == "'Q))
br eak;

switch (oper_char)
case '+':
result += val ue;
br eak;
case '-'
result -= val ue;
br eak;
case '*':
result *= val ue;
br eak;
case '/’
if (value == 0)
cout << "Error: Divide by zero\n";
cout << " operation ignored\n";

} else
result /= val ue;

br eak;
defaul t:
cout << "Unknown operator " << oper_char << '\n';
br eak;
}
}
return (0);

Page 123

A br eak statement is not required at the end of acase. If the br eak isnot there, execution
will continue with the next statement.

For example:

control = O;

/1 A not so good exanpl e of progranm ng
switch (control)

case O:
cout << "Reset\n";
case 1:
cout << "Initializing\n";
br eak;
case 2:
cout "Wbrking\n";
}
In this case, when cont r ol == 0, the program prints:
Reset

Initializing

Case 0 does not end with abr eak statement. After printing "Reset " the program falls
through to the next statement (case 1) and prints”l ni ti al i zi ng."

But there is a problem with this syntax. Y ou can't be sure that the program is supposed to fall
through from case 0 to case 1, or if the programmer forgot to put in abr eak statement. To
clear up this confusion, acase section should aways end with abr eak statement or the
comment”/ / fal | through."

/1 A better exanple of progranm ng
switch (control) {
case O:
cout << "Reset\n";
/1 Fall through
case 1:
cout << "Initializing\n";
br eak;
case 2:
cout << "Wrking\n";

}

Because case 2 islast, it doesn't absolutely need abr eak statement. A br eak would cause

the program to skip to the end of theswi t ch, but we're already there,
But suppose we modify the program dightly and add another case totheswi t ch:

// W have a little problem
switch (control)
case O:
cout << "Reset\n";

Page 124
/1 Fall through
case 1:
cout << "Initializing\n";
br eak;
case 2:
cout << "Working\n";
case 3:

cout << "d osing down\n";

}
Now when control == 2 the program prints:

Wor ki ng
C osi ng down

Thisisan unpleasant surprise. The problem is caused by the fact that case 2 is no longer the
last case. Wefall through. (Unintentionally, or otherwise we would haveincluded a/ /

Fal | through comment.) A br eak isnow necessary. If you dwaysput inabr eak statement,
you don't have to worry about whether or not it isreally needed.

/1 A nost there
switch (control) {

case O:

cout << "Reset\n";
/1 Fall through

case 1:
cout << "Initializing\n";
br eak;

case 2:
cout << "Wbrking\n";
br eak;

}
Finally, we ask the question: What happenswhen cont r ol == 57?Inthiscase, sincethere

isno matching case or adef aul t clause, theentireswi t ch statement is skipped.

In this example, the programmer did not include adef aul t statement because control will
never be anything but O, 1, or 2. However, variables can get assigned strange values, so we
need alittle more defensive programming.

/!l The final version
switch (control) {
case O:
cout << "Reset\n";
/1 Fall through
case 1:

cout << "Initializing\n";

br eak;
case 2:

cout << "Working\n";

br eak;

Page 125
defaul t:
cout << "Internal error, control value" << control <<
' i npossi bl e\ n";

br eak;

}

Although adef aul t isnot required, it should be put in every swi t ch. Even though the
def aul t may bejust:

defaul t:
/1 Do not hing
br eak;

it should be included. This indicates that you want to ignore out-of-range data.

switch, break, and continue

The br eak statement has two uses. Used insideaswi t ch it causes the program to exit the
swi t ch statement. Insde of af or or whi | e loop, it causes aloop exit. Thecont i nue
statement is only valid inside aloop and causes the program to go to the top of the loop.

To illustrate how these statements work, we've produced a new version of the cal culator
program. The new program prints the result only after valid datais input and has aHelp
command.

The Help command is special. We don't want to print the result after the Help command, so
instead of ending the Help case withabr eak weend it withacont i nue. Thecont i nue
forces execution to go to the top of the loop.

When an unknown operator is entered, we print an error message. As with the Help case, we
useacont i nue statement to skip printing the result.

Finally, there is one special command: quit. This command is handled outsidetheswi t ch. It
ishandled by the br eak at the top of the loop. Since the br eak isoutsidetheswi t ch, it
belongs to the whi | e loop and causes the program to exit thewhi | e.

The control flow for this program can be seen in Figure 8-2.

Page 126

.. break inswde “switch”

#tinclude <iostream.h>

int result; {/ the result of the calculations
char oper_char; !/ operator the user specified
int wvalue: !/ value specified after the operator
maindl
{

result = 0; /7 initialize the result

/f loop forever ([or until break reached)
while (1} {# = === === == == == === ======@====
cout << "Enter operator and number: ®;

cin »» oper_char »>> value;

if ({oper_char == 'q'] || (oper_char == *Q'}]
brealk;
awitch (oper_char) |
case “+':
result += wvalue;
case ‘-':
result == wvalue;
case "%
result *= wvalue;
o DrRAKS
case "/':

if (walue == 0] |
cout << “Error: Divide by zero'n';
cout << * operation ignored\n®;

N e === =~ = = = “Copfinue" (inside switch) - - — = |- = = - - -

1 else
result /= value;
e preak:
case "h':
case ‘H':
cout << “Cperator Meaningin';
cout << o+ Add\n*;
cout << * - Subtract\n®;
couk << * ¥ Multiply\n®;
cout €< Divide\n®;
continuE: — — — — — — — — — - - - & = & - - - =~ = —
default:
cout << "Unknown operator * << oper_char << *\m';
CONEIME; — — — — — — = = = = = = = = — = — = = — = —

s COUE €2 "Result: << result << ‘wn';

“break” (outside switch)

1
return (0); =

Figure 8-2 switch/continue

Programming Exer cises

Page 127

Exercise 8-1: Print a checkerboard (8-by-8 grid). Each square should be 5-by-3 characters
wide. A 2-by-2 example follows:

Exercise 8-2: Thetotal resistance of nresistorsin parallel is:

LI B S
Ry Ry Ry R,

1
R

Suppose we have a network of two resistors with the values 400W and 200W. Then our
eguation would be:

1_ 3
R 4
R_dﬂﬂ

So the total resistance of our two-resistor network is 133.3W.

Write a program to compute the total resistance for any number of parallel resistors.
Exercise 8-3: Write a program to average n numbers.

Exercise 8-4: Write a program to print out the multiplication table.

Exercise 8-5: Write a program that reads a character and prints out whether or not itisa
vowel or a consonant.

Page 128

Exercise 8-6: Write a program that converts numbers to words. Example: 895 resultsin "eight
ninefive."

Exercise 8-7: The number 85 issaid "eighty-five" not "eight five." Modify the previous
program to handle the numbers 0-100 so all numbers come out as we really say them. Example:
13 b "thirteen,” 100 P "one hundred."

Answersto Chapter Questions

Answer 8- 1: The problem lies with the semicolon (;) a the end of thef or statement. The
body of thef or statement is between the closing parentheses and the semicolon. In this case it
is nothing. Even though the cout statement isindented, it is not part of thef or statement. The
indentation is misleading. The C++ compiler does not look at indentation. The program does
nothing until the expression

centi grade <= 100

becomesfalse (centi grade == 101). Thenthecout isexecuted.

Answer 8-2: The problem isthat we read the number into dat a[1] through dat a[5] . In
C++ therange of legal array indicesisOto <array size>-1 or inthiscase0to 4. dat a[5] is
illegal. When we use it strange things happen; in this case the variablet hr ee_count is
changed. The solutionisto useonly dat a[O] todat a[4] .

Page 129

9
Variable Scope and Functions

In This Chapter:

Scope and Storage
Class

Functions
Summary of
Parameter Types
Structured
Programming
Basics

Recursion
Programming
Exercises
Answersto Chapter
Questions

But in the gross and scope of my opinion This bodes some strange
eruption to our state.

—Shakesreare

Hamlet, Act |, Scenel

So far you have been using only global variables. These are variables that can be set or used
amost anywhere in the program. In this chapter you learn about other kinds of variables and
how to use them. This chapter aso tells you how to divide your code into functions. Many
aspects of functions are detailed, including function overloading, using functions to build
structured programs, and the use of recursive function calls.

Scope and Storage Class

All variables have two attributes, scope and st or age cl ass. Thescope of avariableis
the area of the program where the variable isvalid. A global variableisvalid from the point it
is declared to the end of the program. A local variable's scopeis limited to the block where it
is declared and cannot be accessed (set or read) outside that block. A block is a section of
code enclosed in curly braces ({}). Figure 9-1 illustrates the difference between | ocal and
gl obal variables.

Itispossibleto declareal ocal variablewith the same nameasagl obal variable.
Normally, the scope of the variable count (first declaration in Figure 9-2) would be the
whole program. The declaration of a second, local count takes precedence over the global
declaration inside the small block where the local count isdeclared. In this block, the global
count ishidden. You can also nest local declarations and hide local variables. These "very
local" variables have an even smaller and more local scope than the "normal local" variables.
(The clarity

Page 130
int global; {1} a global wvariable
[) painli
- int local; /! & local variable
glebal = 1; !} global can be used here
[local = Z; 1/ so can lecal
Scope | |
of Scope | { {/ beginning a new block
| af Scops of int wery_local {0 this is local to the block
pk:lﬂl: foncal very_local 4
[| B L very_local = global+local;

| | | /f We just clesed the black
f {§ wery_local can not be used

Figure 9-1. Loca and global variables

of the previous sentence gives you some idea why using nesting to hide local variables does
not make your program easy to understand.) Figure 9-2 illustrates a hidden variable.

1 int total; {} toral mmber of entries
[T - int count; ff counk of total entries
rainl}
total = 0;
cogat = 0; /iser global counter
{
Scope of | int count; /la local counter
gllﬂtrall . | s
variable] ! wmmit=d)
count Local variable while (1] {
count firdes | if {count > 10)
lobal variable < break;
count it this |
area. [total += count;
+Hogunt ;
]
{
+eCount ;
. return {0);
I

Figure 9-2 Hidden variables

The variable count isdeclared both asalocal variable and as aglobal variable. Normally
the scope of count (global) would be the entire program, but when avariable is declared
inside a block, that instance of the variable becomes the

Page 131

active one for the length of the block. The global count has been hidden by the local count
for the scope of this block. The shaded areain the figure shows where the scope of count
(global) is hidden.

It is not good programming practice to hide variables. The problem is that when you have the
Statement:

count = 1;

itisdifficult to tell which count you arereferring to. Isit thegl obal count, the one
declared at the top of mai n, or the onein the middie of thewhi | e loop? It is better to give
these variables different names, suchast ot al _count, current _ count, and

i tem count.

The storage class of avariable may be either permanent or temporary. Global variables are
always permanent. They are created and initialized before the program starts and remain until it
terminates. Temporary variables are allocated from a section of memory called the stack at
the beginning of the block. If you try to allocate too many temporary variables you will get a
stack overfl ow error. The space used by the temporary variablesis returned to the
stack at the end of the block. Each time the block is entered, the temporary variables are
initialized.

The size of the stack depends on the system and compiler you are using. On many UNIX
systems, the program is automatically allocated the largest possible stack. On other systems, a
default stack sizeis alocated that can be changed by a compiler switch. In Turbo-C++ the
stack space must be fewer than 64,000 bytes. This may seem like alot of space, but several
large arrays can eat it up quickly. Y ou should consider making all large arrays permanent.

Local variables are temporary unlessthey are declared st at i c.
NOTE

st ati ¢ hasan entirely different meaning when used with global
variables. (It indicates that a variable islocal to the current file.)
See Chapter 23, Modular Programming. For a complete discussion
of the many meanings of the word "static,” see Table 14-1.

Example 9-1 illustrates the difference between permanent and temporary variables. We have
chosen obvious variable names; t enpor ar y isatemporary variable while per manent is
permanent. C++ initiaizest enpor ar y each timeit is created (at the beginning of the for
statement block), while per manent getsinitialized only once, at program start-up time.

In the loop both variables are incremented. However, at the top of theloop t enpor ary is
initialized to 1.
Page 132

Example 9-1 pernvperm.cc

#i ncl ude <i ostream h>

mai n() {
int counter;

for (counter = 0; counter < 3;

int tenporary = 1;

static int permanent

cout << "Tenporary"
Per manent

++t enpor ary;
++per nanent ;

return (0);

}

The out put of this programis:

Tenporary 1 Permanent 1
Tenporary 1 Pernmanent 2
Tenporary 1 Pernmanent 3

/1 Loop counter

1;

++counter) {

<< tenporary <<
"<< pernmanent << '\n';

NOTE

Temporary variables are sometimes referred to as automatic
variables because the space for them is allocated automatically.
The qualifier aut o can be used to denote atemporary variable;
however, in practice aut o isamost never used.

Table 9-1 describes the different ways a variable can be declared.

Table 9-1 Declaration Modifiers

Declared Scope Storage Class | Initialized
Outside all blocks Global Permanent Once
st ati c outsideall blocks Global Permanent Once
Inside ablock Locd Temporary Each time block is entered
st ati c inside ablock Local Permanent Once
NOTE

Thekeyword st at i ¢ isthe most overloaded C++ operator. It
means alot of different things depending on how it isused. For a
complete list see Table 14-1.

Functions

Page 133

Functions allow you to group commonly used code into a compact unit that can be used

repeatedly. Y ou have already encountered one function, mai n. It isaspecial function called
at the beginning of the program. All other functions are directly or indirectly called from
mai n.

Suppose you want to write a program to compute the area of three triangles. Y ou could write
out the formulathree times, or you could create a function to do the work and then use that
function three times. Each function should begin with acomment block containing the
following:

Name
Name of the function

Description
Description of what the function does

Parameters
Description of each parameter to the function

Returns
Description of the return value of the function

Additional sections may be added such as file formats, references, or notes. Refer to Chapter 3,
Syle, for other suggestions.

The function to compute the area of a triangle begins with:

/***

* Triangle -- conpute area of a triangle *
* *
* Paranmeters *
* width -- width of the triangle *
* height -- height of the triangle *
* *
* Returns *
* area of the triangle *
khkhkkkhkhhkkhkkhhkkhhhkhkhhhkkhdhkkhhhkkrdhkk hkxkhdhkkxkihkkkhk*%x

/
The function proper begins with the lines:
float triangle(float width, float height)

f | oat isthefunction type. This defines the type of data returned by the function. wi dt h and
hei ght arethe parameters to the function. Parameters are variables local to the function that
are used to pass information into the function.

Page 134
NOTE

The function typeis not required by C++. If no function typeis
declared, the type defaultstoi nt . However, if you omit the function
type, it isnot clear whether you want to have the function default to

i nt oryou just forgot the function type. To avoid this confusion,
always declare the function type and do not use the default.

The function computes the area with the statement:
area = width * height / 2.0;

What's | eft is to give the result to the caller. Thisisdone with ther et ur n statement:
return (area)

The full triangle function can be seen in Example 9-2.

Example 9-2. tri/tri-sub.cc

/***

* Triangle -- conpute area of a triangle *
* *
* Paraneters *
* width -- width of the triangle *
* height -- height of the triangle *
* *
* Returns *
* area of the triangle *
ER I S I S S Sk b I S S b b I I I O S b b S I O S

/

float triangle(float width, float height)

{
float area; // Area of the triangle
area = width * height / 2.0;
return (area);

}

Theline:

size = triangle(1.3, 8.3);

isacall tothefunctiont r i angl e. When C++ seesthis function call it performs the following
operations:

Triangle's variable width = 1.3
Triangle's height = 8.3

Begi n execution of the first line of the function triangle.

Page 135

The technical name for this type of parameter passing is "call by value." The assignment only
occurs when the function is called, so data flows through the parameters only one way: in.

Ther et ur n statement is how you get data out of the function. In the triangle example, the
function assigns the local variable ar ea the value 5.4 and then executes the statement
return(area), sothereturnvaueof thisfunctionis5. 4. Thisvalueisassignedtosi ze.

return(ares) ; 5.4 ({The value of area)
B i
gize = triangle(l.3, 8.3}

Example 9-3 computes the area of three triangles.

Example 9-3 tri/tri cc

#i ncl ude <i ostream h>

main ()

{
/1 Function to conpute area of triangle
float triangle(float width, float height);

cout << "Triangle #1 " << triangle(l.3, 8.3) << '\n';
cout << "Triangle #2 " << triangle(4.8, 9.8) << '\n';
cout << "Triangle #3 "<< triangle(1.2, 2.0) << '\n';

return (0);
}
/***
* Triangle -- conpute area of a triangle *
* *
* Paranmeters *
* width -- width of the triangle *
* height -- height of the triangle *
* *
* Returns *
* area of the triangle *
***/
float triangle(float width, float height)
{
float area; // Area of the triangle
area = width * height / 2.0;
return (area);
}

Functions must be declared just like variables. The declaration tells the C++ compiler about
the function's return value and parameters. There are two ways of declaring afunction. The
first isto write the entire function before it's used. The other isto define what's called a
function prototype, which gives the compiler just enough information to call the function. A
function prototype looks like the first

Page 136

line of the function, only the function has no body. For example, the prototype for the
triangl e functionis

float triangle(float width, float height);

Note the semicolon at the end of theline. Thisis used to tell C++ that thisis a prototype and
not areal function.

C++ dlows you to leave out the parameter names when declaring a prototype. This function
could just as easily have been written:

float triangle(float, float);

However, this technique is not commonly used. The reason isthat it's very easy to create a
prototype by smply using the editor to copy the first line of afunction and put that line where

you want the prototype. (Many times thiswill bein aheader file as described in Chapter 23,
Modular Programming.) Also, putting the names in the prototype gives anyone reading the
program additiona useful information.

Functions that have no parameters are declared with a parameter list of voi d. For example:
int get_val ue(void);

Thevoi d construct is a holdover from the old C days when an empty parameter list "()"
signaled an old K& R-style C function prototype. Actually, C++ will accept both an empty list
and avoid declaration, but thevoi d form is preferred. By putting in the voi d you are saying,
"Yes, | know that this function takes no parameters.”

The keyword voi d isalso used to indicate a function that does not return avalue (similar to
the FORTRAN SUBROUTI NE or PASCAL Pr ocedur e). For example, this function just
prints aresult, it does not return avalue.

voi d print_answer(int answer)

}
if (answer < 0)
cout << "Answer corrupt\n";
return;

}

cout << "The answer is << answer '\n';

}
const Parameters and Return Values

If aparameter is declared const then that parameter cannot be changed inside the function.
Ordinary parameters can be changed inside functions, but the changes will not be passed back
to the calling program.

Page 137

For example, inthet ri angl e function, we never changew dt h or hei ght . These could
easily be declared const . Since the return value is also something that cannot be changed, it
can be declared const aswell. Theconst declarations serve to notify the programmer that
the parameters do not change inside the functions. If you do attempt to change aconst
parameter, the compiler generates an error. The improvedt r i angl e function with the
const declarations can be seen in Example 9-4.

Example 9-4. tri/tri-sub2.cc

const float triangle(const float wi dth, const float height)

{

float area; // Area of the triangle

area = width * height / 2.0;
return (area);

}

Asit stands now, the const declaration for the return value is merely a decoration. In the next
section you'll see to how to return references and make the const return declaration useful.

Reference Parameters and Return Values

Remember that in Chapter 4, Basic Declarations and Expressions, we discussed reference
variables. A reference variable is away of declaring an additional name for a variable. For
global and local variables, reference variables are not very useful. However, when used as
parameters they take on an entirely new meaning.

Suppose you want to write a subroutine to increment a counter. If you write it like Example
9-5, it won't work.

Example 9-5. value/value cc

#i ncl ude <i ostream h>
// This function won't work
voi d inc_counter(int counter)

{
++count er;
}
mai n()
{
int a_count = 0; /1 Random count er
i nc_counter(a_count);
cout << a _count << '\n';
return (0);
}

Page 138

Why doesn't it work? Because C++ defaults to call by value. This means that values go in, but
they don't come out.

What happensif you convert the parameter count er to areference? References are just
another way of giving the same variable two names. When i nc_count er iscalled,
count er becomesareferenceto a_count . That meansthat anything doneto count er
resultsin changestoa_count . Example 9-6, using a reference parameter, works properly.

Example 9-6. value/ref cc

#i ncl ude <i ostream h>
/1 \orks
voi d inc_counter(int &counter)

{
}

main ()

{

++count er;

int a_count = O; /1 Random count er

i nc_counter(a_count);
cout << a count << '\n';
return (0);

}

Examining this program we find that it looks alot like Example 9-5 except for the "&" in front
of count er . This"&" tells C++ that count er isareference and not anormal call-by-value
parameter.

Reference declarations can also be used for return values. For example, Example 9-7 finds the
biggest element in an array. {

Example 9- 7. value/big cc

const int ARRAY SIZE = 5 [/l Size of the array
int itemarray[ARRAY_SI ZE] = {1, 2, 5000, 3, 4}; /1 An array
i nt &bi ggest (void)
{

i nt index; /] Current index

i nt biggest; /1 1ndex of the biggest elenent

/1 Assume the first is the biggest

bi ggest = 0;

for (index = 1; index < ARRAY_SIZE; ++i ndex)

if (itemarray[biggest] < itemarray[index])
bi ggest = i ndex;

}

return (itemarray[biggest]);
}

Page 139
If you wanted to print the biggest element of an array, al you would haveto dois.
int itemarray[5] = {1, 2, 5000, 3, 4}; // An array

cout << "The biggest element is "<<
bi ggest(itemarray, 5 << '\n';

Let's examine thisin more detail. First of all, consider what happens when you create a
reference variable:

int &ig reference = itemarray[2]; // A reference to elenment #2

The reference variable bi g_r ef er ence isanother namefori t em array[2] . Youcan
now use this reference to print avalue:

cout << big reference << '\n'; /1 Print out elenent #2
But since thisis areference, you can useit on the left side as well:
bi g_reference = 0; /1 Zero the |argest value of the array

The function biggest returns areference. Whenused oni t em ar r ay it returns areference to
i tem array[2] . Remember that inthefollowing code, biggest (it em array, 5)is

i tem array[2] . Thefollowing three code sections al perform equivalent operations. The
actual variable, i t em arr ay[2] , does not change; however, the way we refer to it does.

/1 Using the actual data
cout << itemarray[2] << '\n';

itemarray[2] = O;

/1 Using a sinple reference

int big reference = & temarray[2];
cout << big reference << '\n';

bi g reference = 0;

/1 Using a function that returns a reference
cout << biggest() << '\n';
bi ggest(itemarray, 5) = 0;

Because the version of bi ggest returns areference, it can be used on the left side of an
assignment operation (=). But suppose you don't want that to happen. Y ou can accomplish this
by returning a const reference.

const int &biggest(int array[], int n_elenents);

Thistells C++ that even though you return a reference, the result cannot be changed. Thus, code
like

bi ggest(itemarray, 5) = 0; /1 Now it generates an
error
isillegal.
Page 140

Dangling References

Y ou should be careful when using "return by reference.” If you're not careful, you can wind up
with areference to a variable that no longer exists. Example 9-8 illustrates this problem.

Example 9-8 ref/ref cc

1 #i ncl ude <i ostream h>

2

3 const int &mn(const int & l, const int & 2)
4 {

5 if (il<i2

6 return (il);

7 return (i2);

8 }

9

10 main()

11 {

12 int & =mn(l + 2, 3+ 4);
13

14 return (0);

15 }

Line 3 starts the definition of the function i n. It returns areference to the smaller of two
integers.

Inline 12 we call this function. Before the function m n is called C++ creates atemporary
integer to hold the value of the expression 1 + 2. A reference to thistemporary is passed to
them n function as the parameter i 1. C++ creates another temporary for thei 2 parameter.

Thefunction m n isthen called and returns areferencetoi 1. But what doesi 1 refer to? It
refersto atemporary that C++ created in mai n. At the end of the statement C++ can destroy al
the temporaries.

Let'slook at the call to m n (line 12) in more detail. Here's a pseudocode version of line 12,
including the details that C++ normally hides from the programmer:

create integer tnpl, assign it the value 1 + 2
create integer tnp2, assign it the value 3 + 4
bi nd paraneter il so it refers to tnpl
bi nd paraneter i2 so it refers to tnp2
call the function "mn"
bind main's variable i so it refers to
the return value (il-a reference to tnpl)
/1 At this point i is a reference to tnpl
destroy tnpl
destroy tnp2

/1 At this point i still refers to tnpl
[/ It doesn't exist, but i refers to it

Page 141

At the end of line 12 we have abad situation: i refersto atemporary variable that has been
destroyed. In other words, i points to something that does not exist. Thisis called adangling
reference and should be avoided.

Array Parameters

So for you've dealt only with simple parameters. C++ treats arrays alittle differently. First of
all, you don't have to put a size in the prototype declaration. For example:

int sun(int array[]):

C++ uses a parameter-passing scheme called "call by address’ to pass arrays. Another way of
thinking of thisisthat C++ automatically turns all array parameters into reference parameters.
This allows any size arrays to be passed. The function sum we just declared may accept integer
arrays of length 3, 43, 5,000, or any length.

However, if you want to put in asize you can. C++ allows this although it ignores whatever
number you put there. But by putting in the size you aert the people reading your program that
this function takes only fixed-size arrays.

int sun(int array[3]);

For multidimensional arrays you are required to put in the size for each dimension except the
last one. That's because C++ uses these dimensions to compute the location of each element in
the array.

int summatrix(int matrixI[210][10]); /1 Lega
int summatrix(int matrixI[10][]); /1 Lega
int summatrix(int matrixI[][]); /1 1llega

Question 9-1: The function in Example 9-9 should compute the length of a string.” Instead

itinsiststhat all strings are of length zero. Why?
Example 9-9. length/length.cc

/***

* |ength -- conpute the length of a string *
* *
* Paraneters *
* string -- the string whose | ength we want *
* *
* Returns *
* the length of the string *
kkkkhkkhkhkhkhkhkkhkkhkhkhhkhkhkhkhkhkhhhhkhkhkhkhkhkkhhhkhkhkhkhkkkkkhk k khkkkkkk k%%

/

nt length(char string[])

* This function (when working properly) performs the same function as the library functionst r I en

Page 142

Example 9-9. length/length.cc (Continued)

i nt index; /1 Index into the string

/*

* Loop until we reach the end-of-string character
*/

for (index = 0; string[index] !="'\0"; ++index)

/* do nothing */
return (index);

}
Function Overloading

Let's define asimple function to return the square of an integer:

int square(int value) {
return (value * val ue);
}

We also want to square floating point numbers:

float square(float value) {
return (value * val ue);
}

Now we have two functions with the same name. Isn't that illegal? In older languages such as C
and PASCAL that would betrue. In C++ it's not. C++ alows function overloading, which
means you can define multiple functions with the same names. Thus you can defineasquar e
function for al typesof things:i nt, float, short int, double, andevenchar if
we could figure out what it means to square a character.

To keep your code consistent, all functions that use the same name should perform the same
basic function. For example you could define the following two squar e functions:

/1 Square an integer

int square(int value);

/1 Draw a square on the screen
void square(int top, int bottom int left, int right);

Thisis perfectly legal C++ code, but it is confusing to anyone who has to read the code.

There is one limitation to function overloading: C++ must be able to tell the functions apart.
For example, the following isillegal:

i nt get_nunber(void);
fl oat get_nunber(void); /1 1llega

Page 143

The problem isthat C++ usesthe parameter | i st to tell the functions apart. But the parameter
list of thetwo get _nunber routinesisthe same: (voi d). Theresult isthat C++ can't tell
these two routines apart and flags the second declaration as an error.

Default Parameters

Suppose you want to define afunction to draw a rectangle on the screen. This function also
needs to be able to scale the rectangle as needed. The function definition is:

voi d draw(const rectangl e & ectangl e, double scale)

After using this function for awhile, you discover that 90% of the time you don't use the ability
of dr aw to scae. In other words, 90% of the time the scale factor is 1.0.

C++ alows you to specify adefault value for scale. The statement:
voi d draw(const rectangl e & ectangle, double scale = 1.0)
tells C++, "If scaleis not specified, make it 1.0." Thus the following are equivalent:

draw(big_rectangle, 1.0); /1 Explicity specify scale
draw(bi g_rectangl e); /1 Let it default to 1.0

There are some style problems with default parameters. Study the following code:
draw(bi g_rectangl e);

Can you tell whether the programmer intended for the scale to be 1.0 or just forgot to put it in?
Although sometimes useful, the default parameter trick should be used sparingly.

Unused Parameters

If you define a parameter and fail to use it, most good compilers will generate awarning. For
example:

voi d exit_button(Wdget &button)
cout << "Shutting down\n";
exit (0);

}

generates the message:

VWarning: line 1. Unused paraneter "button"

But what about the times you really don't want to use a parameter? Is there away to get C++ to
shut up and not bother you? Thereis. Thetrick isto leave out the name of the parameter.

Page 144

/1 No warning, but style needs work
void exit_button(Wdget & {

cout << "Shutting down\n";

exit (0);
}

Thisisnicefor C++, but not so nice for the programmer who has to read your code. We can
seethat exi t _but t on takesaW dget & parameter, but what is the parameter? A solution
to this problem is to reissue the parameter name as a comment.

/1 Better

void exit_button(Wdget & /*button*/)
cout << "Shutting down\n";
exit (0);

}

Some people consider this style ugly and confusing. They're right that it's not that easy to read.
There ought to be a better way; | just wish | could think of one.

One question you might be asking by now is, "Why would | ever write code like this? Why not
just leave the parameter out?'

It turns out that many programming systems make use of callback functions. For example, you
can tell the X Window System, "When the 'EXIT" button is pushed call the function

exi t _button." Your calback function may handle many buttons, so it's important to know
which button is pushed. So X suppliesbut t on as a parameter to the function.

What happensif you know that only but t on cancause X tocall exi t _butt on? Well, X is
still going to giveit to you, you're just going to ignore it. That's why some functions have
unused parameters.

inline Functions

Looking back at the squar e function for integers, we see that it is avery short function (one
line). Whenever C++ calls afunction there is some overhead generated. This includes putting
the parameters on the stack, entering and leaving the function, and a stack fix-up after the
function returns.

For example, the code:

int square(int value) {
return (value * val ue);
}

mai n() {
I A
X = square(x);

Page 145
generates the following assembly code on a 68000 machine (paraphrased).

| abel "int square(int value)"
link a6, #0 /1 Set up local variables

// The next two |lines do the work

novel a6@ 8), dl /1 dl = value
nmul sl a6@ 8), dI /1 dl = value * dl
novel dl,dO [/ Put return value in dO
unl k a6 /1 Restore stack
rts /1 Return(dO
| abel "main"
/1
/1 X = square(Xx)
/1
novel a6@-4),sp@ /1 Put the nunber x on the stack
j bsr "void square(int value)"
[/ Call the function
addqw #4, sp /1 Restore the stack
novel dO, a6@ -4) /] Store return value in X
/1

Asyou can see from this code, there are eight lines of overhead for two lines of work. C++
allows you to cut out that overhead through the use of thei nl i ne function. Thei nl i ne
keyword tells C++ that the function is very small. This means that it's ssimpler and easier for the
C++ compiler to put the entire body of the function in the code stream instead of generating a
cal to the function.

inline int square(int value)
return (value * val ue);
}

Changing the squar e function:

| abel "nmain"

/1

/1 X = square(Xx)

/1
novel dl,a6@-4) [dl = x
novel a6@-4), do /1 d0 = x
nmul sl dO, dO /] dO = (x * X)
novel dO, a6@ - 4) /] Store result

Expanding the function inline has eliminated the eight lines of overhead and results in much
faster execution.

Thei nl i ne modifier provides C++ avauable hint it can use when generating code.
I nl i ne tellsthe compiler that the code is extremely small and smple. Like

Page 146

regi ster,thei nl i ne modifier isahint. If the C++ compiler can't generate a function
inling, it will create it as an ordinary function.

Summary of Parameter Types

Table 9-2 lists the various parameter types.

Table 9-2 Parameter Types

Type Declaration

Cal by value function(int var)

Valueis passed into the function and can be changed inside
the function, but the changes are not passed to the caller.

Constant call by value function(const int var)
Vaueis passed into the function and cannot be changed.
Reference function(int &var)

Referenceis passed to the function. Any changes made to the
parameter are reflected in the caller.

Constant reference function(const int &ar)

Value cannot be changed in the function. Thisform of a
parameter is more efficient than "constant call by value" for
complex datatypes. (See Chapter 12, Advanced Types.)

Array function(int array[])

Valueis passed in and may be modified. C++ automatically
turns arrays into reference parameters.

Call by address function(int *var)

Passes a pointer to an item. Pointers are covered in Chapter
15, Smple Pointers.

Structured Programming Basics

Computer scientists spend agreat deal of time and effort studying how to program. Theresult is
that they come up with the absolutely, positively, best programming methodology—anew one
each month. Some of these systems include flow charts, top-down programming, bottom-up
programming, structured programming, and object-oriented programming.

Now that you have learned about functions, we can talk about using structured programming
techniques to design programs. Thisisaway of dividing up or structuring a program into
small, well-defined functions. It makes the program easy to write and easy to understand. |

don't clam that this system is the absol ute best way to program. It happens to be the system that
works best for me. If another system works better for you, use it.

Page 147

Structured programming concentrates on a program's code. Later you'll see how to merge code
and data to form classes and begin to perform object-oriented programming.

Thefirst step in programming is to decide what you are going to do. This has already been
described in Chapter 7, The Programming Process. Next, decide how you are going to
structure your data.

Finally, the coding phase begins. When writing a paper, you start with an outline, with each
section in the paper described by a single sentence. The details arefilled in later. Writing a
programissimilar. Y ou start with an outline, but this outline is your mai n function. The
details can be hidden within other functions. For example, the program in Example 9-10 solves
al of the world's problems.

Example 9-10. A global solution

mai n()

{
void init(void);
voi d sol ve_probl ens(voi d);
void finish_up(void);

init();
sol veprobl ens();
finish_up();

}

Of course, some of the details remain to befilled in.

Start by writing the mai n function. It should be less than two pages long. If it grows longer,
consider splitting it up into two smaller, smpler functions. The size of the function should be
limited to three pages because that is about the maximum amount of information a human being
can store in short-term memory at one time. After the mai n function is complete, you can start
on the other functions. This type of structured programming is called top-down programming.
You start at the top (mai n) and work your way down.

Another type of coding is called bottom-up programming. Thisinvolveswriting the
lowest-level function first, testing it, and then building on that working set. | tend to use some
bottom-up techniques when I'm working with a new standard function that | haven't used before.
| write asmall function to make sure | really know how the function works and continue from
there. Thisisthe approach used in Chapter 7 to construct the calculator program.

In actual practice, both techniques are useful. This resultsin a mostly top-down, partially
bottom-up technique. Computer scientists have aterm for this methodology: chaos. The one
rule you should follow in programming is, "Use what works best."

Page 148

Recursion

Recursion occurs when afunction callsitsalf directly or indirectly. Some programming
functions lend themselves naturally to recursive agorithms, such as the factorial.

A recursive function must follow two basic rules:
1. It must have an ending point.
2. It must make the problem ssmpler.

A definition of factorid is:;

1
n* fact(n-1)

fact (0)
fact(n)

In C++ thisis

int fact(int nunber)

{
i f (nunber == 0)
return (1);
/* else */
return (nunmber * fact(nunber-1));

}

This satisfies the two rules. First, it has a definite ending point (when nunber == 0).
Second, it simplifies the problem becausef act (nunber - 1) issmpler than
fact (nunber) .

Factorial islega only for nunber >= 0. But what happensif we try to compute

fact (- 3) ? The program aborts with a stack overflow or similar message. f act (- 3) calls
fact(-4) calsfact (-5) andsoon. Thereisno ending point. Thisis called an infinite
recursion error.

Many things we do iteratively can be done recursively, such as summing the elements of an
array. You can define a function to add elements m through n of an array as follows:

If you have only one element, then the sum issmple.
Otherwisg, it isthe sum of the first element and the sum of the rest.
In C++ thisis:
int sum(int first, int last, int array[])
if (first == last)
return (array[first]);

/[* else */
return (array[first] + sum(first + 1, last, array));

Page 149

For example:

Sum(l 8 3 2) =
1+ Sum(8 3 2)

3 + Sum(2) =
2
3+2=5
3+2=5
8 +5 =13
1+ 13 =14
Answer = 14

Programming Exer cises

Exercise 9-1: Write aprocedure that counts the number of wordsin a string. (Y our
documentation should describe exactly how you define aword.) Write a program to test your
new procedure.

Exercise 9-2: Writeafunction " begi ns (stringl, string2)" that returnstrueif
stringl beginsst ri ng2. Write aprogram to test the function.

Exercise 9-3: Write afunction count (nunber, array, | engt h) that will count the
number of timesnunber appearsin arr ay. Thearray hasl engt h elements. The function
should be recursive. Write atest program to go with the function.

Exer cise 9-4. Write afunction that will take a character string and return a primitive hash code
by adding up the value of each character in the string.

Exer cise 9-5: Write afunction that returns the maximum vaue of an array of numbers.

Exer cise 9-6: Write afunction that scans astring for the character "- " and replaces it with

Answersto Chapter Questions

Answer 9-1: The programmer went to alot of trouble to explain that the f or loop did nothing
(except increment the index). However, there is no semicolon at the end of thef or . C++ keeps
reading until it sees a statement (inthiscaser et ur n(i ndex)) and putsthat inthef or loop.
Example9-11 contains a correctly written version of the program.

Example 9-11. length/rlen.cc

int Jlength(char string[])
{

i nt index; /1 index into the string
/*

Page 150
Example 9-11 length/rlen cc (Continued)

* Loop until we reach the end of string character
*/

for (index = 0; string[index] !'="'\0"; ++index)
/* do nothing */ ;
return (index);

Page 151

10
The C++ Preprocessor

In This Chapter:

#define Statement
Conditional
Compilation
#include Files
Parameterized
Macros

Advanced Features
Summary
Programming
Exercises
Answersta
Chapter Questions

The speech of man is like embroidered tapestries. since like themthis
hasto be extended in order to display its patterns, but when itisrolled
up it conceals and distorts them

—Themistocles

Thefirst C compilers had no constants or inline functions. When C was still being developed,
it soon became apparent that C needed afacility for handling named constants, macros, and
include files. The solution was to create a preprocessor that is run on the programs before they
are passed to the C compiler. The preprocessor is nothing more than a specialized text editor.
Its syntax is completely different from C's and it has no understanding of C constructs. It is
merely a dumb text editor.

The preprocessor was very useful and soon it was merged into the main C compiler. The C++
compiler kept this pre-processor. On some systems, like UNIX, it is still a separate program,
automatically executed by the compiler wrapper cc. Some of the newer conrpilers, like
Turbo-C++, have the pre-processor built in.

#define Statement

The#def i ne statement can be used to define a constant. For example, the following twe
lines perform similar functions:

#define SIZE 20 /1 The array size is 20

const int SIZE = 20; // The array size is 20

Actualy theline#def i ne SI ZE 20 actsasacommand to the preprocessor to globally
change SZE to 20. This takes the drudgery and guesswork out of making changes.

Page 152

All preprocessor commands begin with a hash mark (#) in column 1. C++ isfree format.
Language elements can be placed anywhere on aline, and the end-of-lineis treated just like a
space. The preprocessor is not free format. It depends on the hash mark (#) being in the first
column. Asyou will see, the preprocessor knows nothing about C++ and can be (and is) used
to edit things other than C++ programs.

WARNING

The preprocessor is not part of the C++ compiler. It uses an entirely
different syntax and requires an entirely different mind-set to use it
well. Most problems you will see occur when the preprocessor is
treated like C++.

Preprocessor directives terminate at the end of the line. In C++ asemicolon (;) ends a
statement. The preprocessor directives do not end in a semicolon, and putting one in can lead
to unexpected results. A preprocessor directive can be continued by putting abackslash (\) at
the end of the line. The ssimplest use of the preprocessor is to define a replacement macro. For
example, the command:

#defi ne FOO bar

causes the preprocessor to replace the word "FOO" with the word "bar" everywhere "FOO"
occurs. It is common programming practice to use all uppercase letters for macro names. This
makes it very easy to tell the difference between avariable (all lowercase) and a macro (all
uppercase).

The general form of asimpledef i ne statement is:

#defi ne Name Substitut e- Text

Name can be any valid C++ identifier. Substitute-Text can be anything aslong asit fitson a
singleline. The Substitute-Text can include spaces, operators, and other characters.

It is possible to use the following definition:
#define FOR ALL for (i = 0; i < ARRAY_SIZE, ++i)
and useit like:

/*
* Clear the array
*/
FOR ALL {
data[i] = O;
}

It is considered bad programming practice to define macros in this manner. They tend to
obscure the basic control flow of the program. In this example, if the

Page 153

programmer wants to know what the loop does, he must search the beginning of the program for
the definition of FOR_ALL.

It is even worse to define macros that do large-scale replacement of basic C++ programming
congtructs. For example, you can define the following:

#define BEA N {
#define END }

if (index == 0)
BEG N

cout << "Starting\n";
END

The problem is that you are no longer programming in C++, but in a half-C++ half-PASCAL
mongrel.

The preprocessor can cause unexpected problems because it does not check for correct C++
syntax. For example, Example 10-1 generates an error on line 11.

Example 10-1 big/big.cc

1 #define BI G NUMBER 10 ** 10

2

3 main()

4 {

5 /1 1ndex for our calculations
6 i nt i ndex;

7

8 i ndex = 0;

9

10 /1 Syntax error on next l|ine
11 while (index < Bl G NUMBER) {
12 i ndex = index * 8;

13 }

14 return (0);

15 }

The problem isin the#def i ne statement on line 1, but the error message pointsto line 11.
The definition in line 1 causes the pre-processor to expand line 11 to look like:

while (index < 10 ** 10)

Because* * isanillegal operator, this generates a syntax error.

Page 154

Question 10-1: The following program generates the answer 47 instead of the expected
answer 144. Why? (Hint below.)

Example 10-2. first/first cc

#i ncl ude <i ostream h>

#defi ne FI RST_PART 7

#def i ne LAST PART 5

#defi ne ALL_PARTS FI RST_PART + LAST_ PART
mai n()

cout << "The square of all the parts is " <<
ALL_PARTS * ALL_PARTS << '\n';
return (0);

}
Hint:
CC -E prog. cc
sends the output of the preprocessor to the standard output.
In MSDOSWindows, the command:
Cpp prog.cpp

creates a file called prog i containing the output of the preprocessor.

Running the program For Example 10-1 through thepreprocessor gives you.

Example 10-3 first/first-ed.out

1 "first.cc"
1 "/usr/local/lib/g++-include/iostreamh" 1 3

/! About 900 |ines of #include stuff omtted

inline ios& oct(ios& i)
{ i.setf(ios::oct, ios::dec|lios::hex|ios::oct); returni; }

1 "first.cc" 2
mai n() {
cout << "The square of all the parts is " <<

7+5*7+5<<'\n;
return (0);

NOTE

Page 155

The output of the C++ preprocessor contains alot of information,
most of which can easily be ignored. In this case, you need to scan
the output till you reach the cout line. Examining thisline will give
you an idea of what caused the error.

Question 10-2: Example 10-4 generates a warning that count er isused beforeit is set.
Thisisa surprise because thef or loop should set it. You also get a very strange war ning,

"null effect, "for line 11.

Example 10-4. max/max.cc

1 // Warning, spacing is VERY inportant
2

3 #incl ude <i ostream h>

4

5 #define MAX 10

6

7 main()

8 {

9 int counter

10

11 for (counter = MAX; counter > 0;
12 --counter)

13 cout << "H there\n";

14

15 return (0);

16 }

Hint: Take a look at the preprocessor output.
Question 10-3: Example 10-3 computes the wrong valuefor si ze. Why?

Example 10-5. size/size cc

#i ncl ude <i ostream h>

#define S|l ZE 10;
#defi ne FUDGE S| ZE - 2;
main ()

{

int size; // Size to really use
size = FUDCE

cout << "Size is " << size << '\n';
return (0);

Page 156

Question 10-4: The following program is supposed to print the message "Fat al Error:
Abor t " and exit when it receives bad data. But when it gets good data, it exits. Why?

Example 10-6 dis/die.cc

1 #incl ude <iostream h>

2 #include <stdlib.h>/* ANSI Standard only */
3

4 #define DIE \

5 cerr << "Fatal Error: Abort\n"; exit(8);
6

7 main() {

8 /1 A random val ue for testing

9 int val ue;

10

11 value = 1

12 if (value < 0)

13 Dl E;

14

15 cerr << "W did not die\n";
16 return (0);

17 }

#define versus const

Theconst keywordisrelatively new. Beforeconst, #defi ne wastheonly way to
define constants, so most older code uses#def i ne directives. However, the use of const is
preferred over #def i ne for severa reasons. First of al, C++ checksthe syntax of const
statements immediately. The#def i1 ne directive is not checked until the macro is used. Also,
const uses C++ syntax, while #define has a syntax al its own. Finally, const follows
normal C++ scope rules, whereas constants defined by a#def i ne directive continue on
forever.

In most casesaconst statement is preferred over #def i ne. Here are two ways of defining
the same constant.

#define MAX 10 // Define a val ue using the pre-processor
/1 (This can easily cause probl ens)

const int MAX = 10; // Define a C++ constant integer
/1 (Safer)

The#def i ne directiveislimited to defining smple constants. Theconst statement can
define dmost any type of C++ constant including things such as structure classes. For example:

struct box (
int width, height; // Dinmensions of the box in pixels
|

Page 157

/1 Size of a pink box to be used for input
const box pi nkbox(1.0, 4.5);

The#def i ne directive is, however, essentia for things such as conditional compilation and
other specialized uses.

Conditional Compilation

One problem programmers have is writing code that can work on many different machines. In
theory, C++ code is portable; in actual practice many machines have little quirks that must be
accounted for. For example, this book covers UNIX, MSDOS, and Windows compilers.
Although they are ailmost the same, there are some differences, as you will see in Chapter 25,
Portability Problems.

The preprocessor alows you great flexibility in changing the way code is generated through the
use of conditional compilation. Suppose you want to put debugging code in the program while
you are working on it and then remove the debugging code in the production version. Y ou could

do thisby including the codein an #i f def - #endi f section.

#i f def DEBUG
cout << "In conpute_hash, value " << value << " hash << hash <<
"\'n";
#endi f /* DEBUG */

NOTE

You do not haveto putthe/ * DEBUG */ after the#endi f, but it
isvery useful as acomment.

If the beginning of the program contains the directive;

#def i ne DEBUG /* Turn debuggi ng on */
thecout isincluded. If the program contains the directive:
#undef DEBUG /* Turn debuggi ng of f */

thecout isomitted.

Strictly speaking the#undef DEBUC is unnecessary. If thereisno #def i ne DEBUG
statement, then DEBUC is undefined. The#undef DEBUC statement is used to indicate
explicitly to anyone reading the code that DEBUC is used for conditional compilation and is
now turned off.

Thedirective #i f ndef will cause the code to be compiled if the symbol is not defined.

Page 158
#el se reversesthe sense of the conditional. For example:

#i f def DEBUG

cout << "Test version. Debugging is on\n";
#el se /* DEBUG */

cout << "Production version\n";
#endi f /* DEBUG */

A programmer may wish to temporarily remove a section of code. A common method of doing
thisisto comment out the code by enclosingitin/* */ . This can cause problems, as shown
by the following example:

[***** Conmment out this section
section_report();
/* Handl e the end-of-section stuff */
dunpt abl e();

****x End of commented out section */

This generates a syntax error for the fifth line. Why?

A better method isto usethe#i f def construct to remove the code.

#i f def UNDEF
section_report();
/* Handl e the end-of-section stuff */
dunp_t abl e();

#endi f /* UNDEF */

(Of course the code will be included if anyone defines the symbol UNDEF; however, anyone
who does should be shot.)

The compiler switch -Dsymbol alows symbols to be defined on the command line. For
example, the command:

CC -DDEBUG -g -0 prog prog.cc

compilesthe program prog.c and includes all thecodein #i f def DEBUG #endi f /*
DEBUG */ pairs even though thereisno #def i ne DEBUC in the program. The Turbo-C++
equivaentis:

tcc -DDEBUG -g -N -eprog. exe prog.c

The general form of the option is -Dsymbol or -Dsymbol=value. For example, the following
sets MAX to 10:

CC -DVMAX=10 -0 prog prog.c

Most C++ compilers automatically define some system-dependent symbols. For example,
Turbo-C++ definesthe symbol _ TURBOC _and MS-DOSdef i nes_ MSDOS . The ANSI
standard compiler C definesthe symbol _ STDC . C++ compilers define the symbol

_cpl uspl us. Most UNIX compilers define a name for the system (e.g., Sun, VAX, celerity,
etc.); however, they are rarely documented. The symbol uni x isaways defined for all UNIX
machines

Page 159
NOTE

Command-line options specify theinitia value of asymbol only.
Any #def i ne and #undef directivesin the program can change
the symbol's value. For example, the directive:

#undef DEBUG
resultsin DEBUC being undefined whether or not you use
- DDEBUC.
#include Files
The#i ncl ude directive allows the program to use source code from another file.
For example, you have been using the directive:
#i ncl ude <i ostream h>

in your programs. This tells the preprocessor to take the file iostream.h and insert it in the
current program. Filesthat are included in other programs are called headerfiles. (Most

#1 ncl ude directives come at the head of the program.) The angle brackets indicate that the
fileisastandard header file. In UNIX, thesefilesare usualy located in / usr /i ncl ude. In
MS-DOS/Windows, they are located in the Turbo-C++ directory (installation dependent).

Standard include files are used for defining data structures and macros used by library routines.
For example, cout isastandard classthat (as you know by now) prints data on the standard
output. The ost r earr class definition used by cout and itsrelated routinesis defined in
iostream.h.

Sometimes you may want to write your own set of include files. Local includefiles are
particularly useful for storing constants and data structures when a program spans several files.
They are especialy useful for information sharing when ateam of programmersisworking on
asingle project. (See Chapter 23, Modular Programming.)

Locd include files may be specified by using double quotation marks (") around the filename.

#i ncl ude "defs. h"

Thefilename (" def s. h") can be any valid filename. This can be asimplefile, "def s. h"; a
relative path, called". . /. . / dat a. h"; or an absolute path, called

"/ root/include/ const. h". (In MS-DOS/Windows you should use backdash (\)
instead of slash (/) as a directory separator.)

Page 160

Include files may be nested. This can cause problems. Suppose you define several useful
congtants in the file const.h. If the files data.h and io.h both include const.h and you put the
following in your program:

#i ncl ude "dat a. h"
#i nclude "io.h"

you generate errors because the preprocessor sets the definitionsin const.h twice. Defining a
constant twice is not afatal error; however, defining a data structure or union twice is an error
and must be avoided.

One way around this problem isto have const.h check to see whether it has already been
included and not define any symbols that have aready been defined.

Look at the following code:
#i fndef _COONST_H_| NCLUDED
/* Define constants */

#define _CONST_H | NCLUDED_
#endi f /* _CONST_H_ | NCLUDED */

When const.h isincluded, it definesthe symbol _ CONST_H | NCLUDED . If that symbol is
already defined (because the file was included earlier), the #i f def conditional hides all the
other defines so they don't cause trouble.

NOTE

It is possible to put code in aheader file. Thisis considered poor
programming practice. By convention, code goesin . cc filesand
definitions, declarations, macros, and inline functionsgo inthe. h

files.

Parameterized M acr os

So far we have discussed only smple #def i nes or macros. Macros can take parameters.
The following macro computes the square of a number:

#define SQR(x) ((x) * (x)) /* Square a nunber */

When used, the macro replaces x by the text of its argument. SQR(5) expandsto ((5) * (5)). It
isagood rule aways to put parentheses around the parameters of a macro. Example 10-7
illustrates the problems that can occur if thisruleis not followed:

Example 10-7. sgr/sgr.cc

#i ncl ude <i ostream h>
#define SQR(X) (x * X)

mai n()

Page 161

Example 10-7. sgr/sgr.cc (Continued)

{
int counter; /1 Councer for |oop
for (counter = 0; counter < 5; ++counter) {
cout << "x " << counter + 1 <<
' X squared " << SQR(counter + 1) << '\n';
{
return (0);
}

Question 10-5: What does the above program output? (Try running it on your machine.)
Why did it output what it did? (Try checking the output of the preprocessor.)

Thekeep- it -si npl e system of programming prevents us from using the increment (++)
and decrement (- -) operators except on aline by themselves. When used in an expression,
they are considered side effects, and this can lead to unexpected results asillustrated in
Example 10-8.

Example 10-8. sgr-i/sgr-i.cc

#i ncl ude <i ostream h>

#define SQR(X) ((x) * (x))

main ()

{

int counter; /* Counter for |oop */

counter = O;
while (counter < 5)
cout << "x << counter + 1 <<
' X squared" << SQR(++counter) << '\n';
return (0);

}

Why does this not produce the expected output? How much does the counter go up each time.

In the program shown in Example 10-8 the SQR(++count er) isexpanded to
((++counter) * (++counter)) inthiscase Theresultisthat count er goesup by 2
each time through the loop. The actual result of this expression is system dependent.

Question 10-6: The following program tells us we have an undefined variable, but our only
variable nameiscount er . Why?

Example 10-9 rec/rec.cc

#i ncl ude <i ostream h>
#defi ne RECI PROCAL (nunber) (1.0 / (nunber))

Page 162

Example 10-9. rec/rec.cc (Continued)

mai n()

}

fl oat counter;

for (counter = 0.0; counter < 10.0;
counter += 1.0)

cout << "1/" << counter << " = "<<
RECI PROCAL(counter) << "\n";

return (0);

}
The # Operator

The# operator is used inside a parameterized macro to turn an argument into a string. For
example:

#defi ne STR(data) #data
STR(hel | 0)

generates
"hel | 0"

For a more extensive example of how to use this operator see Chapter 26, Putting It All
Together.

Parameterized Macros Versus I nline Functions

In most casesit isbetter tousean i nl i ne function instead of a parameterized macro, to avoid
most of the traps caused by parameterized macros. But there are cases where a parameterized
macro may be better than an i nl i ne function. For example, the SQR macro works for both

fl oat andi nt datatypes. We'd have to writetwo i nl i ne functions to perform the same
functions.

#define SQR(X) ((x) * (x)) /1 A paraneterized macro
/1 Works, but is dangerous

/1 Inline function to do the sane thing

inline int sqgr(const int x) {
return (x * x);
}

Advanced Features

This book does not cover the complete list of C++ preprocessor directives. Among the more
advanced features are an advanced form of the #i f directive for

Page 163
conditional compilations and the #pr agmna directive for inserting compiler-dependent
commands into afile. See your C++ reference manua for more information on these features.

Summary

The C++ preprocessor isavery useful part of the C++ language. It has a completely different
look and feel from C++. However, it must be treated apart from the main C++ compiler.

Problems in macro definitions often do not show up where the macro is defined, but result in
errors much further down in the program. By following afew simple rules, you can decrease
the chances of having problems.

1. Put parentheses around everything. In particular they should enclose #def i ne constants
and macro parameters.

2. When defining a macro with more than one statement, enclosethe codein { } .

3. The preprocessor isnot C++. Don't use=or ;.

#define X =5 // 1llegal
#define X 5; /1 1llegal
#define X = 5; // Very illega

#define X 5 /] Correct

Finaly, be glad. If you got thisfar, be glad that the worst is over.

Programming Exer cises

Exercise 10-1: The C++ standard contains a boolean type (bool) that defines the values true
and false. The problem is most compilers haven't implemented this type yet. Create a boolean
typeby usng #def i ne to define vauesfor BOOLEAN, TRUE, and FALSE.

Exercise 10-2: Write amacro that returns true if its parameter is divisible by 10 and false
otherwise.

Exercise 10-3: Writeamacroi s_di gi t that returnstrueif its argument isadecima digit.
Writeasecond macroi s_hex that returnstrue if itsargument isa hex digit (0-9 A-F af). The

second macro should reference the first.

Exercise 10-4: Write a preprocessor macro that swaps two integers. (If you're areal hacker,
write one that does not use atemporary variable declared outside the macro.)

Page 164

Answersto Chapter Questions

Answer 10-1: After the program has been run through the preprocessor, the cout statement is
expanded to look like:

cout << "The square of all the parts is " << 7 +5* 7 +5 <<'\n';

Theequation 7+ 5* 7 + 5 evaluatesto 47. It isagood rule to put parentheses () around all
expressions in macros. If you change the definition of ALL_PARTS to:

#define ALL_PARTS (FI RST_PART + LAST_PART)

the program executes correctly.

Answer 10-2: The preprocessor is avery smple-minded program. When it defines a macro,
everything past the identifier is part of the macro. In this case, the definition of MAX is literally
"=10". When thef or statement is expanded, theresult is:

for (counter==10; counter > 0; --counter)

C++ alows you to compute a result and throw it away. For this statement, the program checks
to see whether counter is 10 and discards the answer. Removing the = from the definition will
correct the problem.

Answer 10-3: Aswith the previous problem, the preprocessor does not respect C++ syntax
conventions. In this case the programmer used a semicolon to end the statement, but the
preprocessor included it as part of the definition for si ze. The assignment statement for

Si ze, expanded, is:

size = 10; -2;

The two semicolons at the end do not hurt anything, but the onein the middle isakiller. This
linetells C++ to do two things: 1) assign 10to si ze and 2) compute the value -2 and throw it
away (thisresultsin the null effect warning). Removing the semi colons will fix the problem.

Answer 10-4: The output of the preprocessor looks like:

voi d exit();

mai n() {
i nt val ue;
val ue = 1;

if (value < 0)
cout << "Fatal Error: Abort\n"; exit(8);

cout << "We did not die\n";
return (0);

Page 165

The problem isthat two statements follow thei f line. Normally they would be put on two
lines. If we properly indent this program we get:

Example 10-10 die3/die.cc

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

mai n() {
int value; // A randomvalue for testing

value = 1;
if (value < 0)
cout << "Fatal Error: Abort\n";

exit(8);

cout << "We did not die\n";
return (0);

}

From thisit is obvious why we always exit. The fact that there were two statements after the
i f was hidden by using asingle preprocessor macro. The cure for this problem isto put curly
braces around al multistatement macros.

#define D E \
{cout << "Fatal Error: Abort\n"; exit(8);}

Answer 10-5: The problem isthat the preprocessor does not understand C++ syntax. The
macro call:

SQR(count er +1)
expands to:
(counter+l * counter+l)

Theresultisnotthesameas((counter+l) * (counter +1)).Toavoidthis
problem, use inline functions instead of parameterized macros.

inline int SQR(int x) { return (x*x);}
If you must use parameterized macros, enclose each use of the parameter in parentheses.
#define SQR(X) ((x) * (x))

Answer 10-6: The only difference between a parameterized macro and one without parameters
is the parentheses immediately following the macro name. In this case, a space follows the
definition of RECI PROCAL, so it is not a parameterized macro. Instead it is asimple text
replacement macro that replaces RECI PROCAL with:

(nunber) (1.0 / nunber)

Removing the space between RECI PROCAL and (nunber) corrects the problem.

Page 167

11
Bit Operations

In This Chapter:

Bit Operators

The AND Operator
Bitwise OR

The Bitwise
Exclusive OR

The Ones
Complement
Operator

The Left and Right
Shift Operators
Setting, Clearing,
and Testing Bits
Bitmapped
Graphics
Exercises
Answersto
Questions

To be or not to be, that is the question.
—Shakespeare on Boolean Algebra

This chapter discusses bit-oriented operations. A bit is the smallest unit of information.
Normally it is represented by the values 1 and 0. (Other representations include on/off,
true/false, and yes/no.) Bit manipulations are used to control the machine at the lowest level.
They dlow the programmer to get "under the hood" of the machine. Many higher-level
programs will never need bit operations. Lowlevel coding such aswriting device drivers or
pixel-level graphic programming requires bit operations. If you plan to program only at a
higher level, this chapter may be safely skipped.

Eight bits together form a byte, represented by the C++ datatype char . A byte might contain
the following bits: 01100100.

This can also be written as the hexadecima number 0x64. (C++ uses the prefix "Ox" to
indicate a hexadecimal (base 16) number.) Hexadecimal is convenient for representing binary
data because each hexadecimal digit represents 4 binary bits. Table 11-1 gives the
hexadecimal (hex) to binary conversion:

Table 11-1. Hex and Binary

Hex Binary Hex Binary
0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011

Table 11-1. Hex and Binary (Continued)

Hex Binary Hex Binary
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

S0 the hexadecimal number OxXAF represents the binary number 10101111.

Bit Operators

Page 168

Bit, or bitwise, operators alow the programmer to work on individual bits. For example, a
short integer holds 16 bits (on most machines). The bit operators treat each of these as an
independent bit. By contrast, an add operator treats the 16 bits as a single 16-bit number.

Bit operators allow you to set, clear, test, and perform other operations on bits. The bit

operators arelisted in Table 11-2.

Table 11-2 Bit Operators

Operator | Meaning
& Bitwise AND
I Bitwise OR

<<

Bitwise exclusive OR
Complement

Shift left

>> Shift right

These operators work on any integer or character-data type.

The AND Operator (&)

The AND operator compares two bits. If they both are 1, the result is 1. The results of the AND
operator are defined in Table 11-3.

Table 11-3 AND Operator

Bitl Bit2 Bitl & Bit2
O 0 0
0 1 0
1 0 0
1 1 1

Page 169

When two eight-bit variables (char variables) are "ANDed" together, the ANC operator works
on each bit independently. The following program segment illustrates this operation:

i nt cl, cz;

cl = 0x45;

c2 = 0Ox71;

cout << "Result of " << hex << cl << " & " << 2 << " = "<

(cl & c2) << dec << '"\n';
The output of this programiis:
Result of 45 & 71 = 41

Thisis because:
cl =0x45 binary

01000101
& ¢2=0x71 binary

01110001
= 0x41 binary

01000001

The bitwise AND (&) issimilar to the logical AND (&&). Inthelogical AND if both operands are
true (nonzero), the result istrue (1). In bitwise AND (&), if the corresponding bits of both
operands are true (1s), then the corresponding bits of the results are true (1s). So the bitwise

AND (&) works on each bit independently while the logical AND (&&) works on the operands as
awhole.

However, & and & & are different operators, as Example 11-1 illustrates:

Example 11-1 and/and.cc

#i ncl ude <i ostream h>

mai n()

{
int i1, i2; // Two random i ntegers
il =4
i2 =2 /1 Set val ues

/1 Nice way of witing the conditiona
if ((il '=0) && (i2 !'=0))
cout << "Both are not zero #l\n";

/1 Shorthand way of doing the sane thing
/1 Correct C++ code, but rotten style
if (il & i2)

cout << "Both are not zero #2\n";

/1 Incorrect use of bitwise AND resulting in an error
if (il &i2)
cout << "Both are not zero #3\n";

Page 170

Example 11-1 and/and cc (Continued)

return (0);

}
Question: Why doestest #3 fail toprint Bot h are not zero #37

Answer: The operator & isabitwise AND. The result of the bitwise AND is zero.

il=4 00000100
i2=2 00000010
& 00000000

The result of the bitwise AND is 0, and the conditional isfalse. If the programmer had used the
first form:

if ((il1!'=0) & (i2 !'= 0))
and made the mistake of using & instead of & &:
if ((il1!'=0) & (i2!=0))

the program would still have executed correctly.

(i1'=0) is true (result
(i2'1'=0) is true (result

1)
1)

1 bitwise AND 1is1, so the expression istrue.
NOTE

Soon after discovering the bug illustrated by this program | told my
office mate, "l now understand the difference between AND and
AND AND), and he understood me. How we understand language
has always fascinated me, and the fact that | could utter such a
sentence and have someone understand it without trouble amazed
me.

Y ou can use the bitwise AND operator to test whether a number is even or odd. In base 2, the
last digit of all even numbersis zero and the last digit of all odd numbersis one. The following
function uses the bitwise AND to pick off thislast digit. If it is zero (an even number), the
result of the function istrue.

inline int even(const int val ue)

{
return ((value & 1) == 0);
}
Page 171
Bitwise OR (|)

Theinclusive OR operator (also known as just the OR operator) compares its two operands. If
one or the other hitisal, theresult is 1. Table 11-4 lists the truth table for the OR operator.

Table 11-4. Bitwise OR

Bitl | Bit2 Bit | Bit2
0 0 0

0 1 1

1 0 1

11 1

On abyte thiswould be:

il=0x47 01000111
i2=0x53 01010011
| 57 01010111

The Bitwise Exclusive OR (*)

The exclusive OR (also known as XOR) operator resultsin a1 when either of itstwo
operandsisal, but not both. The truth table for the exclusive OR operator islisted in Table
11-5.

Table 11-5 Exclusive OR

Bitl | Bit2 Bit1/ Bit2

0 0 0

0 1 1

1 0 1

1 1 0

On abyte thiswould be:
iI=0x47 01000111
i2=0x53 01010011

A 14 00010100

The Ones Complement Operator (NOT) (~)

The NoT operator (also called the invert operator or bit flip) is aunary operator that returns
theinverse of its operand, as shown in Table 11-6.

Table 11-6 NOT
Operator

Bit ~Bit

0 1

1 0

Page 172

On abytethisis:
c= O0x45 01000101
~c= OxBA 10111010

The Left and Right Shift Operators (<<, >>)

The left shift operator moves the data left a specified number of bits. Any bits that are shifted
out the left side disappear. New bits coming in from the right are zeros. The right shift does the
same thing in the other direction. For example:

c=0xIC | 00011100

c<<1 | c=0x38 | 00111000
c>>2 | c=0x07 | 00000 11

Shifting left by one (x << 1) isthe sameas multiplyingby 2 (x * 2). Shifting left by two (x
<< 2) isthesameasmultiplyingby 4 (x * 4, or x * 22).Youcanseeapattern
forming here. Shifting left by n placesis the same as multiplying by 2n. Why shift instead of
multiply? Shifting is faster than multiplication, so

i = << 3; /1 Multiply j by 8 (2**3)
isfaster than:
i = * 8

Or it would be faster if compilers weren't smart enough to turn "multiply by power of two" into
"shift."

Many clever programmers use this trick to speed up their programs at the cost of clarity. Don't
you do it. The compiler is smart enough to perform the speedup automatically. This means that
putting in a shift gains you nothing at the expense of clarity.

The left shift operator multiplies; the right shift divides. So:

qg=1i > 2;
isthe same as:;
q=1i [/ 4

Again, this clever trick should not be used in modern code.

Right Shift Details

Right shifts are particularly tricky. When avariable is shifted to the right, C++ needs to fill the
space on the | eft side with something. For signed variables, C++

Page 173

uses the value of the sign bit. For unsigned variables, C++ uses zero. Table 11-7 illustrates
sometypical right shifts.

Table 11-7 Right Shift Examples

Signed Signed Char acter Unsigned
Character Character
Expression 9>>2 -8>>2 248 >>2

Binary value >> 2 0000 10102>>2 | 111110002 >> 2 1111 10002 >> 2

Result
Fill

Final result (binary)

2?00 00102
Sign hit (0)

0000 00102

Final result (short int) 2

7721111102 >> 2
Sign bit (1)
111111102

-2

??1111102 >> 2

Zero

0011 11102

62

Setting, Clearing, and Testing Bits

A character contains eight bits. Each of these can be treated as a separate flag. Bit operations
can be used to pack eight single-bit valuesin a single byte. For example, suppose you are
writing alow-level communications program. Y ou are going to store the characters in an 8K
buffer for later use. With each character you will also store a set of status flags. The flags are

listed in Table 11-8.

Table 11-8 Communications Status Values

Name

Description

ERROR
FRAMING_ERROR
PARITY_ERROR
CARRIER_LOST

CHANNELDOWN

Trueif any error is set

A framing error occurred for this character

Character had the wrong parity

The carrier signal went down

Power was lost on the communication device

Y ou could store each flag in its own character variable. That would mean that for each
character buffered, you would need five bytes of status storage. For alarge buffer, that adds up.
By instead assigning each status flag its own bit within an eight-bit status character, you cut
storage requirements down to 1/5 of the original need.

Y ou can assign the flags the bit numberslisted in Table 11-9.

Table 11-9. Bit Assignments

Bit Name

0 ERROR

1 FRAMING_ERROR
2 PARITY_ERROR

Page 174

Table 11-9 Bit Assignments

(Continued)

Bit Name

3 CARRIER_LOST

4 CHANNEL_DOWN

Bits are numbered 76543210 by convention. The constants for each bit are defined in Table
11-10.

Table 11-10 Bit Values

Bit Binary Value | Hex Constant
7 10000000 0x80
6 01000000 0x40
5 000100000 0x20
4 00010000 0x10
3 00001000 0x08
2 000000100 0x04
1 00000010 0x02
0 00000001 0x01

The definitions could be:

/1 True if any error is set
const int ERROR = 0x01;

/1 A framing error occurred for this character
const int FRAM NG ERROR = 0x02;

/1 Character had the wong parity
const int PARI TY_ERROR = 0x04;

/] The carrier signal went down
const int CARRIER LOST = 0x08;

/!l Power was | ost on the conmunication device
const int CHANNEL DOV = 0x10;

This method of defining bits is somewhat confusing. Can you tell (without looking at the table)
which bit number is represented by the constant 0x10? Table 11-11 shows how you can use
the left shift operator (<<) to define bits.

Table 11- 11. The Left Shift Operator and Bit Definition

C++ Representation | Base 2 Equivalent Result (Base2) | Bit Number
1<<0 000000012 << 0 000000012 Bit0
1<<1 000000012<<1 000000102 Bit1
1<<?2 000000012 << 2 000001002 Bit 2

Table 11-11 The Left Shift Operator and Bit Definition (Continued)

C++ Representation | Base2 Equivalent Result (Base2) | Bit Number
1<<3 000000012 << 3 000010002 Bit 3
1<<4 000000012 << 4 000100002 Bit4
1<<5 000000012 << 5 001000002 Bit5
1<<6 000000012 << 6 010000002 Bit 6
1<<7 000000012 << 7 100000002 Bit7

Althoughit is hard to tell what bit is represented by 0x10,

byl << 4.

The flags can be defined as:

/1 True if any error is set

const int ERROR =

(1 << 0);

Page 175

it's easy to tell what bit is meant

/1 A framing error occurred for this character
const int FRAM NG ERROR =

(1 << 1);

/1 Character had the wong parity
const int PARITY_ERROR =

/1 The carrier signal

const int CARRIER LOST =

(1 << 2);

went down

(1 <<3);

/!l Power was | ost on the conmunication device
const int CHANNEL DOMWN =

(1 << 4);

Now that you have defined the bits, you can manipulate them. To set a bit, use the | operator.

For example:

char fl ags

flags | = CHANNEL DOWN; // Channel

=0; // Start all flags at 0

just died

Totest abit, use the & operator to "mask out” the bits.

if ((flags & ERROR) !'= 0)

cerr << "Error flag is set\n";
el se

cerr << "No error detected\n";

Clearing abit isalittle harder. Suppose you want to clear the bit PARI TY_ERROR. In binary
thisbitis00000100. You want to create amask that has al bits set except for the bit you
want to clear (11111011). Thisis done with the NOT operator (~). The mask isthen ANDed
with the number to clear the bit.

PARI TY _ERROR 00000100
~PARI TY_ERROR 11111011
Page 176
flags 00000101

flags& ~PARI TY_ERROR 00000001

In C++ thisis:
flags & ~PARITY_ERROR, // Who cares about parity

Question 11-1: In the following program, the H GH_SPEED flag works, but the
DI RECT_CONNECT flag does not. Why?

#i ncl ude <i ostream h>

const int H GH SPEED = (1<<7); /* modemis running fast */
/1 we are using a hardw red connection
const int DI RECT_CONNECT = (1<<8);

char flags = 0; /] start with nothing
mai n()
{
flags | = H GH_SPEED; /] we are running fast
flags | = DI RECT_CONNECT; /] because we are wired together

if ((flags & H GH SPEED) != 0)
cout <<"Hi gh speed set\n";

if ((flags & DI RECT_CONNECT) != 0)
cout <<"Direct connect set\n";
return (0);

}
Bitmapped Graphics

More and more computers now have graphics. For the PC, there are graphics devices like EGA
and VGA cards. For UNIX, thereisthe X windowing system.

In bitmapped graphics, each pixel on the screen is represented by asingle bit in memory. For
example, Figure 11-1 shows a 14-by-14 bitmap as it appears on the screen and enlarged so you
can see the hits.

Suppose we have a small graphic device—a 16-by-16 pixel monochrome display. We want to
set the bit at 4, 7. The bitmap for this device is shown as an array of bitsin Figure 11-2.

But we have a problem. There is no datatype for an array of bitsin C++. The closest we can
comeisan array of bytes. Our 16-by-16 array of bits now becomes a 2-by-16 array of bytes, as
shown in Figure 11-3.

To set the pixel at bit number 4,7 we need to set the fourth bit of byte 0,7. To set this bit we
would usethe statement: bi t _array[0] [7] |= (0x80 >> (4));

Page 177

Enltarged bitmap

Figure 11-1. Bitmap, actua size and enlarged

01 2 3 45 B 7T B B W11 1213 1815

Ll L I

w1

Pixel (4,7) st in a 165718 arvay of bits

Figure 11-2. Array of bits

Page 178
Byte 0 Byle 1
— e —
01+ 2 3 4 535 67T 0 1 2 3 4 5 6 7
ol ¢ ﬂ_ P R I R
ot L P 33 b1
s T T T T T R
HENEEREN RN
EEEE B
BEEEEEEEEEEEEE
C] W S T S N N
wl ! P
1
12
13
14
15
Same puxel sef in 3 2x16 array of bytes

Figure 11-3 Array of bytes

The constant 0x 80 is the leftmost bit.

We can generalize this process to produce a macro that turns on the bit (pixel) located at (X, y).
We need to compute two values: the coordinate of the byte and the number of the bit within the
byte.

Our bit addressis (X, y). Bytes are groups of eight bits, so that means that our byte addressis
(X/8,Y).

The bit within the byte is not so smple. We want to generate a mask consisting of the single bit

we want to set. For the leftmost bit this should be 1000 00002, or 0x80. This occurs when
(x%8) == 0. The next bit is 0100 00002, or (0x80 >> 1), and occurs when (x%8) == 1. So to
generate our bit mask we use the expression (0x80 >> (x%8)).

Now that we have the byte location and the bit mask, all we have to do is set the bit. The
following function sets a given bit in a bitmapped graphics array named graphics.

void inline set_bit(const int x,const int y)

{
}

graphi cs[(x)/8][y] |= (0x80 >> ((x)%8))

Page 179

Example 11-2 draws a diagonal line across the graphics array and then prints the array on the
terminal.

Example 11-2. graph/graph.cc

#i ncl ude <i ostream h>

const int X SIZE
const int Y_SIZE
/*

* W use X SIZE/8 since we pack 8 bits per byte

*/

char graphics[X SIZE / 8][Y_SI ZE]; /1 The graphics data

40; // Size of array in the X direction
60; // Size of array in the Y direction

/**

* set_bit -- set a bit in the graphics array *
* *
* Paraneters *
* X,y -- location of the bit *

**/

inline void set_bit(const int x,const int y)

{
graphics[(x)/8][y] |= (0x80 >>((x)%));
mai n()
{
i nt | oc; /1 Current |location we are setting
voi d print_graphics(void); // Print the data
for (loc = 0; loc < X SIZE; ++l oc)
set_bit(loc, loc);
print_graphics();
return (0);
:/}***
* print_graphics -- print the graphics bit array *
* as a set of Xand .'s *

***/
voi d print_graphics(void)

int x; /1 CQurrent x byte
int vy; /1 Current y location
int bit; /1l Bit we are testing in the current byte

for (y =0; y < Y_SIZE, ++y) {

/1 Loop for each byte in the array
for (x =0; x < X SIZE/ 8; ++x) {

/1 Handl e each bit
for (bit = 0x80; bit > 0; bit = (bit >> 1))
if ((graphics[x][y] & bit) !'=0)
Page 180
Example 11-2 graph/graph cc (Continued)
cout << 'X';

el se
cout << '

}
}
cout << '\n';

}
The program defines a bitmapped graphics array:
char graphics[X_SIZE / 8][YSI Zf] ; /1 The graphics data

Theconstant X_SI ZE/ 8 is used since we have X_SI ZE bits across, which transates to
X_SI ZE/ 8 bytes.

Themain f or loop:

for (loc = 0; loc < X SIZE; ++l oc)
set_bit(loc, loc);

draws a diagonal line across the graphics array.

Since we do not have a bitmapped graphics device we will smulate it with the subroutine
print _graphics.

The loop:
for (y = 0; y < Y_SIZE ++y) {

prints each row. The loop:
for (x =0; x < XSIZE/ 8; ++x) {

goes through every bytein the row. There are eight bitsin each byte handled by the loop:
for (bit = 0x80; bit > 0; bit = (bit >> 1))

which uses an unusual loop counter. Thisloop causesthe variable bi t to start with bit 7 (the

leftmost bit). For each iteration of the loop, the bit is moved to the right one bit by bi t

(bit >> 1).Whenwe run out of bits, the loop exits.
The loop counter cycles through.

Finally, at the heart of the loopsis the code:

Binary Hex
0000 0000 1000 0000 0x80
0000 0000 0100 0000 0x40
Binary Hex

0000 0000 0010 0000 0x20
0000 0000 0001 0000 0x10
0000 0000 0000 1000 0x08
0000 0000 0000 0100 0x04

0000 0000 0000 0010 0x02

0000 0000 0000 0001 0x01

if ((graphics[x][y] & bit) = 0)
cout <<"X';

el se
cout << ".";

Thistestsan individual bit and writes"X" if the bit isset or "." if the bit is not set.
Question 11-2: In Example 11-3 the first loop works, but the second fails. Why?

Example 11-3 loop/loop.cc

#i ncl ude <i ostream h>

main ()
{
short int i;
/1 \Works
for (i =0x80; i !'=0; i =(i > 1)) {
cout << "i is " << hex << i << dec << '\n';
}

signed char ch;

[l Fails
for (ch = 0x80; ch!=0; ch = (ch >> 1))

Page 181

cout << "ch is " << hex << int(ch) << dec << '\n';

}

return (0);

}

Programming Exer cises

Exercise 11-1: Writeasetof i nl i ne functions, cl ear _bit andtest bit,togowith
theset bi t operation defined in Example 11-2. Write amain program to test these
functions.

Exercise 11-2: Write a program to draw a 10-by-10 bitmapped square.

Page 182
Exercise 11-3: Change Example 11-1 so it draws awhite line across a black background.

Exercise 11-4: Write a program that counts the number of bits set in an integer. For example,
the number 5 (decimal), which is 0000000000000101 (binary), has two bits set.

Exercise 11-5: Write a program that takes a 32-bit integer (long int) and splitsit into eight
4-bit values. (Be careful of the sign bit.)

Exercise 11-6: Write a program that will take all the bitsin a number and shift them to the left
end. For example, 01010110 (binary) would become 11110000 (binary).

Answersto Chapter Questions

Answer 11-1: DI RECT_CONNECT is defined to be bit number 8 by the expression (1 << 8);
however, the eight bitsin a character variable are numbered 76543210. There is no bit number
8. A solution to this problemisto makef | ags ashort integer with 16 bits.

Answer 11-2: The problem isthat ch isacharacter (8 bits). The value 0x80 represented in 8
bitsis 1000 00002. Thefirst bit, the sign bit, is set. When aright shift is done on this variable,
the sign bit isused for fill, s0 1000 00002 >> 1is 1100 00002.

Thevariablei works even though it is signed because it is 16 bitslong. So 0x80 in 16 bitsis
0000 0000 1000 00002. Noticethat the bit we've got set is nowhere near the sign bit.

The solution to the problem isto declare ch asan unsi gned variable.
Page 183
|11

Advanced Types and Classes

Page 185

12
Advanced Types

In This Chapter:

Structures

Unions

typedef

enum Type

Bit Fields or Packed
Structures

Arrays of Structures
Programming
Exercises

Total grandeur of a total edifice. Chosen by an inquisitor ofstructures
—Wallace Stevens

C++ provides arich set of data types. Through the use of structures, unions, enum, and class
types, the programmer can extend the language with new types.

Structures

Suppose you are writing an inventory program for awarehouse. The warehouse is filled with
bins each containing a bunch of parts. All the partsin abin are identical, so you don't have to
worry about mixed bins or partials.

For each bin you need to know:
The name of the part it holds (character string 30 long).
The quantity on hand (integer).
The price (integer cents).

In previous chapters you have used arrays for storing agroup of similar data types, but in this
example you have a mixed bag: two integers and a string.

Instead of an array, you will use anew datatype called a structure. In an array, all the
elements are of the same type and are numbered. In a structure, each element, or field, is named
and hasits own data type.

Page 186
The general form of a structure definitioniis:

struct structure-nane {
field-type field-nane // Conment

field-type field-nane // Conment
} va}iéble-nane;
For example, you want to define abin to hold printer cables. The structure definition is:

struct bin {
char nare[30] ; /1 Name of the part

i nt quantity; /! How many are in the bin
i nt cost; /1 The cost of a single part (in cents)
} printer_cabl e_box; /1 Where we put the print cables

This definition actualy tells C++ two things. Thefirstiswhat ast r uct bi n lookslike. This
statement defines a new data type that can be used in declaring other variables. This statement
also declaresthe variable pr i nt er _cabl e_box. Since the structure of abin has been
defined, you can use it to declare additional variables:

struct bin termnal _cable box; // Place to put termnal cables

The structure-name part of the definition may be omitted.

struct {

char nare[30] ; /1 Name of the part

i nt quantity; // How many are in the bin

i nt cost; /1 The cost of a single part (in cents)
} printer_cabl e_box; /1 Where we put the print cables

Thevariablepri nt er _cabl e_box isstill to be defined, but no datatypeis created. The
datatype for thisvariable is an anonymous structure.

The variable-name part aso may be omitted. This would define a structure type but no
variables.

struct bin {

char name[30] ; /1 Name of the part
i nt quantity; /1 How many are in the bin
i nt cost; /1 The cost of a single part (in cents)

}

In an extreme case, both the variable-name and the structure-name parts may be omitted. This
creates a section of correct but totally useless code.

Once the structure type has been defined you can use it to define variables:
struct bin printer_cable_box; // Define the box holding printer cables
C++ dlowsthest r uct to be omitted, so you can use the following declaration:

bin printer_cable_box; // Define the box holding printer cables

Page 187

Y ou have defined the variable pr i nt er _cabl e_box containing three named fields. nane,
guanti ty, and cost . To access them you use the syntax:

variable. field

For example, if you just found out that the price of the cables went up to $12.95, you would do

the following:

printer_cabl e_box.cost = 1295; /1 $12.95 is the new price

To compute the value of everything in the bin, you can smply multiply the cost by the number
of items using the following:

total _cost = printer_cable_box.cost * printer_cabl e_box. quantity;

Structures may beinitialized at declaration time by putting the list of elementsin curly braces
({1}).

/*
* Printer cables
*/
struct bin {
char name[30]; // Name of the part
i nt gquantity; /1 How many are in the bin
i nt cost; /1 The cost of a single part (in cents)
b
struct bin printer_cable_box = {
"Printer Cables", [/ Name of the itemin the bin
0, /] Start with enpty box
1295 /1 Cost -- $12.95
b

The definition of the structure bin and the variable pri nt er _cabl e_box can be combined
in one step:

struct bin {

char name[30] ; /1 Name of the part

i nt quantity; /1 How many are in the bin

i nt cost; /1 The cost of a single part (in cents)
} printer_cable _box = {

"Printer Cables", [/ Name of the itemin the bin

0, /] Start with enpty box

1295 /1 Cost -- $12.95
b
Page 188
Unions

A structure is used to define a data type with several fields. Each field takes up a separate
storage location. For example, the structure
struct rectangle {
int wdth;
i nt height;
}

appearsin memory as shown in Figure 12-1.

A union issimilar to astructure; however, it defines asingle location that can be given many
different field names.

uni on val ue {

long int i_value; /1 Long integer version of value

float f_val ue; /1 Floating version of val ue
}
Structure layouwt i —
width l
height |
rectangle
| Union layout 1
| i_wvalue/f_value L___.-a
Ii value

Figure 12-1 Structure and union layout

Thefieldsi _val ue andf _val ue sharethe same space. Y ou might think of a structure as a
large box divided up into several different compartments, each with its own name. A unionisa
box, not divided at all, with several different labels placed on the single compartment inside.

In astructure, the fields do not interact. Changing one field does not change any others. Ina
union, al fields occupy the same space, so only one may be active at atime. In other words, if
you put somethingini _val ue, assgning somethingtof val ue wipes out the old value of
i _val ue.

Page 189
The following shows how a union may be used:
/*
* Define a variable to hold an integer or
* a real nunber (but not both)
*/
uni on val ue {
long int i_value; /1 The real nunber
float f_val ue; /1 The floating point nunber
} data;
int i; /1 Random i nt eger
float f; /1 Random fl oati ng point nunber
mai n()
{
data.f _value = 5.0;
data.i _value = 3; /1 Data.f _value overwitten
i = data.i_val ue; /1 Legal
f = data.f_val ue; /1 Not legal; will generate unexpected results

data.f_value = 5.5; // Put sonething in f_val ue/cl obber i_val ue
i = data.i_val ue; /1 Not legal; will generate unexpected results

Suppose you want to store the information about a shape. The shape can be any standard shape
such as acircle, rectangle, or triangle. The information needed to draw acircle is different
from the data needed to draw arectangle, so you need to define different structures for each
shape:

struct circle {

i nt radi us; /1 Radius of the circle in pixels
1
struct rectangle {

int height, width; // Size of the rectangle in pixels

|

struct triangle {
i nt base; /1 Length of the triangle's base in pixels
i nt height; /1 Height of the triangle in pixels

|

Now you define a structure to hold the generic shape. Thefirst field is a code that tells you
what type of shape you have. The second is a union that holds the shape information:

const int SHAPE Cl RCLE = 0; [/l Shape is a circle
const int SHAPE RECTANGLE = 1; /1 Shape is a rectangle
const int SHAPE TRIANGLE = 2; // Shape is a triangle
struct shape {
int kind, /1 What kind of shape is stored
uni on shape_uni on { /1 Union to hold shape infornation
struct circle circle_data; /! Data for a circle
Page 190
struct rectangl e rectangl e_dat a; /1 Data for a
rectangl e
struct triangle triangle_data,; /1 Data for a triangle
} data;
1

Graphically you can represent shape as alarge box. Inside the box isthe singleinteger ki nd
and our union shape_uni on. The union isabox with three labels on it. The question is
which oneisthe "read" label. Y ou can't tell from looking at the union, but that's why you
defined ki nd It tells us which label to read. The layout of the shape structure isillustrated by
Figure 12-2.

(struct shape)

Kind

(union shaps union)

circle_data / rectangle_data / triangle_data

B

Figure 12-2 "shape" layout

Now you can store acircle in the generic shape:

struct shape a_shape;

/...

a_shape. ki nd = SHAPE Cl RCLE;

a_shape.data.circle_data.radius = 5.0; // Define the radius of the
circle

typedef

C++ dlows you to define your own variable types through thet ypedef statement. This
provides away for you to extend C++'s basic types. The general form of thet ypedef
statement is:.

typedef type-declaration

Thetype-declaration is the same as a variable declaration except atype name is used instead
of avariable name. For example:

typedef int width; // Define a type that is the width of an object
defines anew type, wi dt h, that is the same as an integer. So the declaration:

wi dt h box_wi dt h;

Page 191
isthe same as:
int box_wi dth;
At first glance, thisis not much different from:
#define width int
wi dt h box_wi dt h;

However, t ypedef s can be used to define more complex objects which are beyond the
scope of asimple #def i ne statement, such as.

typedef int group[10];
Group isnow a new type denoting an array of 10 integers. For example:
mai n()

{
typedef int group[10]; /1 Create a new type "group"

group totals; /1 Use the new type for a variable
// Initialize each el ement of total

for (i =0; i < 10; ++i)
totals[i] = O;

enum Type

The enumerated (enun) data type is designed for variables that can contain only alimited set
of values. These values are referenced by name (tag). The compiler assigns each tag an integer

valueinternally, such as the days of the week. You could usethe directive const to create
values for the days of the week (day_of _t he_week) asfollows:

typedef int day_of the week; /1 Define the type for days of the week

const int SUNDAY = 0;
const int MONDAY =1;
const int TUESDAY = 2;
const int WEDNESDAY = 3;
const int THURSDAY = 4;
const int FRI DAY = b;
const int SATURDAY = 6;

/* Nowto use it */
day _of the week today = TUESDAY;

Page 192
This method is cumbersome. A better method is to use the enun type:

enum day_of _the_week {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
FRI DAY, SATURDAY};

/* Now use it */
enum day_of the_week today = TUESDAY;

The genera form of an enun statement is:
enum enum nane {tag-1, tag-2, . . .} variable-nane

Aswith structures, the enum-name or the variable-name may be omitted. The tags may be any
valid C++ identifier; however, tags are usually all uppercase.

An additional advantage of using an enun type isthat C++ will restrict the values that can be
used to the oneslisted in the enun declaration. The following will result in acompiler error:

today = 5; // 5 is not a day_of the week

One disadvantage of using enurr isthat enun variables cannot be used to index an array. The
following will result in an error:

enum day of the week today = TUESDAY;

/1 Define string versions of our days of the week
char day names[7][] = {

" Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thur sday",

"Friday",

" Sat ur day"

/*
* The following |ine generates a warning

* because today is not an integer
*/
cout << "Today is " << day_nanes[today] << '\n';

To get around this problem, you need to tell C++ to treat t oday asan integer. Thisis
accomplished through the cast or typecast operation. Theexpressioni nt (t oday) tells
C++, "l knowt oday isnot aninteger, but treat it like one.” To fix the above problem, use the
statement:

cout << "Today is " << day_nanes[int(today)] << '\n';

Page 193

Casts are also useful in expressions to make sure the variables have the correct type. In
general, you can change the type of almost any expression with the expression:

type (expression)

Thisis particularly useful when working with integers and floating point numbers.

int won, |ost; /1 # games won/| ost so far
fl oat ratio; [/ Wn/loss ratio

won = 5;

| ost = 3;

ratio = won / lost; // Ratio will get 1.0 (a wong val ue)

/* The following will conpute the correct ratio */
ratio = float(won) / float(lost);

C++ also supports the older C-style casting. The syntax for C-style casting is:
(type) val ue

For example:
(float)i [l Turn "i" into a floating point nunber

C-style casts are frowned upon because they can easily be ambiguous. For example, in the
expression:

(float)3 + 5

doesthe (f | oat) apply to 3 or 3+ 5?It's not clear. To make this expression clearer you need
to add parentheses:

((float)3) + 5
Asyou can see, thisform is more complex than C++ casts. Simpler is better, so use C++
casting.”

Bit Fields or Packed Structures

So far al the structures you've been using have been unpacked. Packed structures alow you
to declare structures in away that takes up a minimum of storage. For example, the following
structure takes up 6 bytes (on a 16-bit machine):

struct item{
unsigned int |ist; [l True if itemis in the |list

* Note The current C++ Draft Standard describes a number of new casting operations These are
discussed in Chapter 28, C++'s Dustier Corners

Page 194

unsi gned int seen; [/ True if this itemhas been seen
unsi gned i nt nunber; /1 1tem nunber

}s

The storage layout for this structure can be seen in Figure 12-3. Each structure uses 6 bytes of
storage (2 bytes for each integer).

o1 & 3 4 5 & T B 8 MW oM 12 13 14 15

list

e e
= =

1523
i
S ESe n ht:
& :F;:’:tl}i‘.!:
- s
*

Figure 12-3. Unpacked structure

However, thefields| i st and seen can have only two values, 0 and 1, so only 1 bit is
needed to represent them. Y ou never plan on having more than 16383 items (Ox3fff or 14 bits).
Y ou can redefine this structure using bit fields, so, it takes only 2 bytes, by following each field
with a colon and the number of bitsto be used for that field.

struct item{
unsigned int list:l; [/ True if itemis in the |ist
unsi gned int seen:|; [/ True if this itemhas been seen
unsi gned int nunber:14; // |tem nunber

}s

In this example, you tell the compiler touse 1 bit for | i st, 1 bit for seen and 14 bitsfor
nunber . Using this method you can pack datainto only 2 bytes as seen in Figure 12-4.

[
] 01 2 3 4 5 B T B 8 OMWOM IE 13 W5

Figure 12-4. Packed structure

Packed structures should be used with care. The machine code to extract datafrom bit fieldsis
relatively large and slow. Unless storage is a problem, packed structures should not be used.

In Chapter 11, Bit Operations, you needed to store character data and five status flags for
8,000 characters. In this case, using a different byte for each flag would eat up alot of storage
(five bytes for each incoming character). You used

Page 195

bitwise operations to pack the five flags into a single byte. Alternatively, a packed structure
could have accomplished the same thing:

struct char_and _status {

char character; [/ Character from device

int error:1; /1 True if any error is set

int framng_error:l;// A framng error occurred

int parity_error:l; // Character had the wong parity
int carrier_lost:l; // The carrier signal went down

int channel _down:1; // Power was |ost on the channe

}s

Using packed structures for flagsis clearer and less error-prone than using bitwise operators.
However, bitwise operators alow additional flexibility. Y ou should use the one that is
clearest and easiest for you to use.

Arraysof Structures

Structures and arrays can be combined. Suppose you want to record the time a runner
completes each lap of afour-lap race. Y ou define a structure to store the time:

struct tine {
i nt hour; /1 Hour (24-hour clock)
int mnute; // 0-59
int second; // 0-59

b

#define MAX LAPS 4 /* W will have only 4 |aps*/

/* The time of day for each |ap*/
struct tinme | ap[MAX_LAPS];

The statement:
struct tinme | ap[MAX_LAPS];
defines| ap asan array of four elements. Each element consistsof asinglet i me structure.

Y ou can use this as follows:

/*
* Runner just past the timng point
*/
| ap[count]. hour = hour;
lap[count].mnute = mnute;
| ap[count].second = second;

++count ;

Thisarray can also beinitialized at run time.

Page 196
Initialization of an array of structuresis similar to the initialization of multidimensional arrays.

struct time start_stop[2] = {

{10, 0, 0},
{12, 0, 0}
}s

Suppose you want to write a program to handle amailing list. Mailing labelsare 5 lines high
and 60 characters wide. Y ou need a structure to store names and addresses. The mailing list
will be sorted by name for most printouts, and sorted in zip-code order for actual mailings. The
mailing list structure looks like:

struct mailing {
char nane[60]; /1 Last nane, first name
char addressl[60]; // Two lines of street address
char address2[60];

char city[40]; /1 Nane of the city
char state[2]; /1 Two- character abbreviation
long int zip; /1 Nurmeric zip code

b
Y ou can now declare an array to hold the mailing list:

/[* Qur mailing list */
struct mailing |ist[MAX_ENTRI ES]

Programming Exer cises
Exercise 12-1: Design adata structure to handle the data for amailing list.

Exercise 12-2: Design astructure to store time and date. Write afunction to find the difference
between two times in minutes.

Exercise 12-3: Design an airline reservation data structure that contains the following data:

Flight number

Originating airport code (3 characters)
Destination airport code (3 characters)
Departure time

Arrival time

Write aprogram that lists al the planes that |eave from two airports specified by the user.

Page 197

13
Simple Classes

In This Chapter:

Stacks

I mproved Stack
Using a Class

I ntroduction to
Constructors and
Destructors
Automatically
Generated Member
Functions
Shortcuts

Style
Programming
Exercises

She thinks that even up in heaven Her class lieslate and snores
—Cyril Connolly

So far you've used simple variables and structures to hold data and functions to process the
data. C++ classes dlow you to combine data and the functions that useit.

In this chapter you'll see how a class can improve your code by implementing a simple stack
two ways. first, using a structure and functions, and then using a class.

Stacks

A stack is an agorithm for storing data. Data can be put in the stack using a push operation.
The pop operation removes the data. Datais stored in last-in-first-out (L1FO) order.

Y ou can think of astack as a stack of papers. When you perform a push operation, you put a
new paper on top of the stack. Y ou can push as many times as you want. Each time the new data
goes on top of the stack. Y ou get data out of a stack using the pop operation, which takes the top
paper off the stack and givesit to the caler.

Suppose you start with an empty stack and put three elementson it, 4, 5, and 8, using three push
operations. The first pop would return the top e ement: 8. The elements 4 and 5 remain in the
stack. Popping again will give us 5. You then

Page 198

push another value, 9, on the stack. Popping twice will give us the numbers 9 and 4, in that
order. Thisisillustrated by Table 13-1.

Table 13-1. Stack Operation

Operation Stack After Operation

Push (4) 4

Push (5) 54

Push (8) 854
Pop (returns 8) 54

Pop (returns 5) 4

Push (9) 94

Pop (returns 9) 4

Pop (returns 4) <empty>

Designing a Stack

Y ou start a stack design by designing the data structure. This structure will need a place to put
the data (called dat a) and a count of the number of items currently pushed on the stack (called
count):

const int STACK SIZE = 100; /1 Maxi mum si ze of a stack

/!l The stack itself

struct stack {
i nt count; /1l Nunber of itenms in the stack
i nt data[STACK Sl ZE] ; /1 The itens thensel ves

}

Next you need to create the routines to handle the push and pop operations. The push function
stores the item on the stack and then increases the data count.

inline void stack_push(struct stack & he_stack, const int itemn

{

t he_stack. data[the_stack.count] = item
++t he_st ack. count;

}

Note: Thisversion of the program does not check for stack overflow or other error conditions.
Later, in Chapter 14, More on Classes, you'll see how you can use this smple stack to make a
safer, more complex one.

Popping ssimply removes the top item and decreases the number of itemsin the stack.

inline int stackpop(struct stack &t he_ stack)

{
/1 Stack goes down by one
--the_stack. count;
Page 199
/] Then we return the top val ue
return (the_stack.data[the_stack.count]);
}

There is one item you've overlooked: initializing the stack. Y ou see you must set up the stack
before you can use it. Keeping with the spirit of putting everythinginast ack_xxxx routine

getthest ack i ni t function.

inline void stack_init(struct stack &t he_stack)

{
}

Notice that you don't need to zero the dat a field in the stack, since the elements of dat a are
overwritten by the push operation.

t he_stack.count = 0; /1l Zero the stack

Y ou are now finished. To actually use the stack you declareit withast r uct statement. Next
you must make sure that you initiaize it, and then you can push and pop to your heart's content
(or at least within the limits of the stack).

struct stack a_stack; /1 Declare the stack

stack_init(a_stack); /1 Initialize the stack
/1 Stack is ready for use

Example 13-1 contains a complete implementation of the structure version of the stack and a
short test routine.

Example 13-1. stack s/stack s.cc

/**

* Stack *
* A set of routines to inplement a sinple integer *
* st ack. *
* *
* Procedures *
* stack init -- initialize the stack *
* stack_push -- put an itemon the stack *
* stack_pop -- renove an itemfromthe stack *
**I

#i ncl ude <stdlib. h>

#i ncl ude <i ostream h>

const int STACK SIZE = 100; /1 Maxi mum si ze of a stack

/1 The stack itself

struct stack {

i nt count; /1 Nunber of itens in the stack

i nt data[STACK Sl ZE] ; /1 The itens thensel ves
b

/***

* stack init -- initialize the stack *

Page 200

Example 13-1 stack _g/stack s cc (Continued)

* *
* Paraneters *
* the stack -- stack to initialize *

***/

inline void stack init(struct stack &t he_stack)

{
}

/***

* stack _push -- push an itemon the stack

*

t he_stack. count = 0; /1 Zero the stack

Warni ng: W do not check for overflow

the_stack -- stack to use for storing the item
item -- itemto put in the stack
kkkkkhkhkhkhkhkkkhkhhhkhkhkhkhkhhhhkhkhkhkhkhkhhhhhkhkhkhkkkkhk k khkhkkkkkk k k *,**x*%
inline void stack _push(struct stack &t he_stack
const int item
{

*

*
* *
* *
* Paraneters *
* *
* *
*

/

t he_stack. data[the_stack.count] = item
++t he_st ack. count;

}
/

khkhkkhkhkhkhkhhhkhhhkhhhkhhhhhhkhhhhhhhhhhhhhhdhdhkhdhkrdhkhdk r*k **x%

stack_pop -- get an itemoff the stack
Warni ng: W do not check for stack underfl ow

Par anet er s
the stack -- stack to get the itemfrom

Ret ur ns
the top itemfromthe stack

hkhkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhkhdhkrdhkrddrkk **x%

inline int stackpop(struct stack &t he_ stack)

{

*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*

/

/1 Stack goes down by one
--the_st ack. count;

/] Then we return the top val ue
return (the_stack. data[the_stack.count]);

}
/!l A short routine to test the stack

mai n()

{
struct stack a_stack; /1 Stack we want to use
stack_i ni t (astack);
/1 Push three values on the stack
stack_push(a_stack, 1);

Page 201

Example 13-1. stack s/stack s.cc (Continued)

stack_push(a_stack, 2);
stack_push(a_stack, 3);

/1 Pop the items fromthe stack

cout << "Expect a 3 ->" << stackpop(a_stack) << '\n';
cout << "Expect a 2 ->" << stack pop(a_stack) << '\n';
cout << "Expect a 1 ->" << stack pop(a-stack) << '\n';

return (0);

}
Improved Stack

The structure version of the stack works but has afew drawbacks. The first is that the data and
the functions are defined separately, forcing you to passast r uct st ack variable into each
procedure.

Thereis also the problem of data protection. Thefieldsdat a and count are accessibleto
anyone. The design states that only the stack functions should have access to these fields, but
there is nothing to prevent rogue code from modifying them.

A C++struct isamixed collection of data. The C++ cl ass not only holds data like a
structure, but also adds a set of functions for manipulating the data and access protection.

Turningthest ruct stack intoacl ass you get:

class stack {

private:
int count; /1 Nunber of itens in the stack
i nt data[STACK Sl ZE] ; /1 The itens thensel ves

publi c:

// Initialize the stack
void init(void);

/! Push an itemon the stack
voi d push(const int item;

/1l Pop an itemfromthe stack
i nt pop(void);
b

Let'sgointothiscl ass declaration in more detail. The beginning looks much like a structure
definition except that you're using theword cl ass instead of st ruct .

cl ass stack {

private:
Page 202
int count; /1 Nunber of itens in the stack
i nt data[STACK Sl ZE] ; /1 The itens thensel ves

Thisdeclarestwo fields: count and dat a. In aclasstheseitems are not called fields; they
are called member variables. The keyword pr i vat e indicates the access privileges
associated with these two member variables.

There are three levels of access privileges. public, private, and protected.
Class members, both data and functions, marked pr i vat e cannot be used outside the class.
They can be accessed only by functions within the class. The oppositeof pri vat e is

publ i ¢, which indicates members that anyone can access.

Finally, pr ot ect ed issimilarto pri vat e except that it allows access by derived
classes. (We discuss derived classes in Chapter 21, Advanced Classes.)

Y ou've finished defining the data for this class. Now you need to define the functions that
manipulate the data.

publi c:
/1 Initialize the stack
void init(void);

/! Push an itemon the stack
voi d push(const int itemn;

/1 Pop an itemfromthe stack
i nt pop(void);
b

This section starts with the keyword publ i c. Thistells C++ that you want all these member
functions to be available to the outside. In this case, you just define the function prototypes. The
code for the function will be defined later.

Next comes the body of thei ni t function. Since this function belongsto the st ack class, you
prefix the name of the procedure with st ack: : . (We discuss the scope operator : : in more
detail in Chapter 14, More on Classes.)

The definition of thei ni t function looks like:

inline void stack::init(void)

{
}

This procedure zeroes the stack'scount . In the structure version of thest ack__ i ni t
function you must pass the stack in as a parameter. Since this function is part of the stack class,
that's unnecessary. This aso means that you can access the member variables directly. In other
words, instead of havingtosay t he_ st ack. count,youjustsay count.

count = 0; // Zero the stack

Page 203
The functionspush and pop areimplemented in a similar manner.

inline void stack::push(const int item

{
data[count] = item
++count ;

}
inline int stack::pop(void)

/1 Stack goes down by one
--count;

/1 Then we return the top val ue
return (data[count]);

}

The stack classis now complete. All you haveto do isuseit.

Using a Class

Using aclassis much like using a structure. Declaring a class variable is the same, except you
usetheword cl ass instead of st r uct .

class stack a_stack; /1 Stack we want to use
Theword cl ass isnot needed and is frequently omitted.
stack a_stack; /1 Stack we want to use
Y ou access the fields of a structure using adot, for example:
structure.field = 5;

Accessing the members of aclassis similar, except that the members of a class can be both
data and functions. Also, you can access only the members that are public.

Tocall thei ni t member function of the stack classall you needtodois:
a stack.init();
The push and pop member functions can be accessed in asimilar manner:

a_stack. push(l);
result = astack. pop();

Example 13-2 contains a class version of the stack.

Example 13-2. stack c/stack c.cc

/**

* Stack *
* Afile inplenenting a sinple stack cl ass *

**I

Page 204
Example 13-2. stack _c/stack c.cc (Continued)

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

const int STACK Sl ZE = 100; /1 Maxi mum si ze of a stack

/**

* Stack class

*
*
Menber functions *
init -- initialize the stack *

push -- put an itemon the stack *

pop -- renove an itemfromthe stack *

*

*
*
*
*
*
hkhkkhkkhkhkhhhkhhhkhhhhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhkhdhkhdkhkrdk rkk**x

/

/1 The stack itself
cl ass stack {

private:
int count; /1 Nunber of itens in the stack
i nt data[STACK Sl ZE] ; /1l The itens thensel ves

publ i c:

/!l Initialize the stack
void init(void);

/!l Push an itemon the stack
voi d push(const int item;

/1 Pop an itemfromthe stack
int pop(void);
1

/**

* stack::init -- initialize the stack *

*kk k%) **/
inline void stack::init(void)

{
}

/**

* stack::push -- push an itemon the stack

count = 0; // Zero the stack

Warni ng: W do not check for overflow

Par anet er s
item-- itemto put in the stack
kkkkhkkhkhkhkhkkhkkhkhkhhkhkhkhkhkkhhhhkhkhkhkhkhhhkhkhkhkhkhkkkkkhkhk khkhkkkkkk k *,k,**x*%

inline void stack:: push(const int item

{

* Ok ¥ X

*
*
*
*
*
*
*/

data[count] = item
++count ;

}

/**

* stack::pop -- get an itemoff the stack *

* *

Example 13-2. stack c/stack c.cc (Continued)

* Warning: We do not check for stack underfl ow

*

*

* the top itemfromthe stack

R S S I S S b b S I I I I S b S I I I b b b S S O S S O O b b S I

inline int stack::pop(void)

{

Ret ur ns *
*/

/1 Stack goes down by one

--count;

/1 Then we return the top val ue
return (data[count]);

Page 205

/!l A short routine to test the stack
mai n()
{

stack a_stack; /1 Stack we want to use
a stack.init();

/1 Push three values on the stack
a_stack. push(l);
a_stack. push(2);
a_stack. push(3);

/1 Pop the itens fromthe stack

cout << "Expect a 3 ->" << a_stack.pop() << '\n';
cout << "Expect a 2 ->" << a_stack.pop() << '\n';
cout << "Expect a 1 ->" << a_stack.pop() << '\n';

return (0);

}

Introduction to Constructors and Destructors

This stack class has one minor inconvenience. The programmer must call thei ni t member
function before using the stack. However, programmers are terribly forgetful and sooner or
later someone is going to forget to initialize the stack. Wouldn't it be nice if C++ had an
automatic way of initializing the stack?

It does. Actualy C++ will automatically call anumber of member functions. The first you are
concerned about is called when the class is created. Thisis called the constructor function and
has the same name as the class. For example, the constructor for thest ack classis named

st ack (asoknownasst ack: : st ack outsidethe class body).

A variableis created when it is declared. (It can also be created by the new operator as you
will discuss later in Chapter 20, Advanced Pointers.)

Page 206

Y ou want to have this stack initialized automatically, so you remove thei ni t function and
replace it with the constructor, st ack: : st ack.

cl ass stack {
1.,
publ i c:
/1 Initialize the stack
stack(voi d);

/1
}
i nline stack::stack(void)
{
count = 0; // Zero the stack
}

Y ou may have noticed that the return typevoi d has been omitted in the constructor

declaration. Constructors can never return avalue so thevoi d is not needed. In fact the
compiler will complain if it's present.

Since the constructor is called automatically, the program is now simpler. Instead of writing:

mai n()

{

stack a_stack; /1 Stack we want to use
a stack.init();
you can just write:

main ()

{

stack a_stack; /1 Stack we want to use
/1 Use the stack

Also, since you no longer have to count on the programmer putting in thei ni t cal, the
program is more reliable.

Destructors

The constructor is automatically called when the variable is created. The destructor is
automatically called when the variable is destroyed. This occurs when the variable goes out of
scope or when a pointer variable is deleted. (The del et e isdefined in Chapter 20, Advanced
Pointers.)

The special name for a destructor is the class name with atilde (~) in front of it. So, for the
st ack class the destructor would be named ~st ack.

Page 207

Suppose you make the rule that the stack should be empty when the programmer is finished with
it. In other words, for every push you do, apop must be done. If this doesn't happen, it's an
error and you should warn the user.

All you have to do is create a destructor for the stack that checks for an empty stack and issues
awarning if the stack is not empty. The destructor |ooks like:

st ack: : - stack(voi d)
if (count !'= 0)
cerr << "Error: Destroying a nonenpty stack\n";

}
Parameterized Constructors

The constructor for acl ass can take parameters. Suppose you want to define a class that
holds a person's name and phone number. The data membersfor thiscl ass would look like:

cl ass person {
publi c:
char nane[80]; /1 Name of the person
char phone[80] ; /1 Person's phone nunber

Y ou want the constructor for thiscl ass to automaticaly initialize both the name and the
phone number.

publ i c:
person(const char i_nane[], const char i_phone[]);
/1 ... rest of class

}s

person: : person(const char i_nane[], const char i_phone[])

{
strcpy(nane, i_nane);
strcpy(phone, i _phone);

}

Now you are ready to usethe cl ass. When you declare variables of thiscl ass, you must
put two parameters in the declaration. For example:

main ()

{
person san("Sam Jones", "555-1234");

Like other functions, constructors can be overloaded. Using the per son example, you can teke
care of the case where you have a person with no phone by creating a constructor that takes a
name as its only parameter:

cl ass person {

/1 ... rest of the class
publ i c:
person(const char i_nang[]);
1
Page 208

person: : person(const char i_nange[])
{

strcpy(nane, i_nane);

strcpy(phone, 'No Phone");
}

In this case, you have two constructors, one that takes one parameter and one that takes two
parameters. Y ou haven't defined a constructor that takes zero parameters, so you can't declare a
variable of type per son without specifying at least one parameter. In other words:

per son unnaned_sour ce; /1 1llega
will generate an error message.
Parameterized Destructors

There is no such thing as a parameterized destructor. Destructors take no parameters and
supply no return value. All they do is destroy the variable.

Copy Constructor

The copy constructor isaspecia constructor that is used to make an exact copy of aclass. For

example, acopy constructor for thest ack classwould look like:

stack: : stack(const stack &ol d_stack)

{

int i; /1 Index used to copy the data

for (i =0; i < old_stack.count; ++i)
data[i] = old_stack.data[i];
}

count = ol d_stack. count;

}
Let's examine this function in more detail. The declaration:

stack: : stack(const stack &ol d_stack)

identifies this as a copy constructor. The single parameter (const st ack &ol d_st ack)
identifies this particular constructor as the copy constructor. This function is expected to turn
the current classinto an exact copy of the parameter.

The code:

for (i =0; i < old_stack.count; ++i) {
data[i] = old_stack.data[i];
}

count = ol d_stack. count;

takes al the data from the old stack and puts it into the new stack.

Page 209
The copy operator can be invoked explicitly asillustrated in the following example:

stack a_stack; /1 A sinple stack

a_stack. push(l); /1 Put a couple of elenents on the stack
a_stack. push(2);

stack b _stack(a_stack); // Create a copy of the stack

On the face of it, the copy constructor doesn't seem that important. But if you remember, back in
Chapter 9, Variable Scope and Functions, you discussed the various ways C++ can pass
parameters to a function. One of these was call by value. That's where a copy of the parameter
is made and passed to the function.

When a stack or any other classis passed as a call-by-value parameter, a copy is made of that
class using the copy constructor.

In the following code, we've added some commentary to show you the functions that C++ will
automatically call behind your back.

vold use_stack (stack local stack)
{
local_stack.pushif9};
local_stack.push(10);

. Do something with 1ﬂcalrft9§3._; l;;;l_stack::—stack[lcﬂkd
bom R L
main{)
{
stack a_wstack; £/ Generate a default stack
-"--_ — = -— —— —
a_stack.push(l}: ___"‘-—-{ a_stack.stack called

a_stack.push(2);

__| local_stack.stack(a_stack) called
(This is part of the parameter-passing mechanism}

use_stack(a_stack) =

/f Prints "2°
cout << a_stack.popl()l =< "\mn*;

Asyou can see, C++ does alot of work behind the scenes. It startswhen a_st ack is
declared. C++ calls the default constructor to createa_st ack.

The variable a stack is used, and then passed to the function use_st ack. Sincea_st ack is
passed by value, a copy must be made of the stack using the copy constructor
| ocal _stack. stack(a_stack).

The function then adds afew itemsto| ocal _st ack. Note: Thisisacopy of a_st ack, so
anythingyoudotol ocal _st ack doesnot affect a_st ack. At the

Page 210

end of thefunction | ocal _st ack containsfour items, 1, 2,9, 10, and a_st ack contains
two items, 1, 2.

Finally after the function call, you print out the top element of a_st ack, whichis"2".

Automatically Generated Member Functions

Every class has a constructor and a destructor. If the programmer does not write these member
functions, C++ will automatically generate them. Also, there are several member functions such
as the copy constructor that can be called automatically.

Automatically Generated and Used Functions

class:: class()
Default constructor.

Automatically generated if no other constructors are defined. The generated code fills the
data members of the class with random values.

Automatically called when avariable of this classis declared with no parameters, such
as.

cl ass_type var;

cl ass::class(const class &ol d_cl ass)

Copy constructor.

Automatically generated unless the programmer explicitly defines a copy constructor. The
function C++ generates copies all the data members from the old class to the new one.

Automatically called when passing a call-by-value parameter to a function. This member
function may also be called when creating a duplicate of avariable:

call type first_var;

/[l Call copy constructor to

/1 make duplicate of first_var
class_type second _var(first_var);

class: :-class()
Destructor.

Automatically generated unless the programmer defines one.

Page 211

Automatically called when avariable is destroyed. This occurs when a variable goes out
of scope. (Itisalso called by thedel et e operator discussed in Chapter 20, Advanced
Pointers.)

class class::operator = (const class &old_cl ass)

Assignment operator. (Operator overloading is discussed in Chapter 18, Operator
Overloading.)

Automatically generated to handle assignment of one class to another. The function C++
generates copies al the data members from the old class to the new one.

cl ass_type varl;
cl ass_type var2;
varl = var2; /1l "operator =" called

Shortcuts

So far you have used only function prototypes in the classes you've created. It is possible to
define the body of the function inside the classitself. Thus:

cl ass stack {
publ i c:
/1l rest of class

/! Push an itemon the stack
voi d push(const int item;
}
inline void stack:: push(const int item
{
data[count] = item
++count ;

}

can be witten as:

cl ass stack {
publ i c:
/1l rest of class

/1 Push an itemon the stack

voi d push(const int item
data[count] = item
++count ;

}s

Thei ni ne directiveis not required in the second case since all functions declared inside a
class are automatically declared inline.

Page 212

Style

Programming style for classes looks pretty much like the style for structures and functions.
Every member variable should be followed by a comment explaining it and every member
function should be commented like a function.

However, you comment the prototypes for member functions differently from normal function
prototypes. For normal functions you put afull function comment block in front for the
prototype. If you did this for the member functions of a class, the comments would obscure the
structure of the class. Thisisone of the few cases when too many comments can cause trouble.
S0 you put aone-line comment in front of each member function prototype and full commentsin
front of the function itsalf.

But what about inline-member functions, where the entire body of the function is declared
insde the class? How do you comment that? If you put in full comments, you obscure the
structure of the class. If you put in one-liners, you omit alot of useful information. Proper
commenting is a balancing act. Y ou need to put in what's useful and leave out what's not.

The solution isto keep the size of the inline-member function small. There are two reasons for
this, first al inline functions should be small and, secondly, large functions declared inside a
class make the class excessively complex. A good rule of thumb isthat if the function requires
more than about five lines of code, put a prototype in the class and put the body of the function
elsewhere.

The structure of very small member functions should be obvious and thus not require a
full-blown comment block. If the function is not obvious and requires extensive comments, you
can aways put in a prototype and comment the body of the function later in the program.

C++ does not require an access protection declaration (publ i ¢, private, or
pr ot ect ed) before the first member variable. The following is perfectly legal:

cl ass exanpl e {
int data;
...

}

But what is the access protection of dat a? Isit public, private, or protected?

If you put in an explicit declaration, then you don't have to worry about questions like this. (For
those of you who are curious, the access protection defaultsto pri vat e.)

Finally, C++ will automatically generate some member functions, such as the default
constructor, the copy constructor, and the assignment operator. Suppose you have a class that
does not specify a copy constructor, such as:

Page 213

/1 Conments describing the class
/1l Note: The style of this class |eaves sonmething to be desired
cl ass queue {

private:
i nt data[100]; /] Data stored in the queue
int first; /1 First elenent in the queue
int |ast; /1 Last elenment in the queue
publi c:
queue(); /1 Initialize the queue
void put(int itemy;// Put an itemin the queue
int get(void); /1l Get an itemfromthe queue

b
Did the programmer who created this class forget the copy constructor? Will the copy
constructor automatically generated by C++ work, or did the programmer design this class

knowing that the copy constructor would never be called? These important questions are not
answered by the class as written.

All classes have a default constructor, copy constructor, assignment operator, and destructor. If
you want to use the one C++ generates automatically, put acomment in the class indicating that
the default is being used.

/1 Comments describing the cl ass
cl ass queue {

private:

int data[100]; /! Data stored in the queue

int first; /1 First elenent in the queue

int |ast; /1 Last elenment in the queue
publ i c:

queue(); /1 Initialize the queue

/'l queue(const queue &ol d_queue)

/1 Use automatical |y generated copy constructor

/1l queue operator = (const queue &ol d_queue)

/1 Use autonatical |y generated assi gnment operator
/'l -queue()
/1 Use automatically generated destructor

void put(int item;// Put an itemin the queue
int get(void); /] Get an itemfromthe queue

}

Now it is obvious what member functions the programmer wanted to let C++ generate
automatically, and being obvious is very important in any programming project.

The copy constructor automatically generated by C++ israther ssimple and limited. It doesn't
work in all cases, asyou'll seelater when you start to construct more complex classes. But
what happens when the automatic copy constructor won't work as you desire and you don't
want to go to the trouble to create your own?

Page 214
After all, you may decide that a class will never be copied (or that if it is, it'san error).

One solution isto create adummy copy constructor that prints an error message and aborts the
program:

cl ass no_copy {
/1 Body of the class
publi c:

/1 Copy constructor

no_copy(const no_copy &ol dcl ass) ({
cerr <<
"Error: Copy constructor for 'no_copy' called.

Exi ting\n";

exit(8);

}

Thisworks, sort of. The problem isthat errors are detected at runtime instead of compile time.
Y ou want to catch errors as soon as possible, so this solution is at best a hack.

However, you can prevent the compiler from automatically calling the copy constructor. The
trick isto declare it private. That's your way of saying to the world, "Y es, there is a copy
constructor, but no one can ever useit."

class no_copy {
/1 Body of the cl ass
private:
/1 There is no copy constructor
no_copy(const no_copy &ol d_cl ass);

}

Now when the compiler attempts to use the copy constructor you will get an error message like
"Error: Attempt to access private member function.”

Note: Since the copy constructor is never called, you never have to define the body of this
function.

Programming Exer cises

Exercise 13-1: Write a parity class. This class allows the program to put any number of items
into it and returns TRUE if an even number of itemsis put in and FALSE if an odd number is
used.

Member functions:

void parity::put(void); /1 Count anot her el enent
int parity::test(void); /1l Return TRUE(1) if an even nunber of

puts have been done. Return FALSE(O
for an odd nunber.
Page 215

Exercise 13-2: Write a"checkbook™ class. You put alist of numbersinto this class and get a
total out.

Member functions:

voi d check::add_iten(int anount); /1 Add a new entry to the checkbook
int check::total (void); /1l Return the total of all itemns

Exercise 13-3: Write aclass to implement asimple queue. A queueisvery smilar to a stack
except the data is removed in first-in-first-out (FIFO) order.

Member functions:

voi d queue::put(int item; /1 Insert an itemin the queue
i nt queue::get(void); /1l CGet the next itemfromthe queue
Sample usage:

queue a_queue;

a_queue. put (1); /1 Queue contains:
a_queue. put (2); /1 Queue contains:
a_queue. put (3); /1 Queue contains:

PR e

2
23

cout << a_queue.get() << '\n'; /1 Prints 1, queue contains 2 3
cout << a_queue.get() << '\n'; /1 Prints 2, queue contains 3

Exercise 13-4: Define aclass that will hold the set of integers from 0 to 31. An element can be
set with the set member function and cleared with the cl ear member function. It isnot an
error to set an element that's already set or clear an element that's already clear. The function

t est isused to tell whether an element is set.

Member functions:

void small _set::set(int item; /1 Set an elenent in the set

void small _set::clear(int iten); /1l Cear an elenment in the set

int small _set::test(void); /1 See whether an elenent is set
Sample usage:

snal | _set a_set;

a_set.set(3); /1 Set contains [3]
a_set.set(5); /1 Set contains [3,5]
a_set.set(5); /1 Legal (set contains [3,5])
cout << a_set.test(3) << '\n'; /1l Prints "1"
cout << a_set.test(0) << '\n'; /1 Prints "0Q"
a_set.clear(5); /1 Set contains [3]

Exercise 13-5: | have a simple method of learning foreign vocabulary words. | write the

words down on alist of flash cards. | then go through the stack of flash

Page 216

cardsone at atime. If | get aword right, that card is discarded. If | get it wrong, the card goes
to the back of the stack.

Write a class to implement this system.

Member functions:

struct single_card {

char question[40]; /1 English version of the word

char answer[40]; /1 Other |anguage version of the word
b
/1 Constructor -- takes a list of cards to
/1 initialize the flash card stack

void flash_card::flash_card(single_card list[]);

/] Get the next card
const single_card & | ash_card::get_card(void);

/1 The student got the current card right
void flash_card::right(void);

/1 The student got the current card wong
voi d flash_card::wong(void);

//Returns 1 -- done / O -- nore to do
i nt done(void);

Page 217

14
More on Classes

In This Chapter:

Friends

Constant Functions
Constant Members
Static Member
Variables

Static Member
Functions

The Meaning of static
Programming
Exercises

This method is, to define as the number of a class the class of all classes
similar to the given class.

—Bertrand Russell

Principles of Mathematics, Part I,

Chapter 11, Section |11, 1903

Friends

In Chapter 13, Smple Classes, you defined a basic stack class. Suppose you want to write a
function to see whether two stacks are equal. At first glance thisis ssimple. The function looks
like Example 14-1.

Example 14-1 stack c/s equal.cc

/**

* stack_equal -- Test to see whether two stacks are
* equal

sl, s2 -- the two stacks

Ret ur ns
0 -- stacks are not equal
1 -- stacks are equal

R R I R S I S S R I S I R S R R I S I S I R I S

nt stack_equal (const stack &sl, const stack &s2)

* % X F kX

*
*
*
*
*
*
*
*
*

/

int index; // Index into the itens in the array

/1 Check nunber of itens first
if (sl.count !'= s2. count)
return (0);

Page 218
Example 14-1. stack c/s_equal cc (Continued)

for (index = 0; index < sl.count; ++index) {

if (sl.data[index] != s2.data[index])
return (0);
}
return (1);

}

Like many programs, this solution is simple, clear, and wrong. The problem is that the member
variablescount anddat a are private. That means you can't access them.

So what do you do? One solution is to make these variables public. That gives the function
st ack_equal accesstocount anddat a. The problem isthat it also gives everyone else
access, and you don't want that.

Fortunately C++ givesyou away to say, "Let st ack_equal andonly st ack equal have
access to the private data of the classst ack." Thisis accomplished through thef ri end
directive. Classes must declare their friends. No function from the outside may accessthe
private datafrom the class, unlessthe class allowsiit.

Example 14-2 stack c/f_stack.cc

/1l The stack itself
cl ass stack {

private:
int count; /1 Nunber of itens in the stack
i nt data[STACK Sl ZE] ; /1 The itens thensel ves

publ i c:

/!l Initialize the stack
void init(void);

/! Push an itemon the stack
voi d push(const int item;

/1 Pop an itemfromthe stack
int pop(void);

friend int stack equal (const stack &sl, const stack &s2);

NOTE

st ack_equal isnot amember function of the classst ack. Itis
anormal, smple function. The only differenceis that because the
functionisaf ri end it has accessto private data for any class that
calsit friend.

Page 219

Friend Classes
Friends are not restricted to just functions. One class can be afriend of another. For example:

class item {
private:
int data;

friend class setof itens;

}

class set_of itens {

/1
}

Inthiscasesincetheclassset of itens isafriendof it enithasaccesstoadl the
membersof i t err

Constant Functions

C++ lets you define two types of numbers. constant and nonconstant. For example:

int index; // Current index into the data array
const int DATA MAX(100); // Maxi mum nunber of itens in the array

These two items are treated differently. For example, you can change the value of i ndex but

you can't change DATA _NMAX.

Now let's consider a class to implement a set of numbers from 0 to 31. The definition of this
classis:

/1 Warning: The nenber functions in this class are inconplete

/1 See below for a better definition of this class
class int_set {
private:
/1 ... whatever
publ i c:
int_set(void); /1 Default constructor
int_set(const int_set &old set); // Copy constructor
voi d set(int value); /1 Set a value
void clear(int value); // Oear an el enent
int test(int value); /1 See whether an elenment is set
1
Aswith numbers, C++ will et you define two types of sets: constant and nonconstant.
int_set var_set; /1 A variable set (we can change this)
varset.set (1); /1 Set an elenent in the set

Page 220

/1 Define a constant version of the set (we cannot change this)
const int_set const_set(var_set);

Inthei nt _set classthere are member functionssuch asset andcl ear that change the
value of the set. Thereisaso afunction t est that changes nothing.

Obvioudy you don't want to allow set and cl ear to be used on a constant. However, itis
okay to usethet est member function.

But how does C++ know what can be used on a constant and what can't? The trick isto put the
keyword const at the end of the function header. Thistells C++ that this member function can
be used for a constant variable. So if you put const after the member functiont est , C++
will alow it to be used in a constant. The member functionsset and cl ear do not have this
keyword, so they can't be used in a constant.

class int_set {

private:
/1 ... whatever
publ i c:
int_set(void); /1 Default constructor
int_set(const int_set &old set); // Copy constructor
voi d set(int value); /1 Set a value
void clear(int value); // Cear an el enent
int test(int value) const; /] See whether an elenment is set
s
So in your code you can do the following:
int_set var_set; /1 A variable set (we can change this)

var _set.set(1); /1 Set an elenent in the set (legal)

/1 Define a constant version of the set (we cannot change this)
const int_set const_set(var_set);

/1 In the next statement we use the nmenber function "test" legally
cout << "Testing element 1. Value=" << const_set.test() << '\n';

const _set.set(5); /1 1llegal (set is not allowed on a const)

Constant Members

Classes may contain constant members. The problem isthat constants behave alittle
differently inside classes than outside. Outside, a constant variable declaration must be
initialized. For example:

const int data_size = 1024; // Nunmber of data items in the input stream

Page 221
Inside a class, constants are not initialized when they are declared. For example:

class data_|ist {
publi c:
const int data_size; /1 Nunber of itens in the |ist
/1 ... rest of the class

b
Constant member variables areinitialized by the constructor. It's not as simple as:

class data_|ist {
publi c:
const int data_size; /1 Nunber of itens in the |ist

data_list(void) {
data_size = 1024; /1 This code won't work
1
/1 ... rest of the class
1
Instead, because dat a_si ze isaconstant it must be initialized with a special syntax:

data_list(void) : data_size(1024) {
b

But what happensif you want just a simple constant inside your class? Unfortunately C++
doesn't dlow you to do:

class foo {
publi c:
const int foo_size = 100; // Il egal
Y ou are left with two choices:
1. Put the constant outside the code:

const int foo_size = 100; /1 Number of data items in the |ist

class foo {

Thismakesf 00_si ze availableto all the world.

2. Use asyntax trick to fool C++ into defining a constant:

class foo {
publi c:
enum {foo_size = 100}; // Nunmber of data items in the |ist

Thisdefinesf 00_si ze asaconstant whose valueis 100. It does this by actually declaring
f 00_si ze asadement of an enum type and giving it the explicit value 100. Because C++
treatsenuns asintegers, thisworks for defining integer constants.

Page 222

The drawbacks to the method are that it'stricky, it only works for integers, and it exploits some
holes in the C++ syntax that may go away as the language is better defined. Such code can
easlly cause difficulties for other programmers trying to maintain your code who aren't familiar
with the trick.

Static Member Variables

Suppose you want to keep a running count of the number of stacksin use a any given time. One
way to do thisisto create aglobal variable st ack _count that isincremented in the stack
constructor and decremented in the destructor.

int stack_count = 0; // Nunber of stacks currently in use

cl ass stack {

private:
i nt count; /1 Nunmber of itens in the stack
/1 ... menber variables
publ i c:
int data_count; // Number of itens in the stack
/1 ... menber variables
stack() {

/1 W just created a stack
++st ack_count;

count = 0;

}

-stack() {
/1 W& now have one | ess stack
--stack_count;

}

/1 ... other nenber functions

}

Notethat st ack_count isasingle global variable. No matter how many different stacks you
create, thereisone and only one st ack_count .

Although this system works, it has some drawbacks. The definition of the classst ack
contains everything about the stack, except the variable st ack _count . It would be nice to
put st ack _count intheclass, but if you define it as a member variable, you'll get anew
copy of st ack_count eachtimeyou declareast ack class variable.

C++ has aspecial modifier for member variables: st ati c. Thistells C++ that one and only
one variable isto be defined for the class.

cl ass stack {

private:
static int stack _count; // Nunber of stacks currently in use
int count; /1 Nunber of itens in the stack
/1 ... menber variabl es
publ i c:
Page 223
stack() {

/1l W just created a stack
++st ack_count;
count = O;

~stack() {
/! W now have one | ess stack
--stack_count;

}

[/ ... other nenber functions

}s

This new version looks amost the same as the global variable version. There is, however, one
thing missing: the initiaization of st ack_count . Thisis done with the statement:

int stack::stack count = 0; // No stacks have been defined

The difference between static and non-static member variablesisthat if you define three
stacks, you create three different dat a_count member variables, but there is one and only
onest ack_count . Member variables belong to the individua stack. Static variables belong
to the class.

So if you have:

stack a_stack;
stack b_stack;

Thena_st ack. stack_count isthesameas b_stack. stack _count. Thereisonly
onest ack_count fortheclassst ack. C++ alowsyou to accessthis using the syntax:

<cl ass>: : <vari abl e>
Thusyou can get to st ack _count with the statement:

cout << "The nunber of active stacks is " << stack::stack count <<
I\nl;

(Or at least you could if st ack_count was not private.)

Static Member Functions

The member variable st ack_count isdefined as private. This means that nothing outside
the class can access it. Y ou want to know how many stacks are defined, so you need afunction
to get thevalue of st ack_count . A first cut might be:

cl ass stack {
static int stack_count; // Nunber of stacks currently in use
/1 ... menber variables
publi c:
/1 Not quite right
int get_count(void) {

Page 224
return (stack_count);
}
/1 ... other menber functions
b
Thisworks, but you need ast ack type variable to access this function.
{
stack tenp_stack; /1 Stack for getting the count
cout << "CQurrent count " << tenp_stack.get_count() << '\n';
}

Because get _count doesn't use any nonstatic datafrom st ack, it can be made a static
member function.

cl ass stack {
static int stack_count; // Nunber of stacks currently in use

[/ ... menber vari abl es
publi c:
/] Right

static int get_count(void) {
return (stack _count);
}

[/ ... other nenber functions

}

Y ou can now access the static member function get _count much like you access the static
member variablest ack_count :

cout << "The nunber of active stacks is " << stack::get_count() <<
] \nl ;

Static member functions are very limited. They can't access nonstatic member variables or
functions in the class. They can access static member data, static member functions, and
functions and data outside the class.

The Meaning of static

The keyword st at i ¢ has many different meanings in C++. Table 14-1 isacomplete list of
the variousways st at i ¢ can be used.

Table 14-1 The Meanings of static

Usage ‘ Meaning

Variable outside the
body of any function

The scope of the variableislimited to thefilein whichitis
declared.

Variable declaration Thevariableis permanent. It isinitialized once and only one
inside afunction copy iscreated even if the function is called recursively.

Function declaration The scope of the function islimited to thefilein whichitis
declared.

Page 225
Table 14-1. The Meanings of static (Continued)
Usage M eaning
Member variable One copy of the variableis created per class (not one per
variable).
Member function Function can only access static members of the class.

Programming Exer cises

Exercise 14-1: Two classes share afile. Other areas of the program need to know when this
fileisbusy. Create afunction that returns 1 when the file is being used by either of these two
classes.

Exercise 14-2: You are asked to write a booking program for the veterinarian: Dr. Able Smith,
PHD (Pigs, Horses, Dogs). Define a class type for each animal. Each class should keep track
of the number of animals that have been defined using that class in a private static variable.
Define afunction that returns the total number of animals (all three types combined).

Exer cise 14-3: Write a class where each instance of the class can access a stack-not one stack
per instance, but one stack period. Any instance of the class can lock the stack for its own
exclusive use and unlock it later. Define member functions to perform the lock and unlock
functions.

As an added attraction, make the unlock function check to see that the current instance of the
class was the same instance that locked the stack in the first place.

Exercise 14-4: Y ou need to supply some I/O routines for handling linesin afile. The basic
definition of the line-number classis:

class |ine_nunber {
publi c:
void goto_line(int line);
int get_current_Iline(void);
long int get_char_pos(void);

}
The member functions are defined as;

void goto_line(int line);

Positions the input file at specified line.
int get _current_line(void);

Returns the current line number (asset by got o_I i ne).
long int get _char_pos(void);

Returns the character position of the current line. (Thisisthe tricky one.)

Page 226

Several | i ne_nunber classes may bein use at any time. The class maintains its owr
internal list so that it knowswhich | i ne_nunber classesareinuse. Whengoto_I| i neis
called, the function will scanthelistof | i ne_nunber classesto find the one nearest the
given line number and use it to start scanning for the given line number.

For example, suppose there are four activel i ne_nunber variables:

Variable Position
beginning Line0
chapter_start Line 87

current_heading | Line 112

current_location | Line52

Youwishtomovecurrent _| ocati ontoline90. Thegot o_I i ne function would
search the list for the line nearest the new location (inthiscase chapt er _st art) and useit
to jump to line 87. It then would read the file character by character until it saw three
end-of-line characters to position itself at line 90.

Page 227

15
Simple Pointers

In This Chapter:

Constant Pointers
Pointers and Printing
Pointersand Arrays
Splitting Strings
Pointersand
Structures
Command-Line
Arguments
Programming
Exercises
Answersto Chapter
Questions

The choice of a point of view istheinitial act of culture
—Ortegay Gasset

There are things and there are pointers to things (Figure 15-1).

o 01000
*) thing_ptr
< thing
(1000
Alhing A pointer

Figure 15-1. A thing and a pointer to athing

Things can come in any size; some may be big, some may be small. Pointers come in only one
size (relatively small).”

Throughout this book you use a box to represent athing. The box may be large or small, but
things are always a box. Pointers are represented by arrows.

Most novice programmers get pointers and their contents confused. To limit this problem, all
pointer variablesin this book end with the extension _pt r . Y ou probably want to follow this
convention in your own programs. Although not as common as it should be, this notation is
extremely useful.

* Thisisnot strictly truein Turbo-C++. Because of the strange architecture of the 8086, Turbo-C++
isforced to use both near pointers (16 bits) and far pointers (32 bits) See the Turbo- C++ manual for
details

Page 228

Figure 15-1 shows one thing: avariable named t hi ng. The name of the variable is written on
the box that representsit. This variable contains the value 6. The actua address of this
variableis 0x1000. C++ automatically assigns an address to each variable at compile time.
The actual addresses differ from machine to machine. Most of the time you don't have to worry

about variable addresses, as the compiler takes care of that detail. (After all, you've gotten
through 14 chapters of programming without knowing anything about addresses.)

The pointer (t hi ng_pt r) pointsto the variablet hi ng. Pointers are also called address
variables since they contain the addresses of other variables. In this case, the pointer contains
the address 0x1000. Sincethisisthe addressof t hi ng, yousay that t hi ng_pt r pointsto
t hi ng. (You could put another addressin t hi ng_pt r and force it to point to something
else)

You use "things' and "addresses’ in everyday life. For example, you might live in a house (a
thing). The street address might be 123 W. Main Street." An addressisasmall thing that can
be written down on a piece of paper. Putting a house on a piece of paper is something else
requiring alot of work and avery large crane.

Street addresses are approximately the same size: one line. Houses come in various sizes. So
while "1600 W. Pennsylvania Ave." might refer to abig house and "8347 Skid Row" might
refer to aone-room shack, both addresses are the same size.

Many different address variables can point to the same thing. Thisistrue for street addresses
aswell. Table 15-1 lists the location of important services in asmall town.

Table 15-1 Small-town Directory

Service (VariableName) | Address(AddressValue) | Building (Thing)
Fire department 1 Main Street City Hall

Police station 1 Main Street City Hall
Planning office 1 Main Street City Hall

Gas station 2 Main Street Ed's Gas Station

In this case you have one, large, multipurpose building that is used by severa services.
Although there are three address variables (Services), there is only one address (1 Main
Street) pointing to one building (City Hall.)

Asyou will seein this chapter, pointers can be used as a quick and simple way to access
arrays. In later chapters you will discover how pointers can be used to create new variables
and complex data structures such as linked lists and trees. As you go through the rest of the
book, you will be able to understand these data structures as well as create your own.

Page 229

A pointer is declared by putting an asterisk (*) in front of the variable name in the declaration
Satement:

int thing; /1 Define "thing" (see Figure 15-2A)
int *thing_ptr; /1 Define "pointer to a thing" (see Figure 15-2B)

Table 15-2 lists the operators used in conjunction with pointers.

Table 15-2. Pointer Operators

Oper ator M eaning
. De-reference (given a pointer, get the thing referenced)
& Address of (given athing, point toit)

The ampersand operator (&) changes athing into a pointer. The* changes a pointer into a
thing. These operators can easily cause confusion. Let'slook at some simple uses of these
operatorsin detail.

t hi ng
A thing. Thedeclaration i nt t hi ng does not contain an asterisk, sot hi ng isnot a
pointer. Example:

thing = 4;

&t hi ng
A pointertot hi ng.t hi ng isan object. The & (address of) operator gets the address of
an object (apointer), so & hi ng isapointer. Example:

thing_ptr = &hing;// Point to the thing
/1 (See Figure 15-2A)
*thing_ptr = 5; /1 Set "thing" to 5
/1 (See Figure 15-2B)
t hi ngptr

Thing pointer. The asterisk (*) in the declaration indicates thisis a pointer. Also, you
have put the extension _pt r onto the name.

*thi ngptr
A thing. Thevariablet hi ng_pt r isapointer. The* (de-reference operator) tells C++
to look at the data pointed to, not at the pointer itself. Note: This points to an integer, any
integer. It may or may not point to the specific variablet hi ng.

*thing ptr = 5; /1l Assign 5 to an integer
// W may or may not be pointing
to the specific integer "thing"

The following examples show misuse of pointer operators.

*t hi ng
Illegal. Asks C++ to get the object pointed to by the variablet hi ng. Sincet hi ng isnot
apointer, thisis an invalid operation.

Page 230

Q thing_ptr = &thing;

a‘ rlll__........ '-._.....- "
Togg 4 Assigns ehing's address
thing_ptr -.-'*. - 10 thing ptr.

" Bx1000

) other = *thing ptr;

biber 1 -lirﬂl.ig Q

Qw1004 Q1000

Assigns 10 other the
value al the address
thing_pkr Carres.

i

(1000 Assigns to a value 1o what
thing_pér thing ptr ponts 1o

Figure 15-2 Pointer operators

& hing _ptr
Legal, but strange. t hi ng_pt r isapointer. The & (address of) operator gets a pointer
to the object (inthiscaset hi ng_pt r). Theresult is apointer to a pointer. (Pointers to
pointers do occur in more complex programs.)

Example 15-1 illustrates a very simple use of pointers. It declares one object, t hi ng_var,
and apointer,t hi ng_ptr.thi ng_var isset explicitly by theline:

thing_var = 2;
Theline:
thing_ptr = & hing_var;

causesC++tosett hi ng_pt r totheaddressof t hi ng_var . From this point on,
t hi ng_var and*t hi ng_pt r arethe same.

Example 15-1. thing/thing.cc

#i ncl ude <i ostream h>
mai n()

{

i nt thing_var; [// Define a variable

Page 231
Example 15-1. thing/thing.cc (Continued)
int *thing_ptr; /1 Define a pointer

thing_var = 2; /1 Assigning a value to "thing"

cout << "Thing " << thing_var << '\n';

thingptr = & hing_var; // Mike the pointer point to "thing"
*thing ptr = 3; /1 thing_ptr points to thing_var so

/1 thing_var changes to 3
cout << "Thing " << thing var << '\n';

/1 Another way of printing the data
cout << "Thing " << *thing_ptr << '\n';

return (0);
}
Severd pointers can point to the same thing:
1: i nt sonet hi ng;
2:
3: i nt *first ptr; /1 One pointer
4; i nt *second _ptr; /1 Anot her pointer
5:
6: sonet hing = 1; // Gve the thing a val ue
7.
8: first_ptr = &sonet hing;
9: second_ptr = first_ptr;

In line 8 you use the & operator to change asimple variable (sonet hi ng) into a pointer that
canbeassignedtofirst _ptr.Becausefirst _ptr andsecond_ptr are both pointers,
you can do adirect assgnment in line 9.

After executing this program fragment, you have the situation illustrated by Figure 15-3.

first_ptr : second_pir
(a1 000 -] 01000
something
O 1000

" Figure 15-3. Two pointers and athing

It is most important to note that while you have three variables, thereis only one integer
(t hi ng). Thefollowing are all equivalent:

sonething = 1

*first_ptr = 1;
*second _ptr = 1;

Page 232

Finaly, thereis a special pointer called NULL that points to nothing. (The actual numeric value
is0.) The standard include file, stddefh, definesthe constant NULL. (Most standard include
files that have anything to do with pointers automatically include NULL as well.) The NULL
pointer is represented graphically in Figure 15-4.

%

Figure 15-4 NULL

const Pointers

Declaring constant pointersis alittle tricky. For example, although the declaration:
const int result = 5;

tellsC++ that r esul t isaconstant, so
result = 10; /1 11legal

isillegal. The declaration:
const char *answer_ptr = "Forty-Two";

does not tell C++ that the variableanswer _pt r isaconstant. Instead it tells C++ that the
datapointed to by answer _pt r isaconstant. The data cannot be changed, but the pointer
can. Again we need to make sure we know the difference between "things' and "pointers to
things."

What'sanswer _pt r ? A pointer. Can it be changed? Yes, it'sjust a pointer.. What does it
point to? A const char array. Can the data pointed to by answer _pt r be changed? No,
it's constant.

In C++ thisis:
answer_ptr = "Fifty-One"; /1 Legal (answerptr is a variable)
*answerptr = 'X; /1 lllegal (*answer_ptr is a constant)

If you put theconst after the* , we tell C++ that the pointer is constant. For example:
char *const naneptr = "Test";

What'snane_pt r ? A constant pointer. Can it be changed? No. What does it point to? A
character. Can the data we pointed to by nanme_pt r be changed? Yes.

Page 233

nameptr = "New'; /1 lllegal (name_ptr is constant)
*nameptr = 'B'; /1 Legal (*naneptr is a char)

Finally, we put const in both places, creating a pointer that cannot be changed to a data item
that cannot be changed.

const char *const titleptr = "Title";

Pointersand Printing

In C++ you can print the value of apointer just like you can print the value of asimple variable

such as an integer or floating point number. For example:

int an_integer = 5; /1 A sinple integer
int *intptr = &n_i nt eger; /1 Pointer to an integer

cout << "lInteger pointer " << int_ptr << '\n';
outputs
I nt eger poi nter O0x58239A

In this case, the value 0x58239A represents a memory address. This address may vary from
program to program.

C++ treats character pointers alittle differently from other pointers. A character pointer is
treated as a pointer to a string. For example:

char sonme_characters[10] = "Hello"; // A sinple set of characters
char *char_ptr = &sone_characters[(; // Pointer to a character

cout << "String pointer " << charptr << '\n';

outputs

String pointer Hello

Pointersand Arrays

C++ allows pointer arithmetic. Addition and subtraction are allowed with pointers. Suppose
you have the following:

char array[10];
char *arrayptr = &array[J;

Graphically thisis represented in Figure 15-5.

Inthisexample, *array_ptr isthesameasarray[0], *(array_ptr+l)isthesameas
array|[1], and so on. Note the use of parentheses. (*ar r ay_pt r)+1 isnot the same as
array[1] . The+1 isoutside the parentheses so it is added after the de-reference. Thus
(*array_ptr)+listhesameasarray[0] +1.

Page 234

0x5000 0X5000 urece) 5000 o)
BE001) 05001 ey
_________________________ el (amay_pired) ozl
(5003 array(3) (w5003 array(3)
(ocs 004 arrayld) (w5004 arrayld]

Figure 15-5 Pointers and an array

At first glance this may seem like a complex way of representing simple array indices. Y ou
are starting with ssimple pointer arithmetic. In later chapters you will use more complex
pointers to handle more difficult functions efficiently.

Pointers are merely memory addresses. In an array each element is assigned to consecutive
addresses. For example, ar r ay[0] may be placed at address Oxf f 000024. Then

array[1] would be placed at address Oxf f 000025 and so on. Example 15-2 prints out the
elements and addresses of a ssimple character array. (Note: The I/O manipulators hex and dec
are described in Chapter 16, File Input/Output.)

Example 15-2. array-p/array-p. cc

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

const int ARRAY_SIZE = 10; // Nunmber of characters in array
/[l Array to print
char array[ARRAY_SI ZE] = "012345678"

mai n()

{

int index; /* Index into the array */

for (index = 0; index < ARRAY_SIZE; ++i ndex)
cout << hex; [/ Trick to print hex nunbers
cout <<
"&array[index]=0x" << int(&array[index]) <<
" (array+i ndex)=0x" << int(array+i ndex) <<
" array[index] =0x" << int(array[index]) << '\n',
cout << dec;

}
return (0);
}
Page 235
When run this program prints:

&array[i ndex] =0x20090 (array+i ndex)=0x20090 array[i ndex] =0x30
&array[i ndex] =0x20091 (array+i ndex)=0x20091 array[i ndex] =0x31
&array[i ndex] =0x20092 (array+i ndex)=0x20092 array[i ndex] =0x32
&array[i ndex] =0x20093 (array+i ndex) =0x20093 array[i ndex] =0x33
&array[i ndex] =0x20094 (array+i ndex) =0x20094 array[i ndex] =0x34
&array[i ndex] =0x20095 (array+i ndex) =0x20095 array[i ndex] =0x35
&array[i ndex] =0x20096 (array+i ndex)=0x20096 array[i ndex] =0x36
&array[i ndex] =0x20097 (array+i ndex)=0x20097 array[i ndex] =0x37
&array[i ndex] =0x20098 (array+i ndex)=0x20098 array[i ndex] =0x38
&array[i ndex] =0x20099 (array+i ndex)=0x20099 array[i ndex] =0x0

Characters usually take up one byte, so the elementsin a character array will be assigned
consecutive addresses. A short i nt takesup two bytes, soin an array of short i nt s the
addresses increase by two. Does thismean short _ar r ay+1 will not work for anything
other than characters? No. C++ automatically scales pointer arithmetic so it works correctly. In
thiscaseshort _array+1 will point to element number 1.

C++ provides a shorthand for dealing with arrays. Rather than write:

array_ptr = &array[0];
you can write:
array_ptr = array;

C++ blursthe distinction between pointers and arrays by treating them the same in many cases.
Here you used the variable ar r ay as a pointer and C++ automatically did the necessary
conversion.

Example 15-3 counts the number of elements that are non-zero and stops when a zero is found.
No limit check is provided, so there must be at |east one zero in the array.

Example 15-3. ptr2/ptr2a. cc
#i ncl ude <i ostream h>

int array[10] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};

i nt index;
mai n()
{
i ndex = 0;
while (array[index] != 0)
++i ndex;
cout << "Nunber of elenents before zero " << index << '\n';
return (0);
}

Page 236
Rewriting this program to use pointers gives us Example 15-4.

Example 15-4. ptr2/ptr2. cc

#i ncl ude <i ostream h>

int array[10] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int *array_ptr;

mai n()

{

array_ptr = array,

while ((*array_ptr) != 0)
++array_ptr;

cout << "Nunber of elenents before zero <<
(array_ptr - array) << '\n';
return (0);

}

Thefirst program usesthe expression (ar r ay[i ndex] ! = 0). Thisrequiresthe compiler

to generate an index operation, which takes longer than a ssmple pointer de-reference:
((*array_ptr) !'= 0).Theexpresson at theend of thisprogram,array_ptr

arr ay, computes how far array_ptr isinto the array.

When passing an array to a procedure, C++ will automatically change the array into a pointer.
In fact, if you put an & before the array, C++ will issue awarning. Example 15-5 illustrates

array passing.
Example 15-5. tnit-a/init-a. cc

const int MAX = 10;

/***

* init_array_1 -- Zero out an array *
* *
* Paraneters *
* data -- the array to zero *

***I

void init_array_1(int data[])

int index;
for (index = 0; index < MAX; ++i ndex)
dat a[i ndex] = 0;
/***
* init_array_2 -- Zero out an array *
* *
* Paraneters *
* data_ptr -- pointer to array to zero *

Example 15-5. init-a/init-a. cc (Continued)

***/

void init_array_2(int *data _ptr)

{ int index;
for (index = 0; index < MAX; ++index)
*(data ptr + index) = 0;
}
#
main ()
{

int array[MAX];

/1l One way of initializing the array
init_array_| (array);

/1 Another way of initializing the array
init_array_1(&array[0]);

[/ Simlar to the first nethod but
[/ function is different

Page 237

init_array 2(array);

return (0);

}
Splitting Strings

Suppose you are given a string of the form "Last/First." Y ou want to split thisinto two strings,
one containing the first name and one containing the last name.

Example 15-6 readsin asingle line, stripping the newline character from it. The function
st rchr iscaledto find the location of the dash (/). (Thefunction st r chr isactualy a
standard function. Y ou have duplicated it for this example so you can see how it works.)

Atthispoint | ast _pt r pointsto the beginning character of the last name (with the first
tackedon) andf i r st _pt r pointsto asash. You then split the string by replacing the lash
(/') with an end-of-string (NUL or \0"). Now | ast _pt r pointsto just the last name and
first_ptr pointstoanull string. Moving fi rst _ptr tothe next character makes
first_ptr pointtothe beginning of the first name.

Graphically what you are doing isillustrated in Figure 15-6.

Example 15-6 contains the full program.

Page 238
Alter Atter After
strchr *first _ptr = ‘\0‘; first_ptr++;
o S st [S Cmtoy o[
iy — SR e 4N
i i I
t ! L
istptr Sfirst_ptr s ag - ——
sl R fist ot |y
- — sy |—
ho [h h
n n n
I’:«

Figure 15-6. Spllttl ﬁg astring
Example 15-6 split/split.cc

/* EE R I I R R I R I S I S S S R I S R I R S I R I S R

* Split -- split an entry of the form Last/First *
* into two parts *
EE IR b I b b I I b S S b I I b S b I I b b I

#i ncl ude <i ostream h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

mai n()

{

char |ine[80]; /1 The input line

char *first_ptr; /] Pointer we set to point to the first nane
char *lastptr; /] Pointer we set to point to the |ast name

cout << "Enter string\n";
cin.getline(line, sizeof(line));

last_ptr = line; // Last nane is at beginning of line
first_ptr = strchr(line, '/"); /1 Find slash

[/ Check for an error

if (first_ptr == NULL)

cerr << '"Error: Unable to find slash in " << line <<
exit (8);

}

*first_ptr ='\0"; // Zero out the slash

++first_ptr; /1 Move to first character of name

cout << "First:" << first_ptr << " Last:" << last_ptr <<

Example 15-6. split/splitcc (Continued)

return (0);
/****1***
* strchr -- find a character in a string *
* Duplicate of a standard library function, *
* put here for illustrative purposes. *
* *
* Paraneters *
* string_ptr -- string to | ook through *
* find -- character to find *
* *
* Returns *
* pointer to 1st occurrence of character in string*
* or NULL for error *

**I

char *strchr(char * string_ptr, char find)

{ while (*string _ptr !'= find)
/1 Check for end
if (*string_ptr =="'\0
return (NULL); /1 Not found
++string_ptr;
} ieturn (string_ptr); /1 Found

\n';

\n';

Page 239

This program illustrates how pointers and character arrays may be used for smple string

processing.
Question 15-1: Example 15- 7 is supposed to print out:

Nare: tnpl
but instead you get:

Narme: ! _ @#ds80
(Your results may vary.) Wy does this happen?

Exanpl e 15-7. tnp-name/tnp-namne. cc

#i ncl ude <i ostream h>
#i ncl ude <string. h>

/**

* tnp_name -- return a tenporary fil enane *
* *
* BEach tine this function is called, a new nanme w ||l *
* be returned *
* *

Page 240
Example 15-7. tmp-name/tmp-name.cc (Continued)

* Returns *

* pointer to the new fil enane *
**/

char *tnp_nane(voi d)

{
char nane[30]; /! The nane we are generating
static int sequence = 0; /1 Sequence nunber for last digit
++sequence; // Myve to the next filenane
strcpy(nane, "tnmp");
/1 Put in the sequence digit
narme[3] = sequence + '0';
/1 End the string
name[4] = '\0';
return(nane);
}
int main()
{
cout << "Name: " << tnp_nanme() << '\n';
return(0);
}

Pointers and Structures

In Chapter 12, Advanced Types, you defined a structure for amailing list:

struct mailing {
char nane[60] ; /1 Last nane, first nane
char addressl[60];// Two lines of street address
char address2[60];
char city[40];
char state[2]; /1 Two- character abbreviation
long int zip; /1 Nureric zip code

} Iist[MAX_ENTRI ES] ;

Mailing lists must frequently be sorted in name order and zip-code order. Y ou could sort the
entries themselves, but each entry is 226 byteslong. That'salot of datato move around. A way
around this problem isto declare an array of pointers and then sort the pointers:

/1 Pointer to the data
struct mailing *list_ptrs[MAX_ ENTRI ES] ;

int current; /1l CQurrent mailing list entry

...

Page 241

for (current = 0; current = nunber_of _entries; ++current)
list _ptrs = &ist[current];

/1 Sort list_ptrs by zip code

Now instead of having to move a 226-byte structure around, you are moving 4-byte pointers.
This sorting is much faster. Imagine that you had a warehouse full of big heavy boxes and you
needed to locate any box quickly. One way of doing this would be to put the boxesin
alphabetical order. But that would require alot of moving, so you assign each location a
number, write down the name and number on index cards, and sort the cards by name.

Command-Line Arguments

The procedure mai n actually takes two arguments. They are called ar gc and ar gv. (They
don't have to be called ar gv and ar gc; however, 99.99% of C++ programs use these names.)

mai n(int argc, char *argv[])

{
It's easy to remember which comes first when you realize that they are in aphabetical order.

The parameter ar gc isthe number of arguments on the command line (including the prograrr
name). Thearray ar gv contains the actua arguments. For example, if the program ar gs were
run with the command line:

args this is a test

then:
argc =5
argv[0] = "args"
argv[l] = "this"

argv[2] "is"

argv[3
argv[4

est”
NOTE

The UNIX shell expands wildcard characterslike *, ?, and []
before sending the command line to the program. See your sh or
csh manual for details.

Turbo-C++ will expand wildcard charactersif the file
WILDARG.OBJ is linked with your program. See the Turbo-C++
manual for details.

Page 242

Almost al UNIX commands use a standard command-line format. This "standard" has carried
over into other environments. A standard UNIX command has the form:

command options filel filel file3 ..

Options are preceded by ahyphen (-) and are usually asingle letter. For example, the option
- v might turn on verbose mode. If the option takes a parameter, the parameter follows the
letter. For example, the switch - nL024 sets the maximum number of symbolsto 1024 and
-oout fi | e setsthe output file name to outfile.

Y ou have been given the assignment to write a program that will format and print files. Part of
the documentation for the program looks like:

print file [-v] [-I<length>] [-o<nane>] [filel] [file2] ...

Inthisline, - v sets verbose options, which turns on alot of progress information messages.
Theoption - | <I engt h> setsthe page sizeto <l engt h> lines (default = 66) and

- o<nane> setsthe output fileto <nane> (default = print.out). A list of filesto print follows
theseoptions([fiel], [file2],etc).If nofilesare specified, then print thefile print.in.

The while loop cycles through the options. The actual loopis:
while ((argc > 1) &% (argv[1][0] == "-")) {

There is aways one argument, the program name. The expression (ar gc > 1) checksfor
additiona arguments. The first one will be numbered 1. The first character of the first argument
isar gv[1] [O] . If this character is a dash you have an option.

At the end of the loop isthe code:

--argc;
++ar gv;

}

This consumes an argument. The number of arguments is decremented to indicate one less
option, and the pointer to the first option isincremented, shifting the list to the left one place.
(Note: After thefirst increment, ar gv[O] no longer points to the program name.)

Theswi t ch statement is used to decode the options. Character 0 of the argument is the hyphen
(-). Character 1 isthe option character, so you use the expression:

switch (argv[1[1]) {

to decode the option.

Page 243
Theoption - v has no arguments; it just causes aflag to be set.

The - 1 option takes an integer argument. The library function at oi isused to convert the
string into an integer. From the previous example you know that ar gv[1] [2] startsthe string
containing the number. Thisstring is passed to at oi .

Theoption - o takes afilename. Rather than copy the whole string, you set the character pointer
out _fil e to point to the name part of the string. By this time you know that:

argv[1][0]
argv[1][1]
argv[1][2]

Yousetout fil e topoint to the string with the statement:

‘o
start of the file nane

out file = &rgv[1][2];

Finally all the options are parsed and you fall through to the processing loop. This merely
executesthefunction do_f i | e for each file argument. Example 15-8 contains the complete
option-decoding program.

Example 15-8 print/print cc

/**

* Print -- format files for printing *
**/
#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

int verbose = 0; /'l Verbose node (default = false)
char *out file = "print.out"; /1 Qutput file nanme

char *program naneg; /1 Name of the program (for errors)
int Iine_nmax = 66; /1 Nunber of |ines per page

/**

* do file -- dummy routine to handle a file *
* *
* Par anet er *
* name -- name of the file to print *

**/
void do _file(char *nane)
cout << "Verbose" << verbose << " Lines "<< |ine_max <<
Input " << pame << " Qutput " << out _file << '\n';

}

/**

* Usage -- tell the user howto use this programand *
* exit *
**/

voi d usage(void)

cerr
cerr

<< "Usage is " << programname << " [options] [file-list]\n";

<< "Qptions\n";

Example 15-8 print/print cc (Continued)

}

cerr
cerr
cerr
exit

<< " -V ver bose\ n";

<< - 1<nunber> Nunber of |ines\n";

<<" - o<nane> Set output filenanme\n";
(8);

mai n(int argc, char *argv[])

{

/1 Save the program nanme for future use

program nanme = argv[O0];

/*

* Loop for each option

*

*

Stop if we run out of argunents
or we get an argunent without a dash

*/
while ((argc > 1) &% (argv[1][0] == "-")) {
/*
*argv[l][1] is the actual option character
*/
switch (argv[1][1]) {
/*
* -v verbose
*/
case 'Vv':
verbose = 1;
br eak;
/*
* -o<nane> output file
* [0] is the dash
* [1] is the "o"
* [2] starts the nane
*/
case '0':
out file = &rgv[1][2];
br eak;
/*
* -1<nunber> set nax nunber of |ines
*/
case '1':
line_max = atoi (&rgv[1][2]);
br eak;
defaul t:
cerr << "Bad option " << argv[l] <<
usage();
}
/*

* Move the argument |ist up one

|\nl.

Page 244

* Move the count down one
*/

++ar gv;

--argc;

Page 245
Example 15-8. print/print.cc (Continued)

}

/*
* At this point all the options have been processed.
* Check to see if we have no files in the |ist
* and, if so, we need to list just standard in
*/
if (argc == 1)

do_file("print.in");
} else {

while (argc > 1)

do_file(argv[1]);

++ar gv;
--argc;
}
}
return (0);

}

Thisis oneway of parsing the argument list. The use of thewhi | e loop and swi t ch
statement is Simple and easy to understand. This method does have a limitation. The argument
must immediately follow the options. For example, - o dat a. out will work, but - 0

dat a. out will not. An improved parser would make the program more friendly, but this
works for simple programs. (See your system documentation for information on the get opt
function.)

Programming Exer cises
Exercise 15-1: Write a program that uses pointers to set each element of an array to zero.

Exercise 15-2: Write afunction that takes asingle string as its argument and returns a pointer
to the first nonwhite character in the string.

Answersto Chapter Questions

Answer 15-1: The problem isthat the variable nane is atemporary variable. The compiler
allocates space for the name when the function is entered and reclaims the space when the
function exits. The function assigns nane the correct value and returns a pointer to it.
However, the function is over, so nane disappears and you have a pointer with anillega
value.

The solution isto declare nane static. Consequently, it is a permanent variable and will not
disappear at the end of the function.

Page 246

Question 15-2: After fixing the function, you try using it for two filenames. Example 15-9
should print out:

Name: tnpl
Nanme: tnp2

but it doesn't. What does it print and why?
Example 15-9. tmp2/tmp2.cc

#i ncl ude <i ostream h>
#i ncl ude <string. h>

/* EE IR I R S S S S S R I R I S I S I S S O

* tnp_name -- return a tenporary fil enane *
* *
* BEach time this function is called, a new nane will *
* be returned *
* *
* Warning: There should be a warning here, but if we *
* put it in we would answer the question. *
* *
* Returns *
* pointer to the new fil enane *
R S S I S S b b I I I I S b S I I O b b b S S I S S S S I O S b b S

char *tnp_nane(voi d)

{
static char nane[30]; /1 The nanme we are generating
static int sequence = 0; /1 Sequence nunber for last digit
++sequence; // Mwve to the next file nane
strcpy(nane, "tnp");
/1 Put in the sequence digit
name[3] = sequence + '0';
/1 End the string
name[4] = '\0';
return(nane);
}
int main()
{
char *nanel ; /1 Name of a tenporary file
char *nanez; /1 Name of a tenporary file
namel = tnp_nane();
name2 = tnp_nane();
cout << "Namel: << panel << '\n';
cout << "Name2: "<< pane2 << '\n';
return(0);

Page 247

Answer 15-2: Thefirst call tot np__nane returns apointer to nane. Thereisonly one
name. The second call tot np_nane changes nane and returns a pointer to it. So you have
two pointers, and they point to the same thing, nane.

Severd library functions return pointers to static strings. A second call to one of these routines
will overwrite the first value. A solution to this problem isto copy the values:

char nanel [100];
char nanme2[100];

strcpy(nanel, tnp_name());
strcpy(nane2, tnp_name());

Page 249

1V
Advanced Programming Concepts

Page 251

16
File Input/Output

In This Chapter:

C++ Filel/O
Conversion Routines
Binary and ASCI |
Files

The End-of-Line
Puzze

Binary I/O
Buffering Problems
Unbuffered |/O
Designing File
Formats

C-Style 1/0 Routines
C-Style Conversion
Routines

| amthe heir of all the ages, in the foremost files of time

—Tennyson

A fileisacollection of related data. C++ treats afile as a series of bytes. Many filesreside on
disk; however, devices such asterminals, printers, and magnetic tapes are also considered
files.

The Annotated C++ Reference Manual (Ellis and Stroustrup) is the current widely used
standard for C++. This book does not contain a specification of the 1/0O system. A de facto
standard has evolved based on the library supplied with the cfront compiler from AT&T. The
problem is that some of the details may differ from compiler to compiler. For example,
Turbo-C++ flushescout at the end of each line while the SunPro UNIX C++ compiler does
not.

The current version of the ANS C++ Draft Sandard (September 1994) does contain a
detailed description of 1/0O calls. However, currently no compilers support this, and the
standard also is still undergoing revision.

This chapter discusses three different 1/0 packages. Thefirst isthe C++ /O stream classes.
Thisisthe most commonly used 1/0 system and the one we've been using up to now. Next, we
examine the raw 1/O routines that give us direct accessto the low-level 1/0. Finally we look at
the C I/O system. Although it is somewhat outdated, C I/O calls still appear in old code. Also,
in some cases, the C-style 1/0 routines are superior to the ones provided with C++.

Page 252

C++ Filel/O

C++ filel/O isbased on three classes: thei st r ean classfor input, the ost r ean classfor
output, and thei ost r ean classfor input/output. C++ refersto files as streams since it
considers them a stream of bytes. Four class variables are automatically created when you start
aprogram. These are listed in Table 16-1.

Table 16-1 Predefined |/O Class Variables

Variable Use

cin Console input (standard input)
cout Console output (standard output)
cerr Console error (standard error)

cl og Consolelog

These variables are defined in the standard include file<i ost r eam h>. Normally ci n is
assigned to the keyboard and cout , cerr, andcl og areassigned to the screen. Most
operating systems allow you to change these assignments through 1/O redirection (see your
operating system manual for details).

For example, the command

ny_prog <file.in
runsthe program nmy _pr og and assignsci n to thefilefile.in.

When doing I/O to disk files (except through redirection) you must use the file version of the
stream classes. These arei f st r eamn, of streamn,and f st r eamn and are defined in the
includefile <f stream h>.

NOTE

Thei f st r ean classis actualy derived fromthei st r ear class.
Similarly, of st r eanmisderived from ost r eam andf st rearris
derivedfrom i ost r ean. You'll learn about derived classesin
Chapter 21, Advanced Classes.

Suppose you want to read a series of 100 numbers from the file numbers.dat. Y ou start by
declaring the input file variable:

ifstreamdata_file; /[l File we are reading the data from

Next you need to tell C++ what disk file to use. Thisis done through the open member
function:

data file.open("nunbers.dat");

Page 253
Now you can read the file using the same statements you've been using to read ci n:

for (i =0; i < 100; ++i)
data file >> data_array[i];

Finally you need to tell the 1/0O system that you are done with the file:
data file.close();
Closing the file frees resources that can then be used again by the program.

C++ adlowsthe open call to be combined with the constructor. For example, instead of
writing:

ifstreamdata file; /[l File we are reading the data from
data file.open("nunbers.dat");

you can write:

ifstreamdata file("nunbers.dat"); // File we are reading the data
fronm

Additionally, the destructor automatically callscl ose.

But what if the file numbers.dat is missing? How can you tell if thereisaproblem? The
member function bad returns "true” if there is a problem, and "false" otherwise. So to test for
problemsall you needis:

if (data_file.bad()) {

cerr << "Unable to open nunbers.dat\n";
exit (8);
}

A better version of the program for reading numbersis Example 16-1.
Example 16-1. read/read.cc

/***

* Read -- read in 100 nunbers and sum t hem *
* *
* Usage: *
* r ead *
* *
* Nunmbers are in the file "nunbers. dat" *
* *
* Warning: No check is nmade for a file with fewer than *
* 100 nunbers in it *
EE R I b I I I L

/
#i ncl ude <i stream h>
#i ncl ude <fstream h>
#i ncl ude <stdlib. h>

mai n()

{
const int DATA SIZE = 100; /1 Nunber of itens in the data

i nt data_array[DATASI ZE] ; /1 The data

Page 254
Example 16-1. read/read.cc (Continued)

ifstreamdata file("nunbers.dat"); // The input file
int i; /1 Loop counter

if (data_file.bad() {
cerr << "Error: Could not open nunbers.dat\n";
exit (8);

}

for (i =0; i < DATA SIZE, ++i)
data file >> data array[i];

int total; // Total of the nunbers

total = 0;
for (i = 0; i < DATA SIZE, ++i)
total += data_array[i];

cout << "Total of all the nunbers is" << total << '\n';
return (0);

}

Finaly, you havetheget | i ne member function. It isused to read afull line of data from the
input file. Thisfunction is defined as:

i stream &getline(char *buffer, int len, char delim="\n")

The parameters to this function are:

buf f er
A buffer to store the data that has been read.

I en
Length of the buffer in bytes. The functionreadsupto| en - 1 bytes of data into the buffer.
(One byte isreserved for the terminating null character \O.) This parameter is usually
si zeof (buffer).

delim
The character used to signal end-of-line.

This function returns a reference to the input file. The function reads up to and including the
end-of-line character. The end-of-line character is not stored in the buffer.

Problems can occur if the size specified istoo big. C++ provides a convenient way to make
sure the size parameter isjust right through the use of the si zeof operator.

Thesi zeof operator returnsthe size in bytes of its argument. For example:

long int array[10]; /1 Each el enent contains 4 bytes
char string[30];

Page 255

Thesi zeof (string) is30andsi zeof (array) is40 (4 bytesper long * 10 longsin
the array).

NOTE

si zeof isnot the same aslength. Thesi zeof operator returnsthe
number of bytesin st ri ng (used or not).

Output Files
The functions for output files are similar to input files. For example, the declaration:
of streamout file("out.dat");
creates afile named out.dat and lets you write to the file using thefile variableout _fi | e.

Actualy, the constructor can take two additional parameters. The full definition of the output
file constructor is:

of stream : of stream(const char *nanme, int node=i os::out,
int prot = filebuf::openprot);

The parameters for this function are:

name
The name of thefile.

node
A set of flags ORed together that determine the open mode. Theflagi os: : out is

required for output files. Other flags arelisted in Table 16-2. (Thei os: : prefix isused
to indicate the scope of the constant. This operator is discussed in more detail in Chapter
21, Advanced Classes.)

pr ot
File protection. This is an operating-system-dependent value that determines the
protection mode for the file. In UNIX the protection defaults to 0644 (read/write owner,
group read, others read). For MS-DOS/Windows this defaults to O (normal file).

Table 16-2. Open Flags

Flag M eaning

ios: :app Append data to the end of the outpuit file.

ios: :ate Go to the end of the file when opened

ios::in Open for input (must be supplied toopens fori f st r eamn variables).
i os: :out Open filefor output (must be supplied to of st r eam opens) .

Page 256

Table 16-2. Open Flags (Continued)

Flag M eaning

i os: :binary Binary file (if not present, thefileis opened as an ASCI| file) See the section
"Binary 1/0" on page 262 for a definition of abinary file.

ios:: trunc Discard contents of existing file when opening for write.

i 0S::nocreate Fail if the file does not exist. (Output files only. Input files alwaysfail if thereis
no file.)

i 0s::norepl ace Do not overwrite existing file. If afile exists, cause the open to fail.

For example, the statement:

of streamout _fil e("data. new',
ios::out]ios::binary|ios::nocreate|ios::app);

appends (i os: :app) binaydata (i os: :binary) toanexistingfile
(i os::nocreate) nameddata.neu'.

Conversion Routines

So far we have just considered writing characters and strings. In this section, we consider
some of the more sophisticated 1/0 operations. conversions.

To write anumber to a printer or termina you must convert the number to characters. The
printer understands only characters, not numbers. For example, the number 567 must be

converted to the three characters "5", "6", and " 7" to be printed.

The << operator is used to convert data to characters and put them in afile. Thisfunction is
extremely flexible. It can convert asimple integer into afixed- or variable-size string as a hex,
octal, or decimal number with left or right justification. So far you've been using the default
conversion for your output. It serves pretty well, but if you want to control your output exactly,
you need to learn about conversion flags.

The member functionsset f andunset f are used to set and clear the flags that control the

conversion process. The general form of the functionsis:

file var.setf(flags);
file_var.unsetf(flags);

/1 Set flags
/1l dear flags

Table 16-3 lists the various flags and their meanings.

Table 16-3 1/0 Conversion Flags

Flag M eaning
i 0s:: skipws Skip leading white-space characters on input.
ios:: left Output is left justified.

Page 257
Table 16-3 I/0O Conversion Flags (Continued)
Flag M eaning
ios: :right Output isright justified.
i os::internal Numeric output is padded by inserting afill character between the sign or base
character and the number itself.
i 0s::dec Output numbersin base 10, decimal format
i 0s::oct Output numbersin base 8, octal format.
i 0s: : hex Output numbersin base 16, hexadecimal format.
i 0s:: showbase Print out a baseindicator at the beginning of each number For example:
hexadecimal numbers are preceded with "Ox"
i 0s:: showpoi nt Show adecimal point for all floating point numbers whether or not it's needed.
i 0S::uppercase When converting hexadecimal numbers show the digits A-F as uppercase.
i 0s: :showpos Put a plus sign before all positive numbers.
ios::scientific Convert all floating point numbers to scientific notation on output.
ios::fixed Convert all floating point numbers to fixed point on output.
i 0S::unit buf Buffer output. (More on thislater).

ios: :stdio Flush stream after each output.

If you want to output a number in hexadecimal format, all you haveto dois:.

nunber = Ox3FF;
cout << "Dec: " << nunber << '\n';

cout.setf(ios: :hex);
cout << "Hex: " << nunber << '\n';

cout.setf(ios::dec);

When run, this program produces the output:

Dec: 1023
Hex: 3ff

NOTE

People normally expect the output mode to be decimal, soitisa
good ideato reset the mode after each output to avoid later
confusion.

When converting numbers to characters the member function:
int file_var.width(int size);

determines the minimum charactersto use. For example, the number 3 would normally convert
to the character string "3" (note the lack of spaces). If the width is set to four, then the result
wouldbe" 3" where_ representsasingle space.

Page 258
The member function:
int flie_ var.precision(int digits);
controls how many digits are printed after the decimal point.
Finaly, the function:
char file_var.fill(char pad);

determines the fill character. This character is used for padding when a number is smaller than
the specified width.

NOTE

Some of these flags and parameters are reset after each output call
and some are not. Which flags are permanent and which are
temporary seems to change from compiler to compiler. In generd,
don't assume anything is going to remain set and you'll be okay. (Just
because you're paranoid doesn't mean the compiler isn't out to get

you.)

These functions can be called directly or you can use an 1/0 manipulator An I/O manipulator
isaspecia function that can be used in an I/O statement to change the formatting. Y ou can think
of amanipulator as amagic bullet that when sent through an input or output file changes the
state of thefile. A manipulator doesn't cause any output; it just changes the state. For example,
the manipulator hex changes the output conversion to hexadecimal.

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

nunber = Ox3FF;
cout << "Nunber is "

<< hex << nunber << dec <<

"\n';

The 1/O manipulators are defined in the include file <i omani p. h>. Table 16-4 contains the

full list of 1/O manipulators.

Table 16-4. |/O Manipulators

Manipulator

Description

seti osflags(long fl ags)
resetiosflags(long flags)
dec

hex

oct

set base(i nt base)

setw(int width)

set preci sion(int precision)

Table 16-4 I/O Manipulators (Continued)

Set selected conversion flags.

Reset selected flags.

Output numbersin decimal format.
Output numbersin hexadecimal format.
Output numbersin octal format.

Set conversion baseto 8, 10, or 16. Sort of ageneralized
dec, hex, oct.

Set the width of the output.

Set the precision of floating point output

Page 259

Manipulator Description

setfill (char ch) Set thefill character.

ws Skip white space on input.

end| Output end-of-line

ends Output end-of-string (\0').

fl ush Force any buffered output out. (See Chapter 17,

Debugging and Optimization, for an explanation of how
to use this function).

Example 16-2 shows how some of the I/O manipulators may be used.

Example 16-2 io/io.cc

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

mai n()

#

{
int number = 12; /1 A nunber to output
float real = 12.34; // A real nunber

cout << "123456789012345678901234567890\n"; // Qutput ruler

cout << nunber << "<-\n";

cout << setw(5) << nunber << "<-\n";

cout << setw(5) << setfill('*') << nunber << "<-\n";

cout << setiosflags(ios::showos|ios::left) << setw(5) <<
number << "<-\n";

cout << real << "<-\n";

cout << setprecision(l) << setiosflags(ios::fixed) << real << "<-\n";
cout << setiosflags(ios::scientific) << real << "<-\n";

return (0);

}
The output of this programiis:

123456789012345678901234567890
12<-
12<-

* % % 12<_

+12** <-

12. 34<-

12. 3<-

| e+01<-

Page 260

Binary and ASCI|I Files

So far we have limited ourselves to ASCII files. "ASCII" stands for American Standard Code
for Information Interchange. It isaset of 95 printable characters and 33 control codes. (A
complete list of ASCII codes can be found in Appendix A, ASCII Table.) ASCII filesare
human readable. When you write a program, the prog.cc fileis ASCII.

Terminals, keyboards, and printers deal with character data. When you want to write a number
like 1234 to the screen, it must be converted to four characters (1, 2, 3, -4) and written.

Similarly, when you read a number from the keyboard, the data must be converted from
charactersto integers. Thisis done by the >> operator.

The ASCII character "0" hasthe value 48, "1" the value 49, and so on. When you want to
convert asingle digit from ASCII to integer, you must subtract this value number:

int integer;
char ch;

ch ='5";
integer = ch - 48;
cout << "Integer << integer << '\n';

Rather than remember that ()" is 48, you can just subtract "0":
integer = ch - '0";

Computers work on binary data. When reading numbers from an ASCI| file, the program must
process the character data through a conversion routine like the integer conversion routine just
defined. Thisis expensive. Binary files require no conversion. They also generally take up less
gpace than ASCI| files. The drawback is they cannot be directly printed on aterminal or
printer. (If you've ever seen along printout coming out of the printer displaying pages with a
few characters at the top that look like "!E#{@$%@"Aa*AANHCY"X" then you know what
happens when you try to print abinary file.)

ASCII files are portable (for the most part). They can be moved from machine to machine with
very little trouble. Binary files are amost certainly nonportable. Unless you are an expert
programmer, it is almost impossible to make a portable binary file. (See Chapter 25,
Portability Problems.)

Which file type should you use? In most cases, ASCII is best. If you have small to medium
amounts of data, the conversion time does not seriously affect the performance of your
program. (Who cares if it takes 0.5 second to start up instead of 0.3?) ASCI| files also make it
easy to verify the data.

Page 261

Only when you are using large amounts of data will the space and performance problems force
you to use the binary format.

The End-of-Line Puzzle

Back in the dark ages BC (Before Computers), there existed amagical device called a
Teletype Model 33. This amazing machine contained a shift register made out of amotor and a
rotor aswell as a keyboard ROM consisting solely of levers and springs.

The teletype contained a keyboard, a printer, and a paper tape reader/punch. It could transmit
messages over telephones using a modem at the blazing rate of 10 characters a second.

But teletype had a problem. It took 2/10 second to move the printhead from the right side to the
left. 2/10 second is two character times. If a second character came while the printhead was in
the middle of areturn, that character was |ost.

The teletype people solved this problem by making end-of-line two characters. <carriage
return> to position the printhead at the left margin, and <line feed> to move the paper up one
line. That way the <line feed> "printed" while the printhead was racing back to the left margin.

When the early computers came out, some designers realized that using two characters for

end-of-line wasted storage (at this time storage was very expensive). Some picked <line feed>
for their end-of-line, and some chose <carriage return>. Some of the die-hards stayed with the
two-character sequence.

UNIX uses <line feed> for end-of-line. The new-line character \ n iscode OxA (LF or <line
feed>).

MS-DOS/Windows uses the two characters <carriage return><line feed>. Compiler designers
had problemsin dealing with the old C programs that thought new-line was just <line feed>?
The solution was to add code to the I/O library that stripped out the <carriage return>
characters from ASCI| input files and changed <line feed> to <carriage return><line feed> on
output.

In MS-DOS/Windows, whether or not afileis opened as ASCII or binary isimportant to note.
Theflagi os: : bi nary isusedtoindicate abinary file:

/] Open ASCII file for reading
ascii_file.open("name", ios::in);

/1 Qpen binary file for reading
binary file.open("name", ios::in|ios::binary);

Question 16-1: The member function put can be used to write out a single byte of a binary
file. The follouing program writes numbers 0 to 127 to afile called test.out.

Page 262

It works just finein UNIX, creating a 128-byte long file; however, in MSDOSWindows,
thefile contains 129 bytes. Why?

Example 16-3.whin/whin.cc

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <stdlib. h>

mai n()

{

int cur_char; /1 Current character to wite
ofstreamout _file; // Qutput file

out_file.open("test.out", ios::out);

if (out_file.bad()) {
(cerr << "Cannot open output file\n");
exit (8);

}

for (cur_char = 0; cur_char < 128; ++cur_char)
out _file << cur_char
}

return (0);

}
Hint: Hereis a hex dump of the MS-DOSWindows file:
000: 0001 0203 0405 0607 0809 OdCa CbCc QdCe

010: 0f 10 1112 1314 1516 1718 191a 1lblc 1dle
020: 1f 20 2122 2324 2526 2728 292a 2b2c 2d2e
030: 2f 30 3132 3334 3536 3738 393a 3b3c 3d3e
040: 3f 40 4142 4344 4546 4748 494a 4b4c 4d4e
050: 4f 50 5152 5354 5556 5758 595a 5b5c 5d5e
060: 5f 60 6162 6364 6566 6768 696a 6b6C 6d6€
070: 6f 70 7172 7374 7576 7778 797a 7b7c 7d7e
080: 7f

UNIX programmers don't have to worry about the C++ library automatically fixing their
ACII filesIn UNIX, afileisafile and ASCII is no different from binary. In fact, you can
write a half-ASCIl/half-binaryfile if you want to.

Binary 1/0O

Binary 1/0 is accomplished through two member functions: r ead and wr i t e. The syntax for
readis:

in_file.read(dataptr, size);

data_ptr
Pointer to a place to put the data.

Page 263
Size
Number of bytesto be read.
The member function gcount returns the number of bytes gotten by thelast r ead. This may

be less than the number of bytes requested. For example, ther ead might encounter an
end-of-file or error:

struct {
i nt wi dt h;
i nt hei ght ;

} rectangl e;

in file.read((char *)(& ectangle), sizeof(rectangle));
if (infile.bad() {

cerr << "Unable to read rectangl e\n";

exit (8);

if (in_file.gcount() != sizeof(rectangle)) (
cerr << "Error: Unable to read full rectangle\n";
cerr << "I/O error of EOF encountered\n”

}

In this example you are reading in the structure r ect angl e. The & operator makes

rect angl e into apointer. Thecast "(char *)" isneeded sincer ead wants a character
array. Thesi zeof operator isused to determine how many bytestor ead in aswell asto
check that r ead was successful.

The member function write has a calling sequence similar tor ead.

out file.wite(data_ptr, size);

Buffering Problems

Buffered I/O does not write immediately to thefile. Instead, the datais kept in abuffer until
there is enough for abig write, or until it is flushed. The following program is designed to print
a progress message as each section is finished.

cout << "Starting";
do_step | ();

cout << "Step 1 conplete”;
do_step_2();

cout << "Step 2 conplete”;
do_step_3();

cout << "Step 3 conplete\n";

Instead of writing the messages as each step completes, cout putsthem in abuffer. Only after
the program is finished does the buffer get flushed, and all the messages come spilling out at
once.

Page 264

The I/O manipulator f | ush forces the flushing of the buffers. Properly written, the above
example should be:

cout << "Starting" << flush;
do_step I ();

cout << "Step 1 conplete" << flush;
do_step_2();

cout << "Step 2 conplete" << flush;
do_step_3();

cout << "Step 3 conplete\n" << flush;

Unbuffered I/O

In buffered I/O, datais buffered and then sent to thefile. In unbuffered 1/0, the datais
immediately sent to thefile.

If you drop a number of paperclips on the floor, you can pick them up in buffered or unbuffered
mode. In buffered mode, you use your right hand to pick up a paper clip and transfer it to your
left hand. The processis repeated until your left hand is full, and then you dump a handful of
paperclips into the box on your desk.

In unbuffered mode, you pick up a paperclip and dump it into the box. There is no left-hand
buffer.

In most cases buffered 1/0 should be used instead of unbuffered. In unbuffered I/O, each read
or write requires asystem call. Any call to the operating system is expensive. Buffered I/0O
minimizes these calls.

Unbuffered I/O should be used only when reading or writing large amounts of binary data or
when direct control of adevice or fileisrequired.

Back to the paperclip example—if you were picking up small items like paperclips you would
probably use aleft-hand buffer. But if you were picking up cannon balls (which are much

larger), no buffer would be used.

The open system call is used for opening an unbuffered file. The macro definitions used by
this call differ from system to system. Y ou are using both UNIX and MS-DOS/Windows, so

you have used conditional compilation (#i f def

files.

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i nclude <fcntl. h>

#i fdef _MBDOS
#i ncl ude <i o. h>

/1l 1f we are M5-DOS

#else /* MSDOS_ */

#i ncl ude <uni std. h>

#endif /* MSDOS_ */

i nt

file_descriptor
file_descriptor

file_descriptor

file_descriptor;

open(nane, flags); /1l Existing file
open(nane, flags, node); //New file

Aninteger that is used to identify the file for the read, write and close calls. If
file_descriptor islessthan O an error occurred.

name

Name of thefile.

flags

Defined inthef cnt | . h header file. Open flags are described in Table 16-5.

Table 16-5 Open Flags

Flag M eaning

O _RDONLY Open for reading only

O V\RONLY Open for writing only

O_RDVR Open for reading and writing

O_APPEND Append new data at the end of thefile

O_CREAT Create file (mode file required when this flag is present)
O_TRUNC If the file exists, truncate it to 0 length

O_EXCL Fail if file exists

O_BI NARY Open in binary mode (older UNIX systems may not have this flag)

/] CGet the M5-DOS include file for raw 1/ O

/] Get the UNIX include file for raw /O

| #endi f) to bring in the correct

Page 265

mode
Protection mode for the file. Normally thisis 0666 for most files.

For example, to open the existing file data.txt in text mode for reading, you use the following:
data fd = open("data.txt", O RDONLY);

The next example shows how to create afile called output.dat for writing only:
out _fd = open("output.dat”", O CREAT| O WRONLY, 0666);

Notice that you combined flags using the OR (|) operator. Thisis a quick and easy way of
merging multiple flags.

When any program isinitialy run, threefiles are already opened. These are described in Table
16-6.

Page 266
Table 16-6. Standard Unbuffered Files
File Number Description
0 Standard in
1 Standard out
2 Standard error
Theformat of ther ead call is:
read size = read(filedescriptor, buffer, size);
read size
The actual number of bytesread. A 0 indicates end-of-file and a negative number indicates
an error.

file_descriptor
File descriptor of an openfile.

buffer
Pointer to the place to read the data.

size
Size of the datato be read. Thisisthe size of the request. The actual number of bytes read
may be less than this. (For example, you may run out of data.)

Theformat of awritecal is:

wite size = wite(file descriptor, buffer, size);

write size
Actua number of bytes written. A negative number indicates an error.

file_descriptor
File descriptor of an openfile.

buffer
Pointer to the datato be written.

size
Size of the datato be written. The system will try to write this many bytes, but if the
deviceisfull or thereis some other problem, a smaller number of bytes may be written.

Finally, the close call closesthefile:
flag = close(file_descriptor)

flag
O for success, negative for error.

file_descriptor
File descriptor of an openfile.

Page 267

Example 16-4 copies afile. Unbuffered 1/O is used because of the large buffer size. It makes no
sense to use buffered 1/0 to read 1K of datainto a buffer (usingani f st r earm) and then
transfer it into a 16K buffer.

Example 16-4 copy.2/copy2.cc

/**

* Copy -- copy one file to another *
* *
* Usage *
* copy <fronme <to> *
* *
* <from> -- the file to copy from *
* <to> -- the file to copy into *
**/
#i ncl ude <i ostream h>

#i ncl ude <stdlib. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i nclude <fcntl. h>

#i f def _MBDOS_ [/ 1f we are M5-DOS
#i ncl ude <io. h> /1l Get the M5-DOS include file for raw I/0O

#else /* MSDOS_ */

#i ncl ude <uni std. h> /] CGet the UNNX include file for raw I/0O
#endif /* MSDOS_ */

const int BUFFER SIZE = (16 * 1024); // Use 16K buffers

mai n(int argc, char *argv[])

char buf f er [BUFFER_SI ZE] ; /1
i nt in_file; /1
i nt out_file; /1
i nt read_si ze; /1

if (argc !'=2) {
cerr << "Error:
cerr << "Usage is:
exit(8);

Wong nunber of

}

in_file = open(argv[1],

if (infile <0) {
cerr << "Error:
exit(8);

O RDONLY) ;

}
out_file = open(argv[2],
if (out_file <0) {

cerr << "Error:

O WRONLY |

exit(8);
}
while (1)
read_size = read(in_file, buffer

Example 16-4 copy2/copy2. cc (Continued)

if (read_size
br eak;

== 0)

if (read_size < 0)
cerr << "Error:
exit(8);

}

wite(out_file, buffer,

}
close(in_file);
cl ose(outfile);
return (0);

}

Unabl e to open "

Unabl e to open "

Buf fer for data

I nput file descriptor

Qutput file descriptor
Nurmber of bytes on |ast read

argunent s\ n";

copy <fronmr <to>\n";

<< argv[1l] << '\n';

O TRUNC | O CREAT, 0666);

<< argv[2] << '\n';

si zeof (buffer));

Page 268

// End of file

Read error\n";

(unsigned int) read_size);

Several things should be noted about this program. First of al, the buffer sizeis defined asa
constant, so it is easily modified. Rather than have to remember that 16K is 16,384, the
programmer used the expression (16 * 1024). Thisform of the constant is obviously 16K.

If the user improperly uses the program, an error message results. To help the user get it right,

the message tells how to use the program.

Y ou may not read afull buffer for the last read. That iswhy r ead_si ze isused to determine

the number of bytesto write.

Designing File Formats

Suppose you are designing a program to produce a graph. The height, width, limits, and scales
are to be defined in a graph configuration file. Y ou are also assigned to write a user-friendly

program that asks the operator questions and writes a configurati on file so he or she does not
have to learn the text editor. How should you design a configuration file?

One way would be as follows:

height (in inches)
width (in inches)
x lower limit

X upper limit

y lower limit

y upper limit
x-scale

y-scale

Page 269
A typical plotter configuration file might look like:

10.0
7.0
0
100
30
0.5
2.0

Thisfile does contain all the data, but in looking at it, you have trouble identifying what, for
example, isthevalue of the Y lower limit. A solution isto comment the file so the
configuration program writes out not only the data. but also a string describing the data.

10.0 hei ght (in inches)
7.0 width (in inches)

0 x lower limt
100 X upper limt
30 y lower limt
300 y upper limt
0.5 Xx-scal e

2.0 y-scal e

Now the file is human readable. But suppose a user runs the plot program and typesin the
wrong filename, and the program gets the lunch menu for today instead of a plot configuration
file. The program is probably going to get very upset when it tries to construct a plot whose
dimensionsare "BLT on white" versus "Meatloaf and gravy."

Theresult is that you wind up with egg on your face. There should be some way of identifying
thisfile as aplot configuration file. One method of doing thisisto put the words "Plot
Configuration File" on the first line of the file. Then, when someone tries to give your program
the wrong file, the program will print an error message.

This takes care of the wrong file problem, but what happens when you are asked to enhance the
program and add optional logarithmic plotting? Y ou could simply add another line to the
configuration file, but what about all those old files? It's not reasonable to ask everyone to
throw them away. The best thing to do (from a user's point of view) isto accept old format

files. Y ou can make this easier by putting a version number in thefile.

A typical file now looks like:

Pl ot Configuration File V1.0

| og Logarithm c or normal plot
10.0 hei ght (in inches)

7.0 width (in inches)

0 X lower limt
Page 270
100 X upper limt
30 y lower limt
300 y upper limt
0.5 x-scal e
2.0 y-scal e

In binary files, it is common practice to put an identification number in the first four bytes of the
file. Thisis called the magic number. The magic number should be different for each type of
file.

One method for choosing a magic number is to start with the first four letters of the program
name (e.g., list) and convert them to hex: Ox6¢c607374. Then add 0x80808080 to the number:
OXECEOF3F4.

This generates a magic number that is probably unique. The high bit is set on each byte to make
the byte non-ASCI| and avoid confusion between ASCII and binary files.

When reading and writing a binary file containing many different types of structures, it is easy
to get lost. For example, you might read a name structure when you expected a size structure.
Thisisusualy not detected until later in the program. To locate this problem early, the
programmer can put magic numbers at the beginning of each structure. Then if the program
reads the name structure and the magic number is not correct, it knows something is wrong.

Magic numbers for structures do not need to have the high bit set on each byte. Making the
magic number just four ASCII characters makes it easy to pick out the beginning of structuresin
afile dump.

C-Style 1/0 Routines

C++ dlowsyou to use the C I/O library in C++ programs. Many times this occurs because
someone took a C program and trandated it to C++ and didn't want to bother trandating the I/O
calls. In some cases, the old C library is better and easier to use than the new C++ library. For
example, C string-conversion routines such assscanf andspri nt f arefar easier to use
than their C++ counterparts.

The declarations for the structures and functions used by the C /O functions are stored in the
standard include file<st di 0. h>.

The declaration for afile variableis:

FILE *file_variable, /* Comment */

Example:
#i ncl ude <stdio. h>

FILE *in file; /* File containing the input data */

Page 271

Before afile can be used, it must be opened using the function f open. f open returnsa
pointer to the file structure for the file. The format for f open is:

filevariable = fopen(name, node);

file variable
A filevariable.

name
Actua name of thefile (data.txt, temp.dat, etc.).

mode
Indicates whether the file isto be read or written. Mode is"w" for writing and "r" for
reading.

Thefunction f cl ose closesthefile. Theformat of f cl ose is:

status =f cl ose (file_variable);
Thevariable st at us will be zeroif thef cl ose was successful or non-zero for an error.
C provides three preopened files. These are listed in Table 16-7.

Table 16-7. Sandard Files

File Description

stdin Standard input (open for reading). Equivalent to C++'sci n.

st dout Standard output (open for writing). Equivalent to C++'scout .

stderr Standard error (open for writing). Equivalent to C++'scerr .
Thereisno Cfile equivalent to C++'scl og.

Thefunction f get ¢ reads asingle character from afile. If thereis no more datain the file the
function returns the constant EOF (ECF isdefined in stdio.h). Notethat f get ¢ returns an
integer, not a character. Thisis necessary because the EOF flag must be a noncharacter value.

Example 16-5 counts the number of charactersin the file input.txt.

Example 16-5. copy/copy.cc

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h> /* ANSI Standard Cfile */
#i ncl ude <i ostream h>

const char FILE NAME[] = "input.txt"; /1 Name of the input file
mai n()
{

int count = 0; // Nunber of characters seen

Page 272

Example 16-5 copy/copy cc (Continued)

FILE *in_file; [// Input file

int ch; /1 Character or EOF flag fromi nput

in_file = fopen(FI LE_NAME, "rb");

if (in_file == NULL) {
cerr << "Cannot open " << FILE NAME << '\n';

exit(8);
}
while (1)
ch = fgetc(in_file);
if (ch == EOF)
br eak;
++count ;
}
cout << "Nunber of characters in" << FILE_
NAME << " is " << count << '\n';

fclose(in_file);
return (0);

}

A similar function, f put c, existsfor writing asingle character. Itsformat is:
f put c (character, file),

Thefunctionsf get s and f put s work on oneline at atime. The format of thef get s call is:
string ptr = fgets (string, size, file);

sring_ptr
Equa to st ri ng if the read was successful, or NULL if EOF or an error is detected.

string
A character array where the function places the string.
size
The size of the character array. f get s reads until it gets aline (complete with ending
\'n)oritreadssi ze - 1 characters. It then ends the string with anull (\0).
Example:

char string[100];

fgets(string, sizeof(string), in_file);

Page 273

f put sissimilartof get s except it writes astring instead of reading it. The format of the
f put s functionis:

string ptr = fputs (string, file);

The parametersto f put s are similar to the onesfor f get s. f put s needs no size because it
gets the size of the line to write from the length of the string. (It keeps writing until it hits a null
character, \ 0).

C-Style Conversion Routines

C++ usesthe << operator for output. C usesthe pri nt f family of functions. A pri nt f call
consists of two parts. aformat that describes how to print the dataand alist of datato print.

The genera formof thepri nt f call is:
printf (format, paraneter-1, paraneter-2, ...);
The format string is printed exactly. For example:
printf("Hello World\n");
prints:
Hello Wirld

To print anumber, you must put a % conversion in the format string. For example, when C sees
%l in the format string, it takes the next parameter from the parameter list (which must be an
integer) and printsit.

Figure 16-1 shows how the elements of the pri nt f statement work to generate the fina
result:

|

_] int karm = 15; 2 ' - |
| (void) printf("Twice | %d is | %d \n" , term, 2%term) : |
E I L

Format section Expression section

Figure 16-1. printf structure

Page 274

The conversion % is used for integers. Other types of parameters use different conversions.
For example, if you want to print afloating point number, you need a% conversion. Table
16-8 lists the conversions.

Table 16-8. C-style Conversions

Conversion Variable Type
%l int

% d long int

%l short int

% float

% f double

%u unsigned int

% u unsigned long int
%u unsigned short int
% char * (string)

% char

%0 int (prints octal)
U int (prints hexadecimal)
% float (intheformd

dddE+dd)

Many additional conversionsaso canbeusedinthepri nt f statement. See your reference
manual for details.

Thepri nt f function does not check for the correct number of parameters on each line. If you
add too many, the extra parameters are ignored. If you add too few, C will make up values for
the missing parameters. Also C does not type check parameters, so if you use a%d on a
floating point number, you will get strange results.

Question 16-2: Why does 2 + 2 = 59867 (Your results may vary.)

[File: two/two.c]
#i ncl ude <stdio. h>

main ()

{

i nt answer;

answer

=2 + 2

printf("The answer is %\n");
return (0);

Page 275

Question 16-3: Why does 21/ 7 = O? (Your results may vary.)

[File: float3/float3.c]
#i ncl ude <stdio. h>

mai n()

{

float result;

result = 21.0/ 7.0;
printf ("The result is %\n", result);
return (0);

Thefunctionf pri ntf issimilartopri nt f except that it takes one additional parameter, the
fileto print to.

fprintf(file, format, paraneter-1, paranmeter-2, ...);

Another flavor of thepr i nt f familyisthespri ntf cal. Thefirst parameter of spri nt f
isastring. The function formats the output and stores the result in the given string.

sprintf(string, format, paraneter-1, paraneter-2, ...);
For example:
char string[40]; /* The fil ename */

/* CQurrent file nunber for this segnment */
int file_nunber = 0;

sprintf(string, "file. %", file_nunber);
++f il e_nunber;
out_file = fopen(string, "wW');

Warning: Thereturn value of spri nt f differsfrom system to system. The ANS| standard
definesit as the number of characters stored in the string; however, some implementations of
UNIX C defineit to be a pointer to the string.

Reading is accomplished through the scanf family of calls. Thescanf function has similar
sister functions: f scanf and sscanf . Theformat for f scanf is:

nunber = fscanf(file, format, ¶neter-1, . . .);

number
Number of parameters successfully converted

fie
A file opened for reading

format
Describes the datato be read

Page 276

parameter-1

First parameter to be read
WARNING

If you forget to put & in front of each variable for scanf , the result
can be a" Segmentation violation core dumped” or "1llegal memory
access' error. In some cases arandom variable or instruction will
be modified. Thisis not common on UNIX machines, but
MS-DOS/Windows, with itslack of memory protection, cannot
easily detect this problem. In MS-DOSWindows, omitting & can
cause a system crash.

Thereisone problem with thisscanf : It's next to impossible to get the end-ofline handling
right. However, there's a ssimple way to get around the limitations of scanf —don't useit.
Instead usef get s followed by the string version of scanf , thefunction sscanf :

char 1ine[100]; /1 Line for data

fgets(line, sizeof(line), stdin); /1l Read nunbers
sscanf (line, "% %", &unberl, &nunber?2);

Finaly, thereisafile version of scanf , thefunction f scanf. Again thisfunction is extremely
difficult and should not be used. Usef get s and sscanf instead.

C-StyleBinary 1/0

Binary 1/0 is accomplished through two routines: f r ead andf wr i t e. The syntax for f r ead
is:

read_size = fread (dataptr, 1, size, file);

read size
Size of the data that wasread. If thisislessthan si ze, then an end-of-file or error
occurred.

data_ptr

Pointer to the data to be read.
Size

Number of bytesto be read.

file
Input file.
Example:
struct {
i nt wi dt h;
i nt hei ght ;

Page 277

} rectangl e;

if (fread((char *)&ectangle, 1, sizeof(rectangle), in_file) !=
si zeof (rectangle)) {
fprintf(stderr, "Unable to read rectangle\n");
exit (8);
}

In this example you are reading in the structure r ect angl e. The & operator makes the
structure into apointer. The cast "(char *)" turns & ect angl e into the proper parameter
type, andthe si zeof operator isused to determine how many bytestof r ead in aswell asto
check that read was successful.

fwrite hasacaling sequencesimilartof r ead:
wWite size = fwite(data_ptr, 1, size, file);
NOTE

To make programming simpler and easier, | aways use 1 asthe
second parameter tof r ead and f wr i t e. For afull description of
these functions see your C reference manual.

Question 16-4: No matter what filename you give the following program, our program can't
find it. Why?

[File: fun-file/fun-file.c]
#i ncl ude <stdio. h>
#i nclude <stdlib. h>

int main()

{
char name[100] ; /* Name of the file to use */
FI LE *In_file; /* File for input */

printf("Name? ");
f get s(nane, sizeof (nane), stdin);

in_file = fopen(name, "r");

if (in_file == NULL) {
(void) fprintf(stderr, "Could not open file\n");
exit(8);

}
printf("File found\n");

fclose(in_file);
return (0);

Page 278

Programming Exer cises
Exercise 16-1: Write a program that reads afile and counts the number of linesin it.
Exercise 16-2: Write aprogram to copy afile, expanding all tabs to multiple spaces.

Exercise 16-3: Write a program that reads a file containing alist of numbers and writes two

files, one with all the numbers divisible by 3 and another containing all the other numbers.

Exercise 16-4: Write aprogram that reads an ASCII file containing alist of numbers and
writes a binary file containing the same list. Write a program that goes the other way so you
can check your work.

Exercise 16-5: Write a program that copies afile and removes all characters with the high bit
set(((ch & 0x80) !'=0).)

Exercise 16-6: Design afile format to store a person’'s name, address, and other information.

Write a program to read this file and produce a set of mailing labels.

Answersto Chapter Questions

Answer 16-1: The problem isthat you are writing an ASCII file, but you wanted a binary file.
In UNIX, ASCII isthe same as binary, so the program runs fine. In MSDOS/Windows, the
end-of-line issue causes problems. When you write a new-line character (OxOa) to thefile, a
carriage return (OxOD) is added to the file. (Remember that end-of-line in MS-DOSWindows
is <carriage return><line feed>, or OxOd, OxOa.) Because of this editing, you get an extra
carriage return (OxOd) in the output file.

To write binary data (without output editing) you need to open the file with the binary option:
out file.open("test.out", ios::out | ios::binary);

Answer 16-2: Thepri nt f call does not check for the correct number of parameters. The
Satement:

printf("The answer is %\ n");

tellsthepri nt f to print the string "The answer is' followed by the answer. The problem is
that the parameter containing the answer was omitted. When this happenspr i nt f getsthe
answer from arandom location and prints garbage.

Properly written, the pri nt f statement is.

printf("The answer is %\ n", answer);

Page 279

Answer 16-3: Thepri nt f cal does not check the type of its parameters. You tell the
printf cal to print an integer number (@) and supply it with afloating point parameter
(resul t). Thismismatch causes unexpected results such as printing the wrong answer.

When printing a floating point number you need a% conversion. Properly written, our
printf statementis:

printf("The answer is %\n", result);

Answer 16-4: The problemisthat f get s getsthe entire line including the new-line character
(\ n). If you have afile named sam, the program reads sam\n and triesto look for afile by that
name. Because there is no such file, the program reports an error.

Thefix isto strip the new-line character from the name:

name[strlen(nane) - 1] = "\0"; /* CGet rid of last character */

The error message in this case is poorly designed. True, you did not open the file, but the
programmer could supply the user with more information. Are you trying to open the file for
input or output? What is the name of the file you are trying to open? Y ou don't even know
whether the message you are getting is an error, awarning, or just part of the normal operation.
A better error messageis:

fprintf(stderr, "Error: Unable to open % for input\n", nane);

Notice that this message would also help us detect the programming error. When you typed in
"sam" the error would be:

Error: Unable to open sam
for input

This clearly shows us that you are trying to open afile with anew-line in its name.

Page 281

17
Debugging and Optimization

In This Chapter:

Debugging

Divide and Conquer
Debug-Only Code
Debug Command-
Line Switch

I nteractive
Debuggers
Debugging a Binary
Search

Runtime Errors

The Confessional
Method of Debugging
How to Optimize
Case Study
Exercises
Answersto Questions

Bloody instructions which, being learned, return to plague the inventor.
—Shakespeare, on Debugging

Debugging

The hardest part of aprogram is not the design and writing, but the debugging phase. It is here
that you find out how your program really works (instead of how you think it works).

To eradicate a bug, you need two things: away of reproducing the bug and information from the
program that lets you locate and correct the problem.

In some cases, finding the bug is easy. Y ou discover the bug yourself, the test department
produces a clear and easy test that displays the bug, or the output always comes out bad.

In some cases, especially with interactive programs, reproducing the bug may be 90 percent of
the problem. Thisis especially true when dealing with bug reports sent in by usersin the field.
A typical call from auser might be:
User:

That database program you gave meis broken.
Programmer:

What's wrong?
User:

Sometimes when I'm doing a sort, it gets things in the wrong order.

Page 282

Programmer:
What command were you using?

User:
The sort command.

Programmer:
Tell me exactly what you typed, keystroke by keystroke, to get it to fail.

User:
| don't remember it exactly. | was doing alot of sorts.

Programmer:
If I come over can you show me the bug?

User:
Of course.

Five minutes later the programmer isin the user's office and utters the fatal words, "Show me."
The user types away and the program stubbornly works, no matter what the user doesto it.

The programmer gives up and goes back to his office only to find a message from the user: "It
failed five minutes after you left."

Example 17-1 is a short database lookup program. It asks the user for input and checks the
input against a hard-coded list of names. Although it is very smple, the program's structure is
typical of much larger and more complex interactive programs.

Example 17-1. base/base.cc

/**

* Database -- a very sinple database programto

| ook up nanmes in a hard-coded |i st

Usage:
dat abase

Enter the nane; it w

*
*
*
*
*
*
*
*
*
*

#i ncl ude <i ostream h>
#i ncl ude <string. h>

mai n()

{

char name[STRI NG_LENGTH ; /1 A name to | ook up

Example 17-1. base/base.cc (Continued)

i nt 1 ookup(char *);

while (1) {
cout << "Enter name: ";

Programwi || ask you for a nane.

N B

[l tell you whether*

the name is in the list.
A bl ank name term nates the program

***I

const int STRI NG LENGTH = 80; /* Length of typica

/1 Look up a nane

cin.getline(nane, sizeof(nanme));

/1 Check for blank nane
if (strlen(nanme) <= 0)
br eak;

i f (1ookup(nane))
cout << nane << isint
el se

cout << nane << is not in the list\n";

}

return (0);

}

he list\n";

*

*

*

string */

/**

* Lookup -- look up a nane in a |list

Par anet er s
name -- name to | ook up

Ret ur ns
1-- nane in the |ist
O -- nane not in the list

L T S

hkhkkhkkhkhkhhhkhhhkhhhhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhkhdhkhdkhkrdk rkk**x

i nt | ookup(char *nane)

{
/1 List of people in the database
/1 Note: Last nane is a NULL for
static char *list[] = {

end-of - | i st

*
*
*
*
*
*
*
*
*

Page 283

"John",

"Jinm,
"Jane",
" yde",
NULL
1
i nt index; /1 Index into |ist
for (index = 0; list[index] != NULL; ++i ndex) {
if (strecnp(list[index], nane) == 0)
return (1);
}
return (0);

}
A typical execution of this programiis:

Ent er nanme: San
Samis not in the |ist
Ent er nane: John

Page 284
Example 17-1. base/base.cc (Continued)

John is in the |ist
Ent er nane:

When we release this program, the users immediately start complaining about mysterious
problems that go away whenever the programmer is around. Wouldn't it be nice to have alittle
gremlin sitting on the user's shoulder copying down everything he or she types? Unfortunately,
gremlins are unavailable; however, we can change this program so it produces a save file that
contains every keystroke the user typed.

Our program uses the statement:
cin.getline(nane, sizeof(name));
to read the user data.

Let'swrite anew routine, ext ended_get | i ne, and useitinstead of get | i ne. It not only
will get aline. but also will save the user's response in asavefile.

Example 17-2 xgets/xgets.cc

#i ncl ude <i ostream h>

#i ncl ude <fstream h>

/*
* The main programwill open this file if -Sis on
* the comand | i ne.

*/

of stream save fil g; /1 File to use for saving input
int save_file_open = O; // Save file defaults to not open
/**

* extended getline -- get aline fromthe input file *

* and record it in a save file if needed *

* *
* Paraneters *
* line -- the line to read *
* size -- sizeof(line) -- maxi num nunber of *
* characters to read *
* file -- file to read data from *
* (normal Iy stdin) *
* *
* Returns *
* NULL -- error or end-of-file in read *
* otherwise line (just like getline) *

**/

i stream &xtended getline(char *line, int size, ifstream&file)

{

i stream *resul t; /* Result of gets */
result = & ile.getline(line, size);

/! Did soneone ask for a save file?
if (save_file_open) {

Page 285

Example 17-2 xgets/xgets.cc (Continued)

save file << line << '"\'n';

}

return (*result);

}

We aso change our main program to handle a new option: "-Sfile" to specify asavefile.
(Typically uppercase letters are used for debugging and other less used options.) Our new main
program is shown in Example 17-3:

Example 17-3 base/base2.cc

/**

* Data Base -- A very sinple database programto *
* | ook up names in a hard-coded |i st *
* *
* Usage: *
* dat abase [-S<file>] *
* *
* -S<file> Specify save file for *
* debuggi ng pur poses *
* *
* Programwi || ask you for a name. *
* Enter the nane; it will tell you whether*
* the name is in the list. *
* *
* A bl ank name terninates the program *
khkhkkkhhhkkhhhkkkhhhkkhhhkhkkhhhkhdhhkkhhhkhdhkk hkxk dhkd h*xk dkkk kh*x*d *x*k,*x*%x

/
#i ncl ude <i stream h>
#i ncl ude <fstream h>
#i ncl ude <stdlib. h>

of stream save_fil e; [/l Save file if any
int save_file_open = 0; // Save file open flag

char *extended_getline(char *line, int size, istreamé&file);

mai n(i nt argc, char *argv[])
{
char nane[80]; /1 A name to | ook up
char *save file_nane; // Nane of the save file

int | ookup(char *nane);// |ook up a name

while ((argc > 1) && (argv[I][0] == "-"))
switch (argv[1][1]) {
case 'S :
save_file_nane = &argv[1][2];
save file.open(save file nanme, io0s::out);
if (save_file.bad())
cerr << "Warning: Unable to open save file" <<
save file name << '\n';

Page 286
Example 17-3 base/base2. cc (Continued)

el se
save _file_open = 1;
br eak;
defaul t:
cerr << "Bad option: " << argv[l1l] << '\n';
exit (8);
}
--argc;
++ar gv;
}
while (1)
cout << "Enter nane: ";
extended_get | i ne(nane, sizeof(name), cin);
/* ... rest of program... */
}
return (0);

}

Now we have a complete record of what the user typed. Looking at the input, we see that he
typed:

Sam
John

The second name begins with a space and, although "John" isin the list, "<space>John" is not.
In this case we found the error by inspecting the input; however, more complex programs have
much more complex input. We could type al that in when debugging, or we could add another
featureto ext ended_get | i ne that would add a playback file to it. When the playback file

isenabled, input will not be taken from the keyboard, but instead will be taken from thefile.

Example 17-4 xgets/xgets2.cc

#i ncl ude <i ostream h>

#i ncl ude <fstream h>

#

of stream save_fil e; /] Save input in this file

int save_file_ open = 0; // Save file has been opened

i fstream pl ayback_file; // Playback data fromthis file
int playback file_open = 0;// Playback file open flag

/***

* extended getline -- get aline fromthe input file *
* and record it in a save file if needed *
* *
* Par aneters *
* line -- the line to read *
* size -- sizeof(line) -- maxi num nunber of *
* characters to read *
* file -- file to read data from *
Example 17-4. xgets/xgets2.cc (Continued)
* (normal ly stdin) *
* *
* Returns *
* NULL -- error or end-of-file in read *
* otherwise line (just like getline) *

**I

i stream &extended_getline(char *line, int size, istream&file)

{

istream *result; /1l Rresult of getline

if (playback _file_open)
result = &playback file.getline(line, size);
if (file ==cin)
/1 Echo the input to the standard out
/] so the user sees it
cout << line << '\n';
} else
result = &file.getline(line, size);

/1 Did soneone ask for a save file?
if (savefil e_open)
save file << line << '"\'n';

return (*result);

}

Page 287

We aso add a playback option to the command line, -Pfile.: This allows usto automatically
"type" the commands that caused the error. Our main program now looks like Example 17-5.

Example 17-5. base/base3.cc

/**

* Database -- A very sinple database programto *
* | ook up nanmes in a hard-coded |i st *
* *
* Usage: *
* dat abase [-S<file> -P<file>] *
* *
* -S<file> Specify save file for *
* debuggi ng pur poses *
* *
* -P<file> Speci fy playback file for *
* debuggi ng or denonstration *
* *
* Programwi || ask you for a nane. *
* Enter the nane; it will tell you whether *
* the name is in the list. *
* *
* A bl ank nane termninates the program *
**I

Page 288
Example 17-5. base/base3.cc (Continued)

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <stdlib. h>

of stream pl ayback _file; // Playback data

int save_file_open = 0; // Save file open flag

i fstream save_file; [/l Save file if any

int playbackfile_open = 0; // True if playback in progress

char *extended_getline(char *line, int size, istreamé&file);

mai n(int argc, char *argv[])
{
char nane[80]; /1 A name to | ook up
char *save file_nane; // Nanme of the save file
char *playback file_nane; // Name of the playback file

int | ookup(char *nane); // |ookup a name

while ((argc > 1) && (argv[1][0] == "-"))
switch (argv[1][1]) {

case 'S':
save_file_nane = &argv[1][2];
save file.open(save file nanme, io0s::out);
if (save_file.bad())

cerr << "Warning: Unable to open save file <<
save file_ name << '\n';
el se
save_file_open = 1;

br eak;

case 'P':

pl ayback_file_nane = &argv[1][2];

pl ayback file.open(playback file nane, io0s::in);
if (playback _file.bad) ({
cerr <<

"Error: Unable to open playback file " <<
pl ayback file nane << '\n';

exit (8);
}
pl ayback file open = 1;
br eak;
defaul t:
cerr << "Bad option: "<< argv[1l] << '\n';
exit (8);
}
--argc;
++ar gv;
{
while (1)

cout << "Enter nane: ";

Page 289
Example 17-5. base/base3.cc (Continued)

extended_get | i ne(nane, sizeof(name), cin);
/* ... rest of program... */

return (0);

}

Now when a user calls up with an error report, we can tell him, "Try it again with the save-file
feature enabled, and then send me a copy of your files." The user then runs the program and
saves the input into the file save.txt.

% dat abase - Ssave. t xt
Ent er nane: San

Samis not in the |ist
Ent er nane: John

John is not in the list
Ent er nane:

He sends us the file save.txt and we run the error with the playback option enabled.

% dat abase - Psave. t xt
Ent er nane: San

Samis not in the |ist
Ent er nane: John

John is not in the list
Ent er nane:

We now have areliable way of reproducing the problem. In many cases that's half the battle.
Once you can reproduce the problem you can proceed to the next steps: finding it and fixing it.

Once a programmer asked a user to send the programmer a copy of hisfloppy.
An express package arrived the next day containing a XeroxO photocopy of the
floppy. But the user was not completely computer-illiterate: He knew it was a
two-sided floppy, so he had photocopied both sides.

Serial Debugging

Before you start debugging, save the old, "working" copy of your program in asafe place. (If
you are using a source control system such as sccs, RCS, or pcvS, your last working version
should be checked in.) Many times while you are searching for a problem, you may find it
necessary to try out different solutions or to add temporary debugging code. Sometimes you
will find you've been barking

Page 290

up the wrong tree and need to start over. That's when the last working copy becomes
invaluable.

Once you have reproduced the problem, you must determine what caused it to happen. There
are several methods for doing this.

Divide and Conquer

The divide and conquer method has already been briefly discussed in Chapter 7, The
Programming Process. It consists of putting in cout statements where you know the datais
good (to make sure it realy is good), where the data is bad, and several pointsin between.
Thisway you can start zeroing in on the section of code that contains the error. More cout
statements can further reduce the scope of the error until the bug is finally located.

Debug-Only Code

The divide-and-conquer method uses temporary cout statements. They are put in as needed
and taken out after they are used. The pre-processor conditional-compilation directives can be
used to put in and take out debugging code. For example:

#i f def DEBUG
cout << "Wdth " << width << " Height " << height << \n';
#endi f /* DEBUG */

The program can be compiled with DEBUC undefined for normal use so you can define it when
debugging is needed.
Debug Command-Line Switch

Rather than using a compile-time switch to create a special version of the program, you can
permanently include the debugging code and add a specia program switch that will turn on
debugging output. For example:

i f (debug)

cout << "Wdth " << width << " Height " << height << '\n;
wheredebug isavariable set if - D is present on the command line.

This has the advantage that only a single version of the program exists. One of the problems
with "debug-only" codeis that unless the code is frequently used, it can easily become stale
and out of date. Frequently a programmer tries to find abug only to discover that the
debug-only code is out of date and needs fixing.

Another advantage of the debug command-line switch is that the user can turn on this switch in
the field, save the output, and send it to you for analysis. The

Page 291

runtime switch should be used in all casesinstead of conditional compilation, unlessthereis
some reason you do not want the customer to be able to get at the debugging information.

Some programs use the concept of a debug level. Level 0 outputs only minimal debugging
information, level 1 more information, and on up to level 9, which outputs everything.

Another debugging technique can be seen in the Ghostscript® program by Aladdin Enterprises.
This program implementsthe idea of debugging letters. The command option - ZxxXx sets
the debugging flags for each type of diagnostic output wanted. For example, f isthe code for
the fill algorithm and p is the code for the path tracer. If | wanted to trace both these sections, |
would specify - Zf p.

The option isimplemented by the following code:

/*

* BEven though we only put 1 zero, C+t+ will fill in the
* rest of the arrays with zeros

*/

char debug[128] = {0}; /1 The debuggi ng fl ags

mai n(argc, argv)
int argc;
char *argv[];

while ((argc > 1) && (argv[l][0] =="-"))
switch (argv[1][1]) {
[* ... normal switch */

/1 Debug switch
case 'Z':
debug_ptr = &argv[1][2];
/1 Loop for each letter
while (*debug ptr '=\0") {
debug[*debug_ptr] = 1;
++debug_ptr;
}

br eak;

}
--argc;
++ar gv;

/* Rest of program*/
}

* Ghostscript is a PostscriptO-lke interpreter available from the Free Software Foundation for a
minimal copying charge They can be reached at. Free Software Foundation. Inc, 675 Mass Ave,
Cambridge. MA 02139, phone (617) 876-3296.

Page 292
Thisis used inside the program by:

if (debug['p'])
cout << "Starting new path\n";

Ghostscript is alarge program (some 25.000 lines) and rather difficult to debug. This form of
debugging allows the user to get a great deal of information easily.

Going Through the Output

Enabling debug printout is anice way of getting information, but many times there is so much
data that the information you want can easily get lost.

The shell or command-line interpreter allows you to redirect what would normally go to the
screen to afile through the use of the ">file" option. For example:

buggy -D9 >t np. out

will run the program buggy with ahigh level of debug set and send the output to the file
tmp.out.

The text editor on your system aso makes a good file browser. Y ou can use its search
capabilities to look for the information you want to find.

Interactive Debuggers

Most compiler manufacturers provide an interactive debugger. They give you the ability to stop
the program at any point, examine and change variables, and "single-step” through the
program. Because each debugger is different, a detailed discussion is not possible.

However, we are going to discuss one debugger gdb. This program is available for many
UNIX machines from the Free Software Foundation. Turbo-C++ has its own built-in debugger.
Although the exact syntax used by your debugger may be different, the principles shown here
will work for all debuggers.

Basic GDB commands are:

run
Start execution of a program.

br eak line-number
Insert a breakpoint at the given line number. When a running program reaches a
breakpoint, execution stops and control returns to the debugger.

br eak finction-name
Insert a breakpoint at the first line of the named function. Commonly, the command br eak
inmai n isused to stop execution at the beginning of the program.

Page 293

cont
Continue execution after a breakpoint.

print expression
Display the value of an expression.

step
Execute asingle line in the program. If the current statement calls a function, the function
issingle stepped.

next
Execute asingle line in the program, but treat function callsasasingle line. This
command is used to skip over function calls.

list
List the source program.

wher e
Print the list of currently active functions.

st at us
Print alist of breakpoints.

del ete
Remove a breakpoint.

We have a program that should count the number of threes and sevensin a series of numbers.
The problem isit keeps getting the wrong answer for the number of sevens. Our program is
shown in Example 17-6.

Example 17-6. seven/count cc

1 #incl ude <iostream h>

2 int seven_count; /* Nunber of seven's in the data */
3 int data[5]; /* The data to count 3 and 7 in */
4 int three_count; /* Nunber of threes in the data */
5

6 main() {

7 int index; /* Index into the data */

8 void get _data(int datal[]);

9
10 seven_count = 0;
11 three count = 0;
12 get _data(data);
13
14 for (index = 1; index <= 5; ++index) {
15 if (data[index] == 3)
16 ++t hr ee_count ;

17 if (data[index] == 7)

18 ++seven_count ;

19 }

20 cout << "Threes "<< threecount <<

21 " Sevens " << seven_count << '\n';

Page 294

Example 17-6. seven/count.cc (Continued)

22 return (0);

23 }

24 /**
25 * get_data -- get 5 nunbers fromthe conmand |ine *

26 **I

27 void get _data(int data[])

28 {

29 cout << "Enter 5 nunbers\n";

30 cin >> data[l] >> data[2] >> data[3] >> data[4] >> data[5];
31}

When we run this program with the data 3 7 3 0 2 the results are:

Threes 3 Sevens 3

We start by invoking the debugger (GDB) with the name of the program we are going to debug
(count). The debugger initializes, outputs the prompt (gdb), and waits for a command.

% gdb count

GB is free software and you are welcone to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for CDB; type "show warranty" for
detail s.

GDB 4.12 (n68k-sun-sunos4. 0. 3),

Copyright 1994 Free Software Foundation, Inc..

(gdb)

We don't know where the variable is getting changed, so welll start at the beginning and work
our way through until we get an error. At every step we'll display the variable seven_count
just to make sure it's okay.

We need to stop the program at the beginning so we can single-step through it. The command
break mai n tells GDB to set a breakpoint at the first instruction of the function mai n. The
command r un tells GDB to start the program, which will r un until it hits the first breakpoint.

(gdb) break main
Breakpoint 1 at 0x22c2: file count.cc, line 10.

(gdb)
The number 1 isused by GDB to identify the breakpoint. Now we need to start the program:

(gdb) run
Starting program /usr/sdo/count/count

Breakpoint 1, main () at count.cc: 10
10 seven_count = 0;

(gdb)

The message Br eakpoi nt 1, mai n. .. indicatesthat the program encountered a
breakpoint and has now turned control over to debug.

Page 295

We have reached the point where seven_count isinitiaized. The command next will
execute a sSingle statement, treating function calls as one statement. (The names of the command
for your debugger may be different.) We go past the initialization and check to see whether it
worked:

(gdb) next

11 three_count = 0;
(gdb) print seven_count

$1 =0

(gdb)

It did. We try the next few lines, checking al the time:

(gdb) next

12 get data(data);
(gdb) print seven_count

$2 =0

(gdb) next

Enter 5 nunbers

37302

14 for (index = 1; index <= 5; ++index) {
(gdb) print seven_count

$3 =2

(gdb)

seven_count somehow changed the value to 2. The last statement we executed was

get _dat a(dat a) ; so something isgoing on in that function. We add a breakpoint at the
beginning of get _dat a, get rid of theone at mai n, and start the program over with ther un
command:

(gdb) break get data

Breakpoint 2 at 0x23b2: file count.cc, |ine 29.

(gdb) info breakpoints

Num Type D sp Enb Address What

1 breakpoint keep y 0x000022c2 in nain at count.cc: 10

2 br eakpoi nt keep y 0x000023b2 in get
data(int *) at count.cc: 29

(gdb) delete 1

(gdb) run

The program bei ng debugged has been started already.

Start it fromthe beginning? (y or n) Y

Starting program /usr/sdo/count/count

Breakpoi nt 2, get data (data=0x208f8) at count.cc: 29

(gdb)
We now start single-stepping again until we find the error:

Breakpoi nt 2, get data (data=0x208f8) at count.cc: 29
29 cout << Enter 5 nunbers\n";

(gdb) print seven_count

$5 =0

(gdb) next

30 cin >> data[l] >> data[2] >> data[3] >> data[4] >>
dat a[5] ;

(gdb) print seven_count

Page 296
$6 = 0
(gdb) next
Enter 5 nunbers
37302
31 }
(gdb) print seven_count
$7 =2
(gdb) list 22
22 return (0);
23 }
24 /**
25 * get _data -- get 5 nunbers fromthe conmmand |ine *
26 **/
27 voi d get _data(int data[])
28 {
29 cout << "Enter 5 nunbers\n";
30 cin >> data[1l] >> data[2] >> data[3] >> data[4] >> data[5];
31 }

At line 30 the data was good, but when we reached line 31, the data was bad, so the error is
located at line 30 of the program, the ci n. We've narrowed the problem down to one
statement. By inspection we can seethat weareusing dat a [5] , anillegal member of the
array dat a.

But why doesseven_count go bad? Since dat a isonly five elementslong, thereisno
dat a[5] . However, theci n >>dat a[5] hasto put the data someplace, so it decided to
put it in arandom memory location, in thiscaseseven_count .

Debugging a Binary Search

The binary search agorithm isfairly smple. Y ou want to see whether a given number isin an
ordered list. Check your number against the one in the middle of thelist. If it is the number, you
were lucky—stop. If your number was bigger, then you might find it in the top haf of the list.
Try the middle of the top half. If it was smaller, try the bottom half. Keep trying and dividing
thelist in half until you find the number or the list gets down to a single number.

Example 17-7 uses a binary search to see whether a number can be found in the file
number s.dat.

Example 17-7. search/searchO.cc

/**

* Search -- search a set of nunbers

Usage:
sear ch
You will be asked nunbers to | ook up

* Ok ¥ X
L R I

* Files:

Example 17-7. search/searchO.cc (Continued)

* nunbers. dat -- nunbers 1 per line to search *
* (nunbers nust be ordered) *

**I

#i ncl ude <i stream h>

#i ncl ude <stdlibream h>
#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

const int MAX NUMBERS = 1000; /1 Max nunbers in file
const char *const DATA FILE = "nunbers.dat"; // File with nunbers

int datal MMX_ NUMBERS]; // Array of nunbers to search

i nt max_count; /1 Number of valid elenents in data
mai n()
(

ifstreamin_file; /1 Input file

int mddle; /1 Mddle of our search range

int |ow, high; /1 Upper/| ower bound

int search; /1 Nunber to search for

in_file.open(DATA FILE, ios::in);
if (in_file.bad()) (
cerr << "Error: Unable to open " << DATA FILE << '"\n;

exit (8);
}
/*
* Read in data
*/

mex_count = O;
while (1)
char 1ine[30]; // Line fromthe input file

if (in_file.eof())
br eak;

in_file.getline(line, sizeof(line));
sscanf (line, "%l", data[max_count]);
if (data[max_count] == -1)

br eak;

++max_count ;

}

while (1) {
cout << "Enter nunber to search for or -1 to quit:" ;

Page 297

cin >> search

if (search == -1)

Example 17-7 search/search() cc (Continued)

br eak;

low = O;
hi gh = nmax_count;

while (1) {
mddle = (low + high) / 2;

if (data[m ddl e] == search)
}

if (low == high)
cout << "Not found\n";
br eak;

cout << "Found at index "

}

if (data[m ddle] < search)
[ow = middl e;

el se
hi gh = m ddl e;

}

}

return (0);
}
Our datafileis:
numbers.dat
4
6
14
16
17
-1

When we run this program in UNIX, the results are;

% sear ch
Segnentation fault (core dunped)

<< middle <<’

\n';

Page 298

When we run this program on MS-DOS, the system locks up and we have to hit the reset

switch. If the program is run in Windows we get an application error (if we're lucky).

Either way thisis not good. It means something went wrong in our program and the program
tried to read memory that wasn't there. The debugger GDB can read this file and help us
determine what happened.

% gdb search
GB is free software and you are welcone to distribute copies of it
under certain conditions; type "show copying" to see the conditions.

Page 299

There is absolutely no warranty for CGDB; type "show warranty" for
details.

GDB 4. 12 (n68k-sun-sunos4. 0. 3),

Copyright 1994 Free Software Foundation, Inc..

(gdb) run

Starting program /usr/sdo/search/search

Program recei ved signal Sl GSEGY, Segnentation fault.
0xec46320 i n nunber ()

(gdb)

The debugger tells us we have been killed by a segmentation fault generated from the
procedure. But we don't have aprocedure nunber ! The routine must belong to the C++
library.

We now use thewher e command to find out which function called which function (also
known as a stack trace):

(gdb) where

#0 0xec46320 in nunber ()

#1 Oxecd45cc2 in _doscan ()

#2 0xec45b34 in sscanf ()

#3 0x2400 in main () at search.cc: 48

(gdb)

The current function is printed first, then the function that called it, and so on until we reach the
outer function mai n. From thiswe seethat nunber wascaled by _doscan, which was
called by sscanf . Werecognize sscanf asalibrary routine. The other functions must be
subroutines called by sscanf . Thelast function that had control wasthe call of sscanf
which was made from line 48 of mai n.

Now weusethel i st command to take alook at the source for thisline:

(gdb) list 48

43 if (in_file.eof))

44 br eak;

45

46 in file.getline(line, sizeof(line));
47

48 sscanf (line, "%l", data[maxcount]);
49 if (data[max_count] == -1)

50 br eak;

51

52 ++max_count ;

(gdb) quit

The programis running. Qit anyway (and kill it)? (y or n) Y

Thisisthe line that caused the problem.

Another way of finding the problem is to single-step through the program until the error occurs.

First list a section of the program to find a convenient place to put the breakpoint, and then start
the execution and single-step process.

Page 300

Script started on Mon Cct 31 10:07:19 1994

% gdb search

@B is free software and you are welcone to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for CGDB; type "show warranty" for
details.

@B 4. 12 (nbB8k-sun-sunos4. 0. 3),

Copyright 1994 Free Software Foundation, Inc..

(gdb) list main

18 const char *const DATA FILE = "nunbers. dat";

/1 File with nunbers

19

20 int datal MMX_ NUMBERS]; // Array of nunbers to search

21 i nt max_count; /1 Number of valid elenents in data
22 mai n()

23 {

24 ifstreaminfile; /1 Input file

25 int mddle; /1 Mddle of our search range

26 int |ow, high; /1 Upper/| ower bound

27 int search; /1 Nunmber to search for

(gdb) break main

Breakpoint 1 at 0x2318: file search.cc, |ine 24.
(gdb) run

Starting program /usr/sdo/search/search

Breakpoint 1, nmain () at search.cc: 24

24 ifstreaminfile; // Input file

(gdb) step

29 in_file.open(DATAFILE, ios::in);

(gdb) step

30 if (in_file.bad() {

(gdb) step

39 mex_count = O;

(gdb) step

43 if (in_file.eof())

(gdb) step

46 in_file.getline(line, sizeof(line));
(gdb) step

48 sscanf (line, "%l", data[max_count]);
(gdb) step

Programrecei ved signal SIGSEGY, Segnentation fault.
0xec46320 in nunber ()
(gdb) quit
The programis running. Qit anyway (and kill it)? (y or n) y

This method, too, points at line 48 as the culprit. On inspection we notice that we forgot to put
an ampersand (&) in front of the variable for sscanf . So we change line 48 from:

sscanf (line, "%l", data[nmax_count]);

to:

sscanf (line, "%l", &data]nmax_count]);

and try again.

Page 301
NOTE
Y ou might wonder why we use the function sscanf when theline:
in_file >> data[nax_count];
performs the same function.

The answer issimple. We used sscanf to cause problems. Without the
pointer error we would have nothing to debug. Thei n_fi | e statement ismore
reliable, and reliable code has no place in a chapter on debugging.

The first number in our list is4, so wetry it. Thistime our output looks like:

Enter nunber to search for or -1 to quit: 4
Found at index O

Found at index O

Not f ound

Enter nunber to search for or -1 to quit: ~C

The program should find the number, let us know it's at index 0, and then ask for another
number. Instead we get two f ound messagesand one not f ound message. We know
that everything is running smoothly up to the time we get the first found message. After that
things go downhill.

Getting back into the debugger, we usethel i st command to locate the found message and put
abreakpoint there.

% gdb search

@B is free software and you are welcone to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for CGDB; type "show warranty" for
details.

@B 4. 12 (nB8k-sun-sunos4. 0. 3),

Copyright 1994 Free Software Foundation, Inc..

(gdb) list 66,77

66 while (1)

67 mddle = (low + high) / 2;

68

69 if (data[mddle] == search) {
70 cout << "Found at index " << mddle << '\n';
71 }

72

73 if (low == high)

74 cout << "Not found\n";

75 br eak;

76 }

77

(gdb) break 70
Breakpoint 1 at 0x249e: file search.cc, line 70.

(gdb) run
Starting program /usr/sdo/search/search
Enter nunber to search for or -1 to quit: 4

Page 302
Breakpoint 1, main () at search.cc: 70
70 cout << "Found at index" << nmiddle << '\n';
(gdb) step
Found at index O
73 if (low == high)
(gdb) step
78 if (data[m ddle] < search)
(gdb) step
81 hi gh = m ddl e;
(gdb) step
67 mddle = (low + high) / 2;
(gdb) step
69 if (data[m ddl e] == search)
(gdb) step
70 cout << "Found at index << mddle << '"\'n';
(gdb) step
Found at index O
73 if (low == high)
(gdb) quit
The programis running. Qit anyway (and kill it)? (y or n) y

The program doesn't exit the loop. Instead it continues with the search. Because the number has
already been found, this search resultsin strange behavior. We are missing abr eak after the
cout .

We need to change:
if (data[m ddl e] == search)
cout << "Found at index " << mddle << '\n';
}
to:
if (data[m ddl e] == search)
cout << "Found at index " << mddle << '\n';
br eak;
}

Making this fix, we try the program again:

% sear ch

Enter nunber to search for or -1 to quit: 4
Found at index O

Enter nunber to search for or -1 to quit: 6
Found at index 1

Enter nunber to search for or -1 to quit: 3
Not f ound

Enter nunber to search for or -1 to quit: 5
programruns forever (or until we abort it)

We have arunaway program. Thistime instead of setting a breakpoint we just start running the

program. After afew seconds pass and we believe that we are stuck in the infinite loop, we
stop the program with a control-C (~C) . Normally

Page 303

this would abort the program and return us to the shell prompt. Since we are running with the
debugger, it returns control to GDB.

% gdb search

GB is free software and you are welcone to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for CDB; type "show warranty" for
details.

GDB 4.12 (n68k-sun-sunos4. 0. 3),

Copyright 1994 Free Software Foundation, Inc..

(gdb) run

Starting program /usr/sdo/search/search

Enter nunber to search for or -1 to quit: 5

~C

Program recei ved signal SI A NT, Interrupt

0x2500 in main () at search.cc: 79

79 if (data[m ddle] < search)

Now we can use the single-step command to step through the infinite loop, looking at key
values aong the way.

79 if (data[m ddle] < search)
(gdb) print middle

$1 =0

(gdb) print data [mddle]

$2 =4

(gdb) print search

$3 =5

(gdb) step

80 [ow = middl e;

(gdb) step

67 mddle = (low + high) / 2;
(gdb) step

69 if (data[m ddl e] == search)
(gdb) step

74 if (Iow == high)

(gdb) step

79 if (data[m ddle] < search)
(gdb) step

80 [ow = middl e;

(gdb) step

67 mddle = (low + high) / 2;
(gdb) step

69 if (data[m ddl e] == search)
(gdb) step

74 if (Iow == high)

(gdb) step

79 if (data[m ddle] < search)
(gdb) step

80 [ow = middl e;

(gdb) step

67 mddle = (low + high) / 2;

(gdb) step
69 if (data[mddle] == search) {
(gdb) step

Page 304

74 if (low == high) {

(gdb) step

79 if (data[m ddle] < search)
(gdb) step

80 | ow = middl e;

(gdb) step

67 mddle = (low + high) / 2;
(gdb) step

69 if (data[m ddl e] == search)
(gdb) print |ow

$5 =0

(gdb) print mddle

$6 =0

(gdb) print high

$7 =1

(gdb) print search

$8 =5

(gdb) print dataf0]

$9 = 4

(gdb) print dataf1]

$10 = 6

(gdb) quit

The programis running. Qit anyway (and kill it)? (y or n) y

The problem is that we have reached a point where:
low =0 mddle =0 high=1

The item we are searching for falls exactly between elements 0 and 1. Our agorithm has an
off-by-one error. Obviously the middlie element does not match. If it did we'd exit with afound
at message. So there is no point including the middle element in our new search range. Our
code to adjust the interval is:

if (data[m ddle] < search)
| ow = m ddl e;

el se
hi gh = mi ddl e;

It should be;

if (data[m ddle] < search)
low = mddle + 1;

el se
high = mddle - 1;

The full version of the corrected program is shown in Example 17-8.

Example 17-8 search/search4 cc

/**

* Search -- search a set of nunbers *

* *

* Usage:
* sear ch
* You will be asked nunbers to | ook up

L

Page 305

Example 17-8. search/searc4. cc (Continued)

* Files: *
* nunbers. dat -- nunbers 1 per line to search *
* (nunbers nust be ordered) *

**I

#i ncl ude <i stream h>
#i ncl ude <fatream h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

const int MAX NUVBERS = 1000; /1 Max nunbers in file
const char *const DATA FILE = "nunbers.dat"; // File with nunbers

int data] MAX NUMBERS]; // Array of nunbers to search

i nt max_count; /1 Nunber of valid elenents in data
mai n()
{

ifstreamin_file; /1 Input file

int mddle; /1 Mddle of our search range

int [ow, high; /1 Upper /| ower bound

int search; /1 Nunber to search for

in_file.open(DATA FILE, io0s::in);
if (in_file.bad())
cerr << "Error: Unable to open " << DATA FILE << '\n';

exit (8);
}
/*
* Read in data
*/

max_count = O;

while (1)
char 1ine[30]; // Line fromthe input file

if (in_file.eof())
br eak;

in file.getline(line, sizeof(line));
sscanf (line, "%l", &data]nmax_count]);
if (data[max_count] == -1)

br eak;

++nmax_count ;

while (1)
cout << "Enter nunber to search for or -1 to quit:" ;
cin >> search

Example 17-8 search/search4.cc (Continued)

}

if (search == -1)

br eak;

low = O;
hi gh = nmax_count;

while (1)

}
}

if (low >= high)
cout << "Not found\n";

br eak;

}

mddle = (low + high) / 2;

if (data[m ddl e] == search)
cout << "Found at index
br eak;

}

if (data[m ddle] < search)
low = middle + 1;

el se
high = mddle - 1

return (0);

Page 306

<< mddle << '"\n';

Interactive debuggers work well for most programs. Sometimes they need alittle help.
Consider Example 17-9. Wetry to debug it and find it faillswhen poi nt _nunber is735. We
want to put a breakpoint before the calculation is made. When the debugger inserts a breakpoint
into a program, the program will execute normally until it hits the breakpoint, and then control
will return to the debugger. This alows the user to examine and change variables aswell as
perform other debugging commands. Whenacont command is typed, the program will
continue execution as though nothing happened. The problem is that there are 734 points before
the one we want, and we don't want to stop for each of them.

Example 17-9. debug/cstop.cc

float point_color(int point_nunber)

{

fl oat correction;
extern float red, green

/1 Lookup color correction

extern | ookup(int point_nunber);

correction = | ookup(poi nt_nunber);
return (red*correction * 100.0 +

/! color correction factor
blue;// Current colors

Page 307

Example 17-9. debug/cstop.cc (Continued)

bl ue*correction * 10.0 +
green*correction);

}

How do we force the debugger to stop only when poi nt _nunber == 735?We cando this
by adding the following temporary code:

48: if (point_nunber == 735) [/* ### Tenp code ### */

49: poi nt _nunber = poi nt_nunber; [* ### Line to stop on ### */

Line 49 does nothing useful except serve as aline that the debugger can stop on. We can put a
breakpoint on that line with the command br eak 49. The program will processthe first 734
points, and then execute line 49, hitting the breakpoint. (Some debuggers have a conditional
breakpoint. The advanced GDB command br eak 49 if part_nunber == 735 would
also work, however, your debugger may not have such advanced features.)

RuntimeErrors

Runtime errors are usually the easiest to fix. Some types of runtime errors are segmentation
violation, stack overflow, and divide by O.

Segmentation violation
This error indicates that the program tried to de-reference a pointer containing a bad
value.

Sack overflow
The program tried to use too many temporary variables. Sometimes this means the
program is too big or using too many big temporary arrays, but most of the time thisis due
to infinite recursion problems. Almost all UNIX systems automatically check for this
error. Turbo-C++ will check for stack overflow only if the compile time option - Nis
used.

Divideby 0
Divide by 0 isan obvious error. UNIX masks the problem by reporting an integer divide
by zero with the error message Fl oat i ng excepti on (core dunped).

In al cases, program execution will be stopped. In UNIX, an image of the running program,
caled acorefile, iswritten out. Thisfile can be analyzed by the debugger to determine why
the program died. Our first run of Example 17-7 resulted in a core dump. (One of the problems
with core dumpsisthat the core files are very big and can fill up adisk quickly.)

Page 308

One problem with runtime errorsis that when they occur, program execution stops
immediately. The buffersfor buffered files are not flushed. This can lead to some unexpected

surprises. Consider Example 17-10.

Example 17-10 debug/flush. cc

#i ncl ude <i ostream h>
mai n()
{

int i, j; /* Two randomintegers */

i =1

j =0

cout << "Starting\n";

cout << "Before divide...";

i =i [/ j; Il Dyvide-by-zero error
cout << "After\n";

return(0);

}
When run, this program outputs.

Starting
Fl oati ng exception (core dunped)

This might lead you to think the divide had never started, when in fact it had. What happened to
the message "Before divide..."? The cout statement executed, and put the message in a buffer,
and then the program died. The buffer never got a chance to be emptied.

By putting explicit flush-buffer commands inside the code, we get atruer picture of what is
happening, as shown in Example 17-11.

Example 17-11. debug/flush2. cc

#i ncl ude <i ostream h>
mai n()
{

int i, j; /* Two randomintegers */

= 1;

j =0

cout << "Starting\n";

cout. flush();

cout << "Before divide...";

cout. flush();

i =i [/ j; Il Dyvide-by-zero error
cout << "After\n";

cout. flush();

return(O;

}

The flush slatement makes the 1/0O less efficient, but more current.

Page 309

The Confessional M ethod of Debugging

The confessional method of debugging is one by which the programmer explains his program to

someone: an interested party, an uninterested party, a wall—it doesn't matter whom he explains
it to aslong he talks about it.

A typical confessional session goes like this:

"Hey, Bill, could you take alook at this? My program has abug in it. The output should be 8.0
and I'm getting -8.0. The output is computed using this formula and I've checked out the payment
value and rate and the date must be correct, unless there is something wrong with the leap-year
code, which—Thank you Bill, you've found my problem."

Bill never said aword.

Thistype of debugging is also called awalkthrough. Getting other people involved brings a
fresh point of view to the process, and frequently other people can spot problems you have
overlooked.

Optimization

And now aword on optimization: Don't. Most programs do not need to be optimized. They run
fast enough. Who cares whether an interactive program takes 0.5 seconds to start up instead of
0.27

To befair, there are alot of dow programs out there that can be sped up. Thisis usually done
not by the simple optimization steps shown in this chapter, but by replacing poorly designed
core agorithms with more efficient ones.

For awell-written program, the simplest way to get your program to run faster isto get afaster
computer. Many timesit is cheaper to buy a more powerful machine than it isto optimize a
program, because you may introduce new errors into your code. Don't expect miracles from
optimization. Usually most programs can only be sped up 10 percent to 20 percent.

Example 17-12 initializes a matrix (two-dimensional array).

Example 17-12. matrix/matrixl. cc

const int X SIZE
const int Y_SIZE

60;
30;

int matrix[X _SI ZE][Y_SI ZE] ;
void init_matrix(void)

{

int x, y; /] Current elenment to initialize

Page 310
Example 17-12 matrix/matrix1.cc (Continued)
for (x =0; x < X SIZE, ++x) {

for (y = 0; y < Y_SIZE, ++y) {
matrix[x][y] = -1;
}

How can this function be optimized? First we notice we are using two local varibles. By using
the qualifier r egi st er on these variables, we tell the compiler that they are frequently used
and should be placed in fast registersinstead of relavely sslow main memory. The number of
registers varies from computer to computer. Slow machines like the PC have 2, most UNIX
systems have about 11,and supercomputers can have as many as 128. It is possible to declare
moreregister variables than you have registers. C++ will put the extra variablesin
mainmemory. The program now |ooks like Example 17-13.

Example 17-13 matrix/matrix2.cc

const int X SlZE
const int Y _SIZE

60;
30;

int matrix[X_SI ZE][Y_SI ZF] ;

void init_matrix(void)

{
register int x, vy; /1 CQurrent elenment to initialize
for (x =0; x < X SIZE, ++x) {
for (y =0;, y < Y_SIZE ++y) {
matrix[x][y] = -1;
}
}
}

The outer loop is executed 60 times. This means the overhead associated with starting the inner
loop is executed 60 times. If we reverse the order of the loops, we will have to deal with the
inner loop only 30 times.

In general, loops should be ordered so the innermost 1oop is the most complex and the
outermost loop isthe simplest. Example 17-14 contains the init_matrix function with the loops
reordered.

Example 17-14. matrix/matrix3.cc

const int X SlZE
const int Y _SIZE

60;
30;

Page 311
Example 17-14. matrix/matrix3.cc (Continued)
int matrix[X_SIZE][Y_SIZE];
void init_matrix(void)

}

register int x, y; /1 Current elenent to initialize

for (y =0; y < Y_SIZE, ++y) {
for (x = 0; x < X SIZE, ++x)
matrix[x][y] = -1;
}

The Power of Powers of 2
Indexing an array requires amultiply. For example, to execute the line:
matrix[x] [y] = -1;

the program must compute the location where we want to put the -1. To do this, the program
must perform the following steps:

1. Get the address of themat r i x.

2. Computex * Y_SI ZE.

3. Computey.

4. Add up all three parts to form the address. In C++ this code looks like:
*(matrix + (x * Y_SIZE) +vy) = -1;

However you typically won't write matrix accesses thisway because C++ handles the details.
But being aware of the details can help you generate more efficient code.

Almost all C++ compilerswill convert multiplies by a power of two (2, 4, 8, ...) into shifts,
thus taking an expensive operation (multiply) and changing it into an inexpensive operation
(shift).

For example:
i =32 *j;
iscompiled as:
i =] << B, |* 2**5 == 32 */

Y_SI ZE is 30, which is not a power of two. By increasing Y_SI ZE to 32 we waste some
memory but get afaster program.

Example 17-15 shows how we can take advantage of a power of two.

Page 312
Example 17-15. matrix/matrix4.cc

const int X SlZE
const int Y _SIZE

60;
32;

int matrix[X_SI ZE][Y_SI ZF] ;

void init_matrix(void)

{

register int x, vy; /1 Current elenment to initialize

for (y =0;, y < Y_SIZE ++y) {
for (x =0; x < X SIZE, ++x) {
matrixx] [y] = -1;
}

}

Since we areinitializing consecutive memory locations, we can initialize the matrix by starting
at thefirst location and storinga-linthenext X_SI ZE * Y_ S| ZE elements. Using this
method, we cut the number of loops down to one. The indexing of the matrix has changed from
astandard index (mat ri X[x] [Yy]), requiring a shift and add, into a pointer de-referent
(*rmat ri xpt r) and anincrement (++mat ri x_ptr). In Example 17-16 we've turned our
arrays into pointers.

Example 17-16. matrix/matrix5.cc

const int X SlZE
const int Y _SIZE

60;
30;

int matrix[X_SI ZE][Y_SI ZF] ;

void init_matrix(void)

{
regi ster int index; /1 El ement counter
register int *matrix_ptr; // CQurrent el enent
matrix_ptr = &matrix[0][0];
for (index = 0; index < X SIZE * Y_SIZE, ++i ndex)
*matrix_ptr = -1;
++matrix_ptr;
}
}

But why have both aloop counter and amat r i x__pt r ? Couldn't we combine the two? In fact
we can. In Example 17-17 we've successfully eliminated the loop counter by combining it with
the array pointer.

Example 17-17. matrix/matrix6.cc

const int X SIZE
const int Y_SIZE

60;
30;

Page 313
Example 17-17 matrix/matrix6.cc (Continued)
int matrix[X_SI ZE][Y_SI ZF] ;
void init_matrix(void)

{

register int *matrix_ptr; /1 Current el enent

for (matrixptr = &matrix[0][O0];
matrix_ptr <= &matrix[X SIZE - 1][Y_SIZE - 1];
++matrix_ptr)

*matrixptr = -1;

The function is now well optimized. The only way we could make it better isto manually code
it into assembly language. This might make it faster; however, assembly languageis highly
nonportable and very error-prone.

Thelibrary routine menset can be used to fill amatrix or array with asingle character value.
We can useit to initialize the matrix in this program. Frequently used library subroutines such
asnmenset areoften coded into assembly language and may make use of special
processor-dependent tricks to do the job faster than could be donein C++. In Example 17-18
we let the function memset do the work.

Example 17-18 matrix/matrix7.cc
#i ncl ude <string. h>

const int X SIZE
const int Y_SIZE

60;
30;

int matrix[X Sl zE [Y_SIZg;

void init_matrix(void)

{
}

Now our function consists of only asingle function call. It seems ashameto haveto cal a
function just to call another function. We have to pay for the overhead of two function calls. It
would be better if we called menset from the main function. Why don't we rewrite the code
usng menset insteadof i ni t _mat ri x?Becauseit hasseveral hundredi ni t _matri x
calls and we don't want to do al that editing.

nemset (matrix, -1, sizeof(matrix));

So how do we get rid of the overhead of afunction cal? By making the function inline. Our
final version of the function usesinline to eliminate al the call overhead and can be seen in
Example 17-19.

Page 314
Example 17-19. matrix/matrix8.cc

#i ncl ude <string. h>

const int XSlIZE = 60;
const int Y _SIZE = 30;

int matrix[X_SI ZE][Y_SI ZF] ;

inline void init_matrix(void)

{
}

Question 17-1: Why does nenset successfully initialize the matrix to -1, but when we try
to useit to set every element to 1, we fail?

nmenset (matrix, -1, sizeof(matrix));

#i ncl ude <string. h>

const int X SIZE
const int Y_SIZE

60;
30;

int matrix[X Sl ZE][Y_SI ZE];

inline void init_matrix(void)
nenmset (matrix, 1, sizeof(matrix));
}

How to Optimize
Our matrix initialization function illustrates several optimizing strategies. These are:

Removing invariant code
Code that does not need to be put inside aloop should be put outside the loop. For
example:

for (i =0; i < 10; ++i)
matrix[i] =i +j * 10;

can be written as;

j_times_10 =j * 10;
for (i =0; i < 10; ++i)
matrix[i] =i + j_tinmes_10;

Most good optimizing compilers will do thiswork for you if possible.

Loop ordering
Nested loops should be ordered with the simplest loop outermost and the most complex
loops innermost.

Page 315

Reduction in strength
Thisisafancy way of saying use cheap operationsinstead of expensive ones. Table 17-1
lists the relative cost of common operations.

Table 17-1 Relative Cost of Operations

Operation Relative Cost

File input and output (<< and >>), including the C functions 1,000
printf andscanf.

newanddel et e 800
Trigonometric functions (sin, cos, ...) 500
Floating point (any operation) 100
Integer divide 30
Integer multiply 20

Function call 10

Simple array index 6
Shifts 5
Add/subtract 5
Pointer de-reference 2
Bitwise AND, OR, NOT 1
Logica AND, OR, NOT 1
NOTE

C formatting functions called using scanf , pri nt f , and sscanf
are extremely costly because they have to go through the format
string one character at atime looking for aformat conversion
character (%). They then have to do a costly conversion between a
character string and a number. These functions should be avoided in
time-critical sections of code.

Reference para meters
Use constant reference parameters (const t ype &) instead of constant parameters for
structures, unions, and classes.

Powers of 2
Use a power of 2 when doing integer multiply or divide. Most compilers will substitute a
shift for the operation.

Pointers
Pointers are faster than indexing an array. They are also more tricky to use.

Inlinefunctions
Using inline functions eliminates the overhead associated with afunction call. It also can
make the code bigger and alittle more difficult to debug. (See case history below.)

Page 316

Case Study: Inline Functions Versus Normal Functions

| once worked on writing aword-processing program for alarge computer manufacturer. We
had afunction next _char that was used to get the next character from the current file. It was
used in thousands of places throughout the program. When we first tested the program with
next _char written asafunction, the program was unacceptably dow. Analyzing our
program we found that 90 percent of the time was spent in next _char . So we changed it to
an inline function. The speed doubled; however, our code size went up 40 percent and required
amemory expansion card to work. So the speed was all right, but the size was unacceptable.
Wefinally had to write the routine as a function in hand-optimized assembly language to get
both the size and the speed to acceptable levels.

Case Study: Optimizing a Color-Rendering Algorithm

| once was asked to optimize a program that did color rendering for alarge picture. The
problem was that the program took eight hours to process a single picture. This limited usto
doing one picture a day.

Thefirst thing | did was run the program on a machine with a floating-point accelerator. This
brought the time down to about six hours. Next | got permission to use a high-speed RISC
computer that belonged to another project but was currently sitting idle. That reduced the time
to two hours.

| saved six hours solely by using faster machines. No code had changed yet.

Two fairly smple functions were being called only once from the innermost loop. Rewriting
these functions as macros saved about 15 minutes.

Next | changed all the floating-point operations | could from floating-point to integer. The
savings amounted to 30 minutes out of a 1:45 run.

Then | noticed the program was spending about 5 minutes reading an ASCI| file containing a
long list of floating-point numbers used in the conversion process. Knowing that scanf isan
extremely expensive function, | cut the initialization process down to almost nothing by making
thefile binary. Total runtime was now down to 1:10.

By carefully inspecting the code and using every trick | knew, | saved another 5 minutes,
leaving me 5 minutes short of my goal of an hour per run. At this point

Page 317

my project was refocused and the program put in mothballs for use at some future date.

Programming Exer cises

Exercise 17-1: Take one of your previous programs and run it using the interactive debugger to
examine several intermediate values.

Exercise 17-2: Write amatrix-multiply function. Create atest program that not only tests the
function, but timesit as well. Optimize the program using pointers and determine the time
savings.

Exercise 17-3: Write a program to sum the elementsin an array. Optimize it.

Exercise 17-4: Write a program that counts the number of bitsin a character array. Optimize it
through the use of register-integer variables. Timeit on several different arrays of different
sizes. How much time do you save?

Exercise 17-5: Write your own version of the library function mentpy. Optimize it. Most
implementations of mentpy are written in assembly language and take advantage of al the
quirks and tricks of the processor. How does your nentpy compare with theirs?

Answersto Chapter Questions

Answer 17-1: The problemisthat menset isacharacter fill routine. Aninteger consists of 2
or 4 bytes (characters). Each byte is assigned the value 1. So a 2-byte integer will receive the
value:

i nteger = 0x0101;

The 1-byte hex value for -1 is OxFF. The 2-byte hex vaue of -1 is OxFFFF. So we can take two
single byte -1 values, put them together and come out with - 1. Thisworks for zero also. Any
other number will produce the wrong answer. For example, 1is0x01. Two bytes of thisis
0x0101, or 257.

Page 319

18
Operator Overloading

In This Chapter:

Operator Functions
Operator Member
Functions

Full Definition of the
Complex Class
Programming
Exercises
Answersto Chapter
Questions

Overloaded, undermanned, ment to
flounder, we Euchred God Almighty's
storm, bluffed the Eternal Sea!
—Kipling

We al know what happens when we add two integers. But C++ doesn't have a built-in
complex type, so it doesn't know how to add two complex numbers. However, through a C++
feature called operator overloading, you can "teach" C++ how to handle complex numbers.
Operator overloading is used to define a set of functions to add, subtract, multiply and divide
complex numbers using the normal operators +, -, *, and /.

In this section we define a complex number class. Let's start by defining the basic C++ complex
class. A complex number consists of two parts, the real and the imaginary:

cl ass conpl ex
{
pr ot ect ed:
/1
/1 Conpl ex nunbers consist of two parts
/1

doubl e real part; /1 The real part
doubl e i magi narypart; // The inmaginary part
/1

Next we define several member functions. These include the usual constructors and destructors
aswell asroutinesto get at the real and imaginary parts of the number.

publ i c:

/1 Default constructor initializes the nunber to (0 + Q)
conpl ex (void)

Page 320
real part = 0;
i magi nary_part = 0;
}
/1 Copy constructor - initialize one conplex from anot her
conpl ex(const conpl ex& ot her _conpl ex)
{
real part = other_conplex.real part;
i magi nary_part = other_conpl ex.imaginary_part;
}

/1 Construct a conplex fromtwo reals
/1 1f only real supplied assume the imaginary part is .0
conpl ex(doubl e init_real, double init_imaginary = 0.0)
{
real _part = init_real
i magi nary_part = init_inmaginary;
}

/] Destructor does nothing
-conpl ex() {}

/1

/1 Functions to return the parts of the nunber

/1

doubl e real (voi d) const /1 "const" is discussed |ater

{

return (real part);

}
doubl e i magi nary(voi d) const
{

return (imaginary_part);
}

/1 Define functions to set parts of a nunber
void set_real (double real) {
real _part = real

}

voi d set i magi nary(doubl e i magi nary) {
i magi narypart = inagi nary;

}

NOTE

Asyou may recal, theconst appearing after some functions was
discussed in Chapter 14, More on Classes.

Now we want to use our complex numbers. Declaring variablesis simple. Even initializing
them with numbers such as (3 + 2i) is easy.

conpl ex start; /1 Starting point for the graph
conpl ex end(3.0, 2.0); /1 Endi ng point

Page 321

But what happens when we want to add two complex numbers? We need to define afunction to
doit:

/1 Version 1 of the conplex add function
i nline conpl ex add(const conpl ex &operl, const conpl ex &oper2)

{

conpl ex result(operl.real () + oper2.real (),
operl.imaginary() + oper2.inmaginary());
return (result);

}

A few things should be noted about this function. First, we defined it to take two complex
numbers and return a complex number. That way we group additions:

/1 Add three conpl ex nunbers
answer = add(first, add(second, third));

Constant reference parameters are used (const conpl ex &) for our two arguments. Thisis
the most efficient way of passing structures into afunction. Finally, because it is such asmall
function, we've defined it as an inline function for efficiency.

In this function, we explicitly declare aresult and return it. We can do both in one step:

/1 Version 2 of the conplex add function
i nline conpl ex add(const conpl ex &operl, const conpl ex &oper?2)

{

return (conplex(operl.real () + oper2.real (),
operl.imaginary() + oper2.imaginary()));

}

Although it is alittle harder to understand, it is more efficient.

It isimportant to understand what C++ does behind your back. Even such a simple statement
as:

answer = add(first, second);
calls a constructor, an assignment operator, and a destructor-all in that little piece of code.

In version 1 of the add function we explicitly allocated a variable for the result. In version 2,
C++ automatically creates atemporary variable for the result. This number has no name and
doesn't really exist outside ther et ur n statement.

Creating the temporary variable causes the constructor to be called. The temporary variable is
then assigned to answer ; thus we have a call to the assignment function. After the assgnment,

C++ no longer has any use for the temporary variable and throws it away by calling the
destructor.

Page 322

Operator Functions

Using theadd function for complex numbersis alittle awkward. It would be nice to be able to
convince C++ to automatically call this function whenever we try to add two complex numbers
together with the + operator. That's where operator overloading comes in. All we haveto dois
to write the add function as:

i nline conplex operator +(const conplex &operl, const conpl ex &oper?2)

{

return (conplex(operl.real () + oper2.real (),
operl.imaginary() + oper2.imaginary()));

}
and C++ handlesthe rest.

Note: The operator overloading functions should be used carefully. Y ou should try to design
them so they follow common-sense rules. That is, + should have something to do with addition;
-, with subtraction; and so on. The C++ 1/O streams break this rule by defining the shift
operators (<< and >>) asinput and output operators. This can lead to some confusion, such as:

cout << 8 << 2;

Does this output "8" followed by "2," or does it output the value of the expression (8 << 2)?
Unlessyou're an expert you can't tell. In this case the numbers "8" and "2" will be outpuit.

Y ou've seen how you can overload the + operator. Now let's explore what other operators you
can use.

Binary Arithmetic Operators

Binary operators take two arguments, one on each side of the operator. For example,
multiplication and division are binary operators:

X *y;

a/l b;

Unary operators take a single parameter. Unary operators include unary - and the address of
(&) operator;

- X

&y

The binary arithmetic operator functions take two constant parameters and produce a result.
One of the parameters must be a class or structure. The result can be anything. For example, the
following functions are legal for binary addition:

conpl ex operator +(conplex vl, conplex v2);
conpl ex operator +(conplex vl, real v2);

Page 323

conpl ex operator +(real vi, conpl ex v2);
conpl ex operator +(real vi, real v2);

We've had to define alot of different functions just to support the addition of our complex
class. Such diarrhea of the definition istypical when overloading operators.

Table 18-1 lists the binary operators that can be overloaded.

Table 18-1. Binary Operators That Can Be Overloaded

Operator M eaning

+ Addition
Subtraction

* Multiplication

/ Division

% Modulus

Bitwise exclusive OR

& Bitwise AND
| Bitwise OR
<< Left shift

>> Right shift

Relational Operators

The relational operators include such things as equals (==) and not equals (! =). Normally they
take two constant classes and return either a0 or a 1. (Actualy they can return anything, but
that would violate the spirit of relational operators.)

The equality operator for our complex classis:

inline int operator == (const conpl ex& operl, const conpl ex& oper2)

{
return ((operl.real () == oper2.real ()) &&

(operl.inmaginary() == oper2.imaginary()));

}
Table 18-2 lists the relational operators.

Table 18-2 Relational Operators

Operator ‘ M eaning

== ‘ Equality

Inequality
Lessthan

Greater than

Table 18-2 Relational Operators (Continued)

Operator Meaning

<= Lessthan or equal to
>= Greater than or equal to
Unary operators

Page 324

Unary operators, such as negative (-), take asingle parameter. The negative operator for our
complex typeis:

i nline conpl ex operator -(const conplex &oper)

{
}

return (conpl ex(-oper.real (),

Table 18-3 lists the unary operators.

Table 18-3 Unary Operators

-oper.imaginary()));

Operator M eaning

+ Positive

- Negative

* Dereference
& Address of

Ones complement

Shortcut Operators

Operators such as += and - = are shortcuts for more complicated operators. But what are the
return values of += and - =? A very close examination of the C++ standard revedls that these

operators return the value of the variable after the increase or decrease. For example:

i = b5;

j =i o+=2; // Don't code like this
assigns| thevalue 7. The += function for our complex classis:

i nline conpl ex &operator +=(conpl ex &operl, const conpl ex &oper2)

{

operl.set real (operl.real () + oper2.real());
operl .set_imagi nary(operl.imaginary() + oper2.imaginary());
return (operl);

}

Note that unlike the other operator functions we've defined, the first parameter is not a constant.
Also we, return areference to the first variable, not a new variable or a copy of the first
parameter.

Page 325

Table 18-4 lists the shortcut operators.

Table 18-4. Smple Shortcut Operators

Operator Meaning
+= Increase
-= Decrease

* = Multiply by
/= Divide by
Y% Remainder
Nz Exclusive OR into
&= AND into

| = ORinto
<<= Shift left
>>= Shift right

I ncrement and Decrement Operators

The increment and decrement operators have two forms:. prefix and suffix. For example:

i =5;
j:i++; //J:5
i =5;
j:++i; //J:6

Both these operators use a function named oper at or ++. So how do you tell them apart? The
C++ language contains a hack to handle this case. The prefix form of the operator takes one

argument, the item to be incremented. The suffix takes two, the item to be incremented and an
integer. The actual integer used is meaningless; it's just a position holder to differentiate the
two forms of the operation.

If we define ++ for the complex type to mean increment the real part, then our functions to
handle the two forms of ++ are:

[/l Prefix X = ++C
i nline conpl ex &operator ++(conplex &oper)
{
oper.set _real (oper.real () + 1.0);
return (oper);

}
/1 Suffix X = C++
i nline conpl ex operator ++(conplex oper, int)
{
conpl ex result(oper); /! Result before we increnented
oper.set _real (oper.real () + 1.0);
Page 326
return (result);
}

Thisis messy. C++ has reduced us to using cute tricks: the unused integer parameter. In actual
practice, | never use the suffix version of increment and always put the prefix version on aline
by itself. That way, | can avoid most of these problems.

The choice, prefix versus suffix, was decided by looking at the code for the two versions. As
you can see, the prefix version is much simpler than the suffix version. So restricting yourself
to the prefix version not only simplifies your code, but it also makes the compiler'sjob alittle
easier.

Table 18-5 lists the increment and decrement operators.

Table 18-5 Increment and Decrement operators

Operator M eaning
++ Increment
Decrement

Logical Operators

Logical operatorsinclude AND (&&), OR (] |), and NOT (!). They can be overloaded, but
just because you can do it doesn't mean you should. In theory, logical operators work only on
Boolean values. In practice, because C++ doesn't have a Boolean type, they work on integers.
Don't confuse the issue more by overloading them.

Table 18-6 lists the logical operators.

Table 18-6 Logical Operators

Operation M eaning

| | Logical OR
&& Logical AND
! Logica NOT
I/O Operators

Y ou've been using the operators << and >> for input and output. Actually these operators are
overloaded versions of the shift operators. This has the advantage of making 1/0 fairly smple,
at the cost of some minor confusion.

We would like to be able to output our complex numbers just like any other datatype. To do
this we need to define a << operator for it.

Page 327

We are sending our data to the output stream classost r ean. The dataitself isconpl ex. So
our output function is:

inline ostream &operator << (ostream &out file, const conpl ex &unber)

{

out_file << '(' << nunber.real () << ', <<
nunber . i magi nary() << ')';
return (out_file);

}

The function returns areference to the output file. This enables the caller to string a series of
<< operations together, such as:

conpl ex a _conplex(1l.2, 3.4);
cout << The answer is" << a_conplex << '\n';

The result of this codeis:

The answer is (1.2, 3.4)

Normally the << operator takes two constant arguments. In this case the first parameter isa
non-constant ost r ean Thisis because the << operator when used for output has side effects,
the major one being that the data goes to the output stream. In general, however, it's not a good
idea to add side effects to an operator that doesn't already have them.

Input should be just as smple as output. Y ou might think all we have to do is read the numbers
(and the related extra characters):

/1 Sinple-mnded input operation
inline istream &operator >> (istream& n_file, conplex &unber)
doubl e real, imaginary; // Parts of the nunber
char | _paren, comma, r_paren; // Extra characters output as part of

in_file >> | _paren >> real >> comma >> inmginary >> r_paren
nunber. set (real, inmaginary);
return (in_file);

}

In practice, it's not so simple. First of all, we must call a special member function i pf x to tell
the 1/0O system that we are planning a formatted read.

inline istream &operator >> (istream& n_file, conplex &unber)

{
...

in_file.ipfx(l); /1 Tell the 1/O systemwe are reading
formatted

Next we skip any leading white space.
infile >> ws; /1 Skip white space

We should now be pointing to the " (" at the beginning of the number. But before we can read
this character, we need to check for trouble and abort if necessary.

if (infile.bad()) return (in_file);

Page 328

Now, let's grab the " (". Of course, just to make sure, we check to see that we really get a" ("
and abort if necessary.

in file >> ch; /1l Get character after white space
if (ch!="(") {
infile.set(ios::failbit); /1 \\ have an error
return (in_file);

}

Thefunction set isused to set aflag indicating that the input operation found a problem. This
allows the caller to test to see whether the input worked by calling the bad function. (This
function can a so cause an exception to be thrown. See Chapter 22, Exceptions, for more
information.)

We have reached the "(". Let's read the real part of the number.
infile >> real

Now we take care of the"," and related white space between the numbers. At each step we
check for errors:

if (in_file.bad()) return (in_file);
infile >> ws >> ch; [/l Get first character after nunber
if (in_file.bad() return (in_file);

if (ch!=","){
infile.set(ios::failbit);
return (in_file);

}
Next isthe imaginary part.

in_file >> imaginary;
Finally, we make sure that the number endswitha")".

infile > ws >> ch
if (in_file.bad()) return (in_file);

if (ch!=")") {
in file.set(ios::failbit);
return (in_file);

}
The work's complete, so we store the result and get out.

nunber . set(real, imaginary);
return (in_file);

}
The complete version of the complex reader (pun intended) appearsin Example 18-1.

Page 329
Example 18-1
inline istream &operator >> (istream & n_file, conplex &unber)
{
doubl e real, imaginary; // Real and inmaginary part
char ch; /1 Random character used to verify input
nunber . set (0.0, 0.0); /1 Initialize the nunber (just in case)
in_file.ipfx(1); /1 Tell the I/O systemwe are reading formatted
infile >> ws; /1 Skip white space

if (in_file.bad() return (in_file);
in file >> ch; /1 Get character after white space
if (ch!="(") {
infile.set(ios::failbit); /1 \\ have an error
return (in_file);

}
infile >> real
if (in_file.bad() return (in_file);
infile > ws >> ch; /1l Get first character after nunber
if (in_file.bad() return (in_file);
if (ch!= ","){
in file.set(ios::failbit);

return (in_file);

}

in_file >> imaginary;

infile > ws >> ch
if (in_file.bad()) return (in_file);

if (ch!=")") {
infile.set(ios::failbit);
return (in_file);

}

nunber. set (real, imaginary);
return (infile);

}
Index Operator *'[]"

The operator [] isused by C++ to index arrays. Aswe will seein Chapter 20, Advanced
Pointers, this operator is very useful when defining a class that mimics an array. Normally, this
function takes two arguments, a class that smulates an array and an index, and returns a
referenceto an item in the array.

doubl e &operator[] (array_class &array, int index)

Page 330
We cover the[] operator in more detail in Chapter 23, Modular Programming.
new and delete

WEe'll say very little about overloading the global operators new and del et e at thistime.
First of al, they aren't introduced until Chapter 20, Advanced Pointers, so you don't know what
they do. Second, when you know what they do, you won't want to override them.

I've seen only one program wherethe new and del et e operators were overridden (or at
least their C equivalents). That program was written by avery clever programmer who liked to
do everything alittle strangely. The result was code that was a nightmare to debug.

So unlessyou are avery clever programmer, leave new and del et e aone. And if you are a
clever programmer, please leave new and del et e aone anyway. Some day | might have to
debug your code.

Exotic Operators

C++ contains avery rich set of operators. Some of these arerarely, if ever, used. These
include:

() Allowsyou to define adefault function for a class.

, Comma operator. Allows two expressions to be concatenated. It israrely used and
probably should not be overloaded.

- >* Pointer to member. Rarely used.
- > Class member.

All of these operators are discussed in Chapter 28, C++'s Dustier Corners.

Operator Member Functions

So far we've been using operator overloading functions just like ordinary functions. They can
also be defined as member functions. The only difference is that as member functions the first
argument, the class itself, isimplied. So, for example, you can write the operator += as an
ordinary function or as a member function. Here's the ordinary version that you've already seen.

i nline conpl ex &operator +=(conpl ex &operl, const conpl ex &oper2)

{

operl.set real (operl.real () + oper2.real());
operl .set_imagi nary(operl.imaginary() + oper2.imaginary());
return (operl);

Page 331

Here's the member function:

class conpl ex {

T A
publi c:
i nline conpl ex &operator +=(const conpl ex &oper?2)
{
real _part += oper2.real ();
i magi nary_part += oper2.imaginary();
return (*this);
}

The only trick used in this function isthe keyword t hi s. Thi s isapredefined variable that
refers to the current object. For example, you can access the datamember r eal _part usng
the statement:

real _part += oper2.real ();
The same statement can be written as:
this->real part += oper2.real ();

In most cases, you don't need to use t hi s. However, in afew, such asthe += operator, it
comes in handy.

Which flavor of the operator overloading functions should you use? The one that makes your
program the clearest and easiest to read. In general, we use the standard functions for the
simple operators, such as +, -, *, and /, while | use member functions for the shortcut and unary
operators, such as +=, -=, ++, and unary -.

Some overloaded functions only work as member functions. These include the casting
operators as well as class specific versions of new and del et e.

Casting

Finally we come to the cast operators. Casting isaway of changing one type to another. For
example, let's say that when we cast our conpl ex typeto adoubl e, we want the real part.
We can define a cast operator for this function as:

cl ass conpl ex:
publi c:
/1 (W didn't really put this in our conplex class)
doubl e operator double() {return (realpart);}

C++ automatically calls this function whenever it wantsto turnaconpl ex intoadoubl e.

Thetrouble isthat by defining a cast, you give C++ something else that it can call behind your
back. Persondlly, | like to know whenever C++ calls something, so | avoid creating cast
operators. Unless you have a very good reason to define one, don't create a cast operator
function.

Page 332

Full Definition of the Complex Class

Example 18-2 lists the entire complex class. The beginning of the header file summarizes all
the functions that are defined. In creating this class | discovered that it consisted of many (29 to
be exact) little one- and two-line functions. Commenting each of these with a full-function
comment block would obscure the code. In other words, thisis one of the few cases (the very
few) where adding comments would cause confusion, so most of the small functions have no
comments.

When creating this class, | noticed that alot of the functions have a similar structure. For
example. +=looks alot like -= and so on. As amatter of fact, | created the -= operator by
copying the += functions and editing alittle. C++ contains arich operator set that causes this
sort of repetition to happen when you're trying to define a complete set of operators for aclass.

Finaly, the simple operations are defined in the file complex.h while the longer functions are
left in the file complex.cc.

Example 18-2 complex/complex.h , complex/complex.cc

File: complex.h

#i fndef _conpl ex_h_ /1 Avoi d doubl e incl udes
#define _conplex_h__ /1 Prevent double include

#i ncl ude <i ostream h>
#i ncl ude <mat h. h>

/**

* Conpl ex cl ass *
* *
* Menbers defined *
* conpl ex() /1 Default constructor *
* conpl ex(real, imaginary)// Specify two parts *
* /1 for construction *
* conpl ex(conpl ex) /1 Copy constructor *
* *
* real () /1 Cet real part *
* i magi nary() /1 Get inaginary part *
* *
* *

set (real, inaginary) /1 Set both parts of #

set _real (real)

Qper ator nmenber functions

c =2¢
c += C;

* Ok ¥ F Sk ¥ X %

Example 18-2. complex/complex.h, complex/complex cc (Continued)

OO0 00 00
n oumounmoowm

sense for conpl ex nunbers,

c++
++C
C__

--C

c=c+c;

C =s+c;
C =C+s;
c=c-c;
c= s-cC;
C =C-S;
C =C *c;
C=s*c;
C=C*Ss;
c=c/ c;
c=s/c;
c=c/s;
-C

+C
ostream << ¢

LR R S B R R T . T S R N N N N N S N B I

/1 Set real part of #

set _imagi nary(imaginary)// Set inmaginary part

c -- a conpl ex nunber
s -- a scalar (double)

The following functions don't really nake a |l ot of

but they are defined

for the purpose of illustration

Arithnetic operators defined

/1 CQutput function

* i stream >> ¢ /1 Input function

R IR I S I I S I R I S I O R S R R I R I I S I I I R I S

cl ass conpl ex

{

private:
/1

/1 Conpl ex nunbers consist of two parts

/1
doubl e real _part;
doubl e i magi nary_part;

publi c:

/1 The real part
/1 The imagi nary part

* Ok ¥ F Sk ¥ X %

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

/

Page 333

/1 Default constructor, zero everything
conpl ex (void)
{

real _part = 0.0;
i magi nary_part = 0.0;

}

/1 Copy constructor

Page 334

Example 18-2. complex/complex h, complex/complex.cc (Continued)

conpl ex(const conpl ex& ot her _conpl ex)

{

real _part = other_conplex.real part;
i magi nary_part = ot her_conpl ex. i maginary_part;

}

/1 Construct a conplex out of two real nunbers
conpl ex(doubl e init_real, double init_inmaginary = 0.0)

{
real _part = init_real
i magi nary_part = init_inmaginary;
}
/1 Destructor does nothing
-conpl ex() {}
/1
/1 Function to return the parts of the nunber
/1
doubl e real (voi d) const
{
return (real _part);
}
doubl e i magi nary(voi d) const
{
return (imaginary_part);
}

/1 Functions to set parts of a nunber
voi d set(doubl e real, double inmaginary)
real _part = real
i magi nary_part = inmaginary;

}

voi d set_real (doubl e real)
real _part = real

}

voi d set _i magi nary(doubl e i magi nary) {
i magi nary_part = inmaginary;

}

conpl ex operator = (const conpl ex& oper2)
set (oper2.real _part, oper2.imaginary_part);

return (*this);

}

conpl ex& operator += (const conpl ex& oper2)
real _part += oper2.real ();
i magi nary_part += oper2.inagi nary();
return (*this);

Page 335
Example 18-2. complex/complex.h,complex/complex. cc (Continued)
conpl ex& operator += (doubl e oper2)

real _part += oper2;
return (*this);

}

conpl ex& operator -= (const conpl ex& oper2)
real _part -= oper2.real ();
i magi nary_part -= oper2.imaginary();
return (*this);

}

conpl ex& operator -= (doubl e oper?2)
real _part -= oper2;
return (*this);

}

conpl ex& operator *= (const conpl ex& oper2)
/1 Place to hold the real part of the result
/1 while we conpute the imaginary part
doubl e real _result = real _part * oper2.real () -
i magi nary_part * oper2.inmaginary();

i magi nary_part = real _part * oper2.inmaginary() +
i magi nary_part * oper2.real ();

real part = real _result;

return *this;

}

conpl ex& operator *= (doubl e oper2)
real _part *= oper2;
i magi nary_part *= oper2;
return (*this);

}

conpl ex& operator /= (const conpl ex& oper?2);

conpl ex& operator /= (doubl e oper?2)
real _part /= oper2;
i magi nary_part /= oper?2;
return (*this);

/] c++

conpl ex operator ++(int) {
conpl ex result(*this);
real _part += 1.0;
return (result);

}

/1l ++c

Page 336
Example 18-2 complex/complex h, complex/complex.cc (Continued)

conpl ex &operator ++(void)
real _part += 1.0;
return (*this);

}

/Il c--

conpl ex operator --(int) {
conplex result(*this);
real _part -= 1.0;
return (result);

}

/[l --c

conpl ex &operator --(void) {
real _part -= 1.0;
return (*this);

}

}

inline conplex operator + (const conpl ex& operl, const conpl ex& oper2)

{

return conpl ex(operl.real () + oper2.real (),
operl.imagi nary() + oper2.imaginary());

}

i nline conplex operator + (const conpl ex& operl, doubl e oper?2)

{

return conpl ex(operl.real () + oper?2,
operl.imaginary());

}

i nline conplex operator + (double operl, const conpl ex& oper?2)

{

return conpl ex(operl + oper2.real (),
oper 2.imagi nary());
}

inline conplex operator - (const conpl ex& operl, const conpl ex& oper2)

{

return conpl ex(operl.real () - oper2.real (),
operl.imaginary() - oper2.imaginary());

}

i nline conplex operator - (const conpl ex& operl, doubl e oper?2)

{

return conpl ex(operl.real () - oper?2,
operl.imaginary());

}

inline conplex operator - (double operl, const conpl ex& oper?2)

{

return conpl ex(operl - oper2real ()

Page 337
Example 18-2. complex/complex h, complex/complex.cc (Continued)

-oper 2.imagi nary());
}

inline conplex operator * (const conpl ex& operl, const conpl ex& oper2)

{

return conpl ex(
operl.real () * oper2.real () - operl.imaginary() * oper2.imaginary(),
operl.real () * oper2.imaginary() + operl.inmaginary() * oper2.real());

}

inline conplex operator * (const conplex& operl, const doubl e oper?2)

{

return conpl ex(operl.real () * oper 2,
operl.imagi nary() * oper2);

}

inline conplex operator * (const double operl, const conpl ex& oper?2)

}

return conpl ex(operl * oper2.real (),
operl * oper2.imaginary());

}

extern conpl ex operator (const conplex &operl, const conpl ex &oper?2);
inline conplex operator / (const double &operl, const conpl ex &oper2) {

return (conpl ex(operl, 0.0) / oper2);
}

inline conplex operator / (const conplex &operl, const double &oper2) {
return (operl / conplex(oper2, 0.0));

}

inline int operator == (const conpl ex& operl, const conpl ex& oper2)
{ return ((operl.real () == oper2.real ()) &&

} (operl.imaginary() == oper2.imaginary()));

inline int operator != (const conpl ex& operl, const conpl ex& oper?2)
i return (! (operl == oper2));

inline conplex operator - (const conplex& operl)

{

return conpl ex(-operl.real (), -operl.imginary());

}
inline conpl ex operator + (const conpl ex& operl)
{
return conpl ex(+operl.real (), +operl.inaginary());
}

Page 338
Example 18-2. complex/complex h, complex/complex.cc (Continued)

inline ostream &operator << (ostream &out _file, const conpl ex &unber)

{
out file << '(' << nunber.real () << ',' << nunber.imaginary() << ')';
return (out_file);

}

extern istream &operator >> (istream & n_file, conplex &nunber);
#endif /* _conplex_h_ */ /1 Avoi d doubl e includes

File: complex.cc

#i ncl ude "conpl ex. h"

/**

*¢=c/ c -- conplex division *
* *
* Paraneters *
* operl, oper2 -- two operands of the divide *
* *
* Returns *
* result of the divide *
*

***I

conpl ex operator / (const conpl ex& operl, const conpl ex& oper2)
{

// Denom nator of the result

doubl e den = fabs(oper2.real ()) + fabs(oper2.imagi nary());

/1l Real part of the operl factor

doubl e operl _real _den = operl.real () / den

/1 lImaginary part of the operl factor

doubl e operl _i mag_den = operl.imaginary() / den

/1l Real part of the oper2 factor

doubl e oper2_real _den = oper2.real () / den

/1 lImaginary part of the oper2 factor

doubl e oper2_i nag_den = oper2.imaginary() / den

/1 Normalization factor
doubl e nornalization = oper2_real _den * oper2_real _den +
oper 2_i mag_den * oper?2_i mag_den;

return conpl ex((operl _real _den * oper2_real _den +
operl _imag_den * oper2_inmag_den) / nornalization

}

(operl _inmag_den * oper2_real den -

operl _real _den * oper2_inmag _den) / normalization);

/**

*

*

c /= c -- conplex divide by *

*

Example 18-2 complex/complex.h, complex/complex.cc (Continued)

*
*
*
*
*
*
*

Par anet er s
oper2 -- operator to divide by

*
*
*
Ret ur ns *
reference to the result of the divide *

*

*

EE R I I R R I R I S I S S I R S R R I I S I S I R

/

conpl ex& conpl ex: : operator /= (const conpl ex& oper2)

{

}
/

*
*
*
*
*
*
*
*
*
*

[/ Denomi nator of the result
doubl e den = fabs(oper2.real ()) + fabs(oper2.inmagi nary());

/1 Denominator -- operator 1 real part
doubl e operl real _den = real _part / den

/1 Denominator -- operator 1 inmaginary part
doubl e operl _inmag_den = imagi nary_part / den
/1 Denominator -- operator 2 real part

doubl e oper2_real _den = oper2.real () / den

/1 Denominator -- operator 2 inmaginary part
doubl e oper2_i nag_den = oper2.imaginary() / den

/1 Normalization factor

doubl e nornmalization = oper2_real _den * oper2_real _den +
oper 2_i mag_den * oper?2_i mag_den;

real part = (operl _real _den * oper2_real _den +

Page 339

operl _imag_den * oper2_inmag_den) / nornalization

i magi nary_part = (operl_imag_den * oper2_real _den -

operl _real _den * oper2_inmag _den) / nornalization

return (*this);

R IR I S I I S I R I S I O R S R R I R I I S I I I R I S

i stream >> conplex -- read a conpl ex nunber *
*

Par anet er s *
infile -- file to read *
nunber -- place to put the nunber *

*

Ret ur ns *
reference to the input file *

kkhkhkkkhkkhkhkkhkkhkhkkkhkkhkrkkhkhkkxkhkkhkxk* *x*k* *k*% ***********************I

i stream &operator >> (istream & n_file, conplex &unber)

{

doubl e real, inmaginary; // Real and inaginary part

char ch; /1 Random character used to verify input
nunber . set (0.0, 0.0); /1 Initialize the nunber (just in case)
in_file.ipfx(1); [/l Tell the 1/O systemwe are reading fornatted
infile >> ws; /1 Skip white space

Page 340

Example 18-2 complex/complex h. complex/complex.cc (Continued)
if (in_file.bad()) return (in_file);

in file >> ch; /] Get character after white space
if (ch!="(") {
infile.setf(ios::failbit); /1 \\ have an error
return (in_file);

}

in file >> real

if (in_file.bad()) return (in_file);

infile > ws >> ch; /1 Get first character after nunber
if (in_file.bad()) return (in_file);

if (ch!=","){
in file.setf(ios: :failbit);
return (in_file);

}
in_file >> imaginary;

infile > ws >> ch
if (in_file.bad()) return (in_file);

if (ch!=")") {
infile.setf(ios::failbit);
return (in_file);

}

nunber . set(real, imaginary);

return (in_file);

}
Question 18-1: Why does Example 18-3 fail? When run it prints out:

Copy constructor called
Copy constructor called

over and over. Hint. Review the section "Copy Constructor” in Chapter 13. Thanks to Jeff

Hewett for this problem.

Example 18-3. equal/equal cc

1 #i ncl ude <i ostream h>

class trouble {
publ i c:
i nt data;

troubl e(voi d);
troubl e(const trouble &old);
troubl e operator = (trouble ol d_trouble);

O©CoOoO~NOOOThWN

Page 341

Example 18-3 equal/equal .cc (Continued)

10 };

11

12 trouble::trouble(void) {

13 data = O;

14 }

15

16 troubl e::troubl e(const trouble &old) {
17 cout << "Copy constructor called\n";
18 *this = old;

19 }

20

21 trouble trouble::operator = (trouble old_trouble) {
22 cout << "Qperator = called\n";

23 data = ol d _trouble. data;

24 return (*this);

25}

26

27 int main()

28 {

29 troubl e troublel;

30 troubl e troubl e2(troublel);

31

32 return (0);

33}

Programming Exer cises

Exercise 18-1: Write aclass to handle fractions such as"1/3." Define addition, subtraction,
multiplication, and division operators for these fractions.

For example: 1/3 + 1/2 = 5/6.

Exercise 18-2: Write afixed-point number class to handle numbers. All numbers are of the
form DDDDD. D. In other words, all numbers have only asingle digit to the right of the
decimal point. Use integers to implement this class.

Exercise 18-3: Write aclass to implement a sparse integer array. Thisismuch like asimple
integer array:

int sinple_array[100];

But unlike asmple array, the indices can go from 0 to 1,000,000. That's the bad news. The
good news isthat at most 100 elements will be set at any time. The rest of the elements will be

zero.
Exercise 18-4: Write atime class. Implement functions to add, subtract, read, and print times.

Exercise 18-5: Write a date class that allows you to add, subtract, read, and print simple dates
of the form MM/DD. Assume year is not aleap year.

Page 342

Exercise 18-6: (Advanced) Write afull-date class that allows you to add, subtract, read, and
print dates of the form MM/DD/Y'Y .
Answersto Chapter Questions

Answer 18-1: The copy constructor calstheoper at or = function. The parameter list to this
function is:

trouble trouble::operator = (trouble old_trouble) {

The parameter to this function is being passed as a call-by-vaue parameter. When C++ sees
thistype of parameter it calls the copy constructor to put the parameter on the stack.

trouble trouble::operator = (trouble old trouble) |
cout << "Operator = calledin®; ‘“‘--=.___
data = old_trouble.data; - - —
raturn t*tiis} . trouble: ;troublel
: ! conat trouble &old) called

1

So we have an infinite loop The copy constructor callsthe oper at or = function. C++ sees
the call-by-value parameter and calls the copy constructor, which callsoper at or = and
causes the copy constructor to be called. This keeps up until the system runs out of stack space
or the user gets disgusted and aborts the program.

The solution isto pass the parameter to oper at or = asareference. Thisnot only ismore
efficient, but also works.

troubl e trouble::operator = (const trouble &old trouble) {

Page 343

19
Floating Point

In This Chapter:

Floating-Poaint
Format

Floating
Addition/Subtraction
Multiplication
Division

Overflow and
Underflow

Roundoff Error
Accuracy
MinimizngRoundoff
Error

Determining
Accuracy

lisequal to 2 for sufficiently large values of 1.
—Anonymous

Computers handle integers very well. The arithmetic is simple, exact, and fast. Floating point is
the opposite. Computers do floating-point arithmetic only with great difficulty.

This chapter discusses some of the problems that can occur with floating point. In order to
address the principles involved in floating-point arithmetic, we have defined a simple decimal
floating-point format. We suggest you put aside your computer and work through these
problems using pencil and paper so you can see firsthand the problems and pitfalls that occur.

The format used by computersis very similar to the one defined in this chapter, except that
instead of using base 10, computers use base 2, 8, or 16. However, all the problems
demonstrated here on paper can occur in a computer.

Floating-Point For mat

Floating point numbers consist of three parts: asign, afraction, and an exponent. Our fraction
isexpressed as afour-digit decimal. The exponent is a single-decimal digit. So our format is:

+f.fff x 10*¢

Page 344
where:
+i sthe sign (plus or minus).
f.fff isthe four-digit fraction.
teisthe single-digit exponent.

Zerois+ 0.000 x 10 *°. We represent these numbersin "E" format: +f.fffE+e,

Thisformat is similar to the floating-point format used in many computers. The IEEE has
defined a floating-point standard (#742), but not all machines useit.

Table 19-1 shows sometypical floating-point numbers.

Table 19-1. Floating-Point Examples

Notation Number
+1.000E+0 1.0
+3.300E+5 33000.0
-8.223E-3 -0.008223
+0.000E+0 0.0

The floating-point operations defined in this chapter follow arigid set of rules. To minimize
errors we make use of aguard digit. That is an extra digit added to the end of the fraction
during computation. Many computers use aguard digit in their floati ng-point units.

Floating Addition/Subtraction
To add two numberslike 2.0 and 0.3, the computer must perform the following steps:
1. Start with the numbers.

+2.000E+0 Thenumberis2.0
+3.000E-1 The number is0.3

2. Add guard digits to both numbers.
+2.0000E+0 The number is2.0
+3.0000E-1 The number is0.3

3. Shift the number with the smallest exponent to the right one digit and increment its exponent.
Continue until the exponents of the two numbers match.

+2.0000E+0 The number is2.0
+0.3000E-0 The number is0.3

Page 345

4. Add the two fractions. The result has the same exponent as the two numbers.
+2.0000E+0 The number is2.0
+0.3000E-0 The number is0.3

+2.3000E+0 Result 2.3

5. Normalize the number by shifting it Ieft or right until thereis just one nonzero digit to the left
of the decima point. Adjust the exponent accordingly. A number like +0.1234E+0 would be
normalized to +1.2340E-1. Because the number +2.3000E+0 is already normalized, we do
nothing.

6. Findly, if the guard digit is greater than or equal to 5, round the next digit up. Otherwise,
truncate the number.

+2.3000E+0 Round last digit
+2.300E+0 Result 2.3

7. For floating-point subtraction, change the sign of the second operand and add.

Multiplication
When we want to multiply two numbers such as 0.12 x 11.0, the following rules apply.
1. Add the guard digit.

+1.2000E-1 The number is0.12

+1.1000E+1 Thenumberis11.0

2. Multiply the two fractions and add the exponents. (1.2x 1.1=132) (-1+ 1=0)
+1.2000E-1 The number is0.12
+1.1000E+1 The numberis11.0

+1.3200E+0 Theresultis1.32

3. Normalize the result. If the guard digit is greater than or equa to 5, round the next digit up.
Otherwise, truncate the number.

+1.3200E+0 The number is 1.32
Notice that in multiply, you didn't have to go through al that shifting. The rules for

multiplication are alot shorter than those for add. Integer multiplication isalot ower than
integer addition. In floating point, multiplication speed isalot closer to that of addition.

Page 346
Divison
To divide numbers like 100.0 by 30.0, we must perform the following steps.
1. Add the guard digit.
+1.0000E+2 The number is 100.0
+3.0000E+1 The number is 30.0

2. Divide the fractions, and subtract the exponents.
+1.0000E+2 The number is 100.0
+3.0000E+1 The number is 30.0

+0.3333E+1 Theresultis3.333

3. Normalize the result.

+3.3330E+0 Theresultis3.333

4. If the guard digit islessthan or equal to 5, round the next digit up. Otherwise, truncate the
number.

+3.333E+0 Theresult is 3.333

Overflow and Underflow

There are limits to the size of the number a computer can handle. What are the results of the
following calculation?

9. 000E+9 x 9. 000E+9
Multiplying it out, we get:
8.1 x 10%°

However, we are limited to asingle-digit exponent, too small to hold 19. Thisis an example of
overflow (sometimes called exponent overflow). Some computers generate atrap when this
occurs, thus interrupting the program and causing an error message to be printed. Others are not

so nice and generate awrong answer (like 8.100E+9). Computers that follow the IEEE
floating-point standard generate a special valuecaled +I nfi ni ty.

Underflow occurs when the numbers become too small for the computer to handle. Example:
1. 00CE-9 x 1. 00CE-9

Theresultis:
1.0 x 10718

Because -18 istoo small to fit into one digit, we have underflow.

Page 347

Roundoff Error

Floating point is not exact. Everyone knowsthat 1 + 1is 2, but did you know that 1/ 3 + 1/ 3
I = 2/ 3? This can be shown by the following floating-point calculations:

2/3 asfloating point is 6.667E-1
1/3 asfloating point is 3.333-1
+3.333E-1
+3.333E-1

+6.666E-1, or 0.6666

which is not;
+6.667E-1

Every computer has asimilar problem with its floating point. For example, the number 0.2 has
no exact representation in binary floating point.

Floating point should never be used for money. Because we are used to dealing with dollars
and cents, it is tempting to define the amount $1.98 as:

fl oat amount = 1. 98;

However, the more cal culations you do with floating point, the bigger the roundoff error.
Banks, credit cards, and the IRS tend to be very fussy about money. Giving the IRS a check
that's almost right is not going to make them happy. Money should be stored as an integer
number of pennies.

Accuracy

How many digits of the fraction are accurate? At first glance you might be tempted to say all
four digits. Those of you who have read the previous section on roundoff error might be
tempted to change your answer to three. The answer is:

The accuracy depends on the calculation. Certain operations, such as subtracting two numbers
that are close to each other, generate inexact results. Consider the following equation:

1-1/3- 13- 1/3
1.000E+0
-3.333E-1

Page 348

-3.333E-1

-3.333E-1

or.
1.000E+0
-3.333E-1
-3.333E-1
-3.333E-1

0.0010E+0, or 1.000E-3

The correct answer is 0.000E+0 and we got 1.000E-3. The very first digit of the fraction is
wrong. Thisis an example of the problem called roundoff error that can occur during
floating-point operations.

Minimizing Roundoff Error

There are many techniques for minimizing roundoff error. Guard digits have already been
discussed. Another trick isto usedoubl e instead of f | oat . This gives you approximately
twice the accuracy as well as twice the range. It also pushes away the minimization problem
twice as far. But roundoff errors still can creep in.

Advanced techniques for limiting the problems caused by floating point can be found in books
on numerical analysis. They are beyond the scope of thistext. The purpose of this chapter isto
give you some idea of what sort of problems can be encountered.

Floating point by its very nature is not exact. People tend to think of computers as very accurate
machines. They can be, but they also can give wildly wrong results. Y ou should be aware of
the places where errors can slip into your program.

Deter mining Accuracy

Thereisasimple way of determining how accurate your floating point is (for ssimple

calculations). The method used in the following program isto add 1.0+ 0.1, 1.0+ 0.01, 1.0 +
0.001, and so on until the second number gets so small that it makes no difference in the result.

The old C language specified that all floating-point numbers were to be donein doubl e. C++
removed that restriction, but because many C++ compilers are

Page 349

really front-ends to a C compiler, frequently C++ arithmetic isdone in doubl e. This means
that the expression:

fl oat nunberl, nunber?2;

whil e (nunberl + nunber2 != nunberl)
is equivalent to:
whi | e (doubl e(nunberl) + doubl e(nunber2) != doubl e(nunberl))

If you usethe 1 + 0.001 trick, the automatic conversion of f | oat todoubl e may givea
distorted picture of the accuracy of your machine. (In one case, 84 bits of accuracy were
reported for a 32-bit format.) Example 19-1 computes the accuracy of both floating point as
used in equations and floating point as stored in memory. Note the trick used to determine the
accuracy of the floating-point numbers in storage.

Example 19-1 float/float.cc

#i ncl ude <i ostream h>
#i ncl ude <i omani p. h>

mai n()

{
// Two nunbers to work with
fl oat nunberl, nunber?2;

float result; // Result of calcul ation

i nt count er; /1 Loop counter and accuracy check
nunberl = 1.0;

nunber2 = 1.0;

counter = O;

while (nunberl + nunber2 != nunberl)
++counter;
nunber 2 = nunber2 / 10.0;

}

cout << setw(2) << counter << " digits accuracy in calculations\n";

nunber 2

1.0;
count er :

0;

while (1) {
result = nunberl + nunber2
if (result == nunberl)
br eak;

++count er ;
nunber2 = nunber2 / 10.0;

}
cout << setw(2) << counter << " digits accuracy in storage\n";
Page 350
Example 19-1 float/float cc (Continued)

return (0);

}
Running this on a Sun-3/50 with an MC68881 floating-point chip, we get:

20 digits accuracy in calcul ations
8 digits accuracy in storage

This program only gives an approximation of the floating-point precision arithmetic. A more
precise definition can be found in the standard include file float.h.

Precision and Speed

A variable of type double has about twice the precision of anormal f | oat variable. Most
people assume that double-precision arithmetic takes longer than single-precision. Thisis not
always the case. Let's assume we have one of the older compilers that does everything in
doubl e.

For the equation:

fl oat answer, nunberl, nunber2;
answer = nunberl + nunber2;
C++ must perform the following steps:
1. Convert nunber 1 from single to double precision
2. Convert nunber 2 from single to double precision
3. Double-precision add
4. Convert result into single precision and storein answer
If the variables were of type doubl e, C++ would only have to perform the steps:
1. Double-precision add
2. Storeresultin answer

Asyou can see, the second form isalot simpler, requiring three fewer conversions. In some
cases, converting aprogram from single precision to double precision makesit run faster.

NOTE

Because C++ specifies that floating point can be donein doubl e or
f | oat , you can't be sure of anything. Changing al f | oat s into

doubl es may make the program run faster, sower, or the same.
The only thing you can be sure of when using floating point is that the
results are unpredictable.

Page 351

Many computers, including the PC and Sun/3 series machines, have a specia chip called a
floating-point processor that does al the floating-point arithmetic. Actual tests using the
Motorola 68881 floating-point chip (which isused in the Sun/3) aswell as floating point on the
PC show that single precision and double precision run at the same speed.

Power Series

Many trigonometry functions are computed using a power series. For example, the seriesfor
sineis:
¥ %3 N7

sin{x) = x :ﬁ+?:ﬁ+

The question is, how many termsdo we need to get four-digit accuracy? Table 19-2
contains the terms for sin(p/2).

Table 19-2 Terms for sin(p/2)

Term Value Total

1 |x 1.571E+0

2 | & 6.462E-1 9.248E-1

3 |« 7.974E-2 1.005E+0

4 |« 4.686E-3 9.998E-1
T

5 | x* 1.606E-4 1.000E+0

!

6 | ! 3.604E-6 1.000E+0

!

From this we conclude that five terms are needed. However, if we try to compute sin(p) we get
Table 19-3.

Table 19-3. Termsfor sin(p)

Term Vaue Totd

1 X 3.142E+0

2 % 5.170E+0 -2.028E+0

w
whl =
- Y

4 |y

2.552E-0

5 998E-1

5.241E-1

-7.570E-2

Page 352
Table 19-3 Terms for sin(p) (Continued)
Term Vdue Totd
5 x? 8.224E-2 | 6542E-3
9
6 x_“ 7.381E-3 -8.388E-4
11!
7 x 4671 E-4 | -3.717E-4
13
8 x4 2.196E-5 -3.937E-4
15!
9 ~c_ 7.970E-7 -3.929E-4
17!
10 x ! 2.300E-8 -3.929E-4
[EH

p needs nine terms. So, different angles require a different number of terms. (A program for
computing the sine to four-digit accuracy showing intermediate terms isincluded in Appendix
D.)

Compiler designers have a dilemmawhen it comes to designing a sine function. If they know
ahead of time the number of terms to use, they can optimize their agorithms for that number of
terms. However, they lose accuracy for some angles. So a compromise rust be struck between
speed and accuracy.

Don't assume that because the number came from the computer, it is accurate. The library
functions can generate bad answers—especially when working with excessively large or small
values. Most of the time you will not have any problems with these functions, but you should be
aware of their limitations.

Finally, thereis the question of what is sin(1,000,000)? Our floating-point format is good for
only four digits. The sine function is cyclical. That is, sin(0) = sin(2p) = sin(4p). Therefore,
sin(1,000,000) is the same as sin(1,000,000 mod 2p).

Because our floating-point format is good to only four digits, sin(1,000,000) is actually
sin(1,000,000 mod 1,000). Since 1,000 is bigger than 2p, the error renders meaningless the
result of the sine.

Programming Exer cises

Exercise 19-1: Write aclass that uses strings to represent floating-point numbersin the format
used in this chapter. The class should have functions to read, write, add, subtract, multiply, and
divide floating-point numbers.

Page 353

| attended a physics class at Cal Tech taught by two professors. One was giving alecture on the sun
when he said, "... and the mean temperature of the inside of the sun is 13,000,000 to 25,000,000
degrees." At this point the other instructor broke in and asked, "Isthat Celsius or Kelvin (absolute z
or Celsius-273)?"

Thefirst lecturer turned to the board for a minute and then said, "What's the difference?’ The moral
the story is that when your calculations have a possible error of 12,000,000, a difference of 273 do
mean very much.

Exercise 19-2: Create a class to handle fixed-point numbers. A fixed-point number has a
constant (fixed) number of digitsto the right of the decimal point.

Page 355

20
Advanced Pointers

In This Chapter:

Pointers, Structures,
and Classes

delete Operator
Linked List
Ordered Linked
Lists
Double-linked List
Trees

Printinga Tree
The Rest of the
Program

Data Structuresfor
a Chess Program
Programming
Exercises
Answersto Chapter
Questions

Arace that binds

Its body in chains and calls them Liberty,
And calls each fresh link progress
—Robert Buchanan

One of the more useful and complex features of C++ isits use of pointers. With pointers you
can create complex data structures such as linked lists and trees. Figure 20-1 illustrates some
of these data structures.

Up to now all your data structures have been allocated by the compiler as either permanent or
temporary variables. With pointers you can create and allocate dynamic data structures,
which can grow or shrink as needed. In this chapter you will learn how to use some of the more
common dynamic data structures.

Pointers, Structures, and Classes

Structures and classes may contain pointers, or even a pointer to another instance of the same
structure. In the following example:

class item{
publi c:
int val ue;
item*next_ptr;

1
the structurei t envisillustrated by Figure 20-2.

The operator new allocates storage for a variable and returns a pointer. It is used to create
new things out of thin air (actually out of an area of memory called the

Page 356

Linked list
s _;
v f !@:'_m_'-.‘]
Jx5000 arrayl0) | | (.
DS0OL amayin) | | ’;%} b];
0x5002 arrayl2] IIZJ'_ '__;m " i Nt
i 05003 arrayl3] P E Pl J ,’:_q
{oraps fasge /| | plum)
Ox5004 array(4] | - r1 I 11
I e G2 @

Array Tree |

Figure 20-1 Examples of pointer use

|
E next_pir

Eo 2
value
item

Figure 20-2 Item

heap). Up to now we've used pointers solely to point to named variables. So if we used a
statement like:

i nt data;
int *nunber _ptr;

nunber _ptr = &dat a;

Page 357

the thing we are pointing to has aname (dat a). The operator new creates a new, unnamed
variable and returns a pointer to it. The "things" created by new can only be referenced through
pointers, never by name.

In the following example, we use new to alocate an integer from the heap. The variable
el enment _pt r will point to our new integer.

int *elenent _ptr; /1 Pointer to an integer
el ement _ptr = new int; /] Get an integer fromthe heap

The operator new takes a single argument: the type of the item to be allocated. According to
the latest C++ standard, if new runs out of memory it should throw an exception and abort the
program. (See Chapter 22, Exceptions, for information on how to handle this.) On older C++
systems, when new runs out of memory, it returns anull pointer.

Suppose we are working on a complex database that contains (among other things) amailing
list. We want to keep our storage use to a minimum, so we only want to alocate memory for a
person if he or she exists. Creating an array of cl ass per son would allocate the data
statically and use up too much space. So we will alocate space as needed. Our structure for a
person is:

cl ass person {

publi c:
char name[30] ; /1 Name of the person
char address[30]; /1 \Where he lives
char city state zip[30]; // Part 2 of address
i nt age; /1l H's age
fl oat hei ght ; /1 H's height in inches

We want to allocate space for this person. Later the pointer to this record will be put in the
database.

To create anew person, we use the following:

struct person *new ptr;
new_ptr = new person;

The operator new can aso allocate more complex data types such as arrays. Example 20-1
allocates storage for a character array 80 byteslong (\O' included). The variable
string_ptr pointsto this storage.

Example 20-1
main ()

{

char *string_ptr;

string_ptr = new char[80];

Page 358
All we've done is substitute a ssimple type (such as per son) with an array specification
(char[80]).

delete Operator

The operator new gets memory from the heap. To return the memory to the heap you use the
operator del et e. The general form of thedel et e operator is:

del ete pointer; /1 \Where pointer is a pointer to a sinple object
poi nter = NULL;

where poi nt er isapointer previously allocated by new. If the new operator allocated an
array, then you must use the form:

del ete [] poi nter; /1 \Where pointer is a pointer to an array
poi nter = NULL;

NOTE

The reason there are two forms of the del et e operator is because
thereis no way for C++ to tell the difference between a pointer to an
object and a pointer to an array of objects. Thedel et e operator
relies on the programmer using "[]" to tell the two apart.

Strictly speaking, the line:
poi nter = NULL;

IS unnecessary. However, it isagood ideato "null out" pointers after they are deleted. That
way, you don't try use a pointer to deleted memory, and aso you help prevent any attemptsto
delete the same memory twice.

Thefollowing is an example using new to get storage and del et e to dispose of it.

const DATA SIZE = (16 * 1024);

voi d copy(void)

{ char *dataptr; /1 Pointer to |large data buffer
data _ptr = new char[DATA S| ZE]; /1 CGet the buffer

/*
* Use the data buffer to copy a file
*/
del ete[] data ptr;
data_ptr = NULL;

}

But what happensif we forget to free the memory? The buffer becomes dead. That is, the
memory management system thinks it's being used, but no oneis

Page 359

using it. (The technical term for thisisa"memory leak.”) If the del et e statement isremoved
from the function copy then each successive call eats up another 16K of memory.

The other problem that can occur is usng memory that has been freed. When del et e isused,
the memory is returned to the memory pool and can be reused. Using a pointer after adel et e
call issmilar to an array index out-of-bounds error. Y ou are using memory that belongs to
someone else. This can cause unexpected results or program crashes.

Linked List

Suppose you are writing a program to send a list of names to another computer using a
communications line. The operator types in the names during the day, and then after work you
dia up the other computer and send the names. The problem is, you don't know ahead of time
how many names are going to be typed. By using alinked-list data structure, you can create a
list of names that can grow as more names are entered. With alinked list you can also easily
insert names into the middle of the list (which would be slow and difficult with an array).
Also, asyou will see later, linked lists can be combined with other data structures to handle
extremely complex data.

A linked list isachain of items where each item points to the next item in the chain. Think
about the treasure hunt games you played when you were akid. Y ou were given a note that
said, "Look in the mailbox." Y ou raced to the mailbox and found the next clue, "L ook in the big
tree in the back yard," and so on until you found your treasure (or you got lost). In atreasure
hunt each clue points to the next one.

Figure 20-3 graphically illustrates alinked list.

- N =T

data ~data, data

Figure 20-3. Linked list

Page 360

The class declarations for alinked list are:

class linkedlist {
publ i c:
class linked |ist_elenent {
publ i c:
char dat a[30] ; /1 Data in this
el enent

private:
/1 Pointer to next elenent
linked_list_elenent *next_ptr;

friend class linked |ist;

}s

publ i c:
linked_list_elenent *first_ptr; /[l First element in the |ist

/1 Initialize the linked |ist
linked_list(void) (first_ptr = NULL;}

[/ ... Oher nenber functions

}s

Thevariablefi rst _ptr pointsto the first element of thelist. In the beginning, before we
insert any elementsinto thelist (it is empty), thisvariableisinitialized to NULL.

Figure 20-4 illustrates how a new element can be added to the beginning of alinked list. Now
all we have to do istrandate thisinto C++ code.

To do thisin C++, we execute the following steps:
1. Create the item we are going to add.
newptr = new |linked_|ist_el enment;
2. Store the item in the new element.
(*newptr).data = item
3. Make thefirst element of the list point to the new element.

(*new ptr).next_ptr = first_ptr;

4. The new element is now thefirst element.

firstptr = new ptr;

The code for the actual program is:

void linked list::add list(int item
{
// Pointer to the next itemin the |ist
linked |ist_elenent *new ptr;
new ptr = new |inked_list_elenent;
€ Create new slement.
€ Store item in new element.
next_pir D
-
‘)
data
€) Maks nexe_prr point to the first alament.
I
[poese [poan [potcr [, D
ol
') .
data data data data
o
ﬂ Change firet_ptr fopoiat fo the new elemant,
thug brezking the fink between £irat_ptr and the
ofd first ahamant.
first_ptr néad_plr next_pir néd,_pitr
: g g g)
ham
Z
')
data data data data
N
" R Figure 20-4 New element
strecpy((*new ptr).data, iten;
(*new ptr).next_ptr = first_ptr;
first_ptr = new ptr;
}

Page 361

Now that we can put thingsin alist, let's use that ability. We'll now write a short function to
search the list till we find akey item or we run out of data. Example 20-2 contains the new

f i nd function.

Page 362
Example 20-2 find/find cc

#i ncl ude <i ostream h>
#i ncl ude <string. h>
#i ncl ude "Ii nked. h"

/***

* Find -- look for a data itemin the |ist

Par anmet ers
nane -- nane to look for in the |ist

Ret ur ns
1if nane is found
Oif nane is not found

L I R

*
*
*
*
*
*
*
*
*
*

R S I I S S S b b I I S b b b I O S b b S S I I I S S b S I I O O S S
int linked_ list::find(char *nane)

{

/

/* Qurrent structure we are |ooking at */
linked_|ist_elenent *current_ptr;

current_ptr = firstptr;

while ((strcnp(current_ptr->data, nane) != 0) &&
(current _ptr !'= NULL))
current_ptr = current_ptr->next_ptr;

/*
* If current_ptr is null, we fell off the end of the list and
* didn't find the nane
*/
return (current_ptr !'= NULL);
}

Question 20-1: Why does running this program sometimes result in a bus error? Other
timesit will report "found" (return 1)for an itemthat isnot in the list.

Inour f i nd program we had to use the cumbersome notation (*current ptr). datato
access the data field of the structure. C++ provides a shorthand for this construct using the - >
operator. The dot (.) operator means the field of a structure, and the structure pointer operator
(- >) indicates the field of a structure pointer.

The following two expressions are equivalent:

(*currentptr).data = val ue;
current _ptr->data = val ue;

Ordered Linked Lists

So far we have only added new elements to the head of alinked list. Suppose we want to add
elementsin order. Figure 20-5 is an example of an ordered linked list.

Page 363

first_ptr Erm'turlr EI“U* . E @
a5 89 123

data data data

Figure 20-5 Ordered list

Figure 20-6 shows the steps necessary to add a new element, "53," to the list.

The following member function implements this algorithm. The first step isto locate the
insertion point. Thef i r st _ptr pointsto the first element of the list. The program movesthe
variable bef or e_pt r aongthelist until it finds the proper place for the insertion. The
variableaf t er _pt r isset to point to the previous vaue. The new element will be inserted
between these elements.

void linked list::enter(int item

{

linked_ list_item*beforeptr; // Insert before this el enent
linked_ list_item=*after_ptr; // Insert after this el ement

/*
* Warning: This routine does not take
* care of the case where the elenent is
* jnserted at the head of the list

*/

before ptr = first_ptr;

while (1)
beforeptr = after_ptr;
after_ptr = afterptr->next_ptr;

// Dd we hit the end of the list?
if (after_ptr == NULL)
br eak;

// Did w find the place?

if (item>= afterptr->data)
br eak;

Page 364

ﬂ before_ptr poMs fo Mhe efemants bofors the insertion point, after_per poils fo the
glement affer tha insartion point.

i e (—er (2

89 129

jj SUPITRITES P j SEPORREINS PRV

before_per after_pir

€ Create new glement,

et f

|
—

rEw_pir
ﬂ Make ihe next_prr of (he new afamant point 1o the same elamant 25 after_ptr.

Q) Link the element pointed fo by before_ptr o ur naw slement by changing
before _ptr—>naxt ptr.

N)

bedore_pr ter_ptr
new pir

Figure 20-6. Adding element "53" to an ordered list

Now we know where to insert the new element. All we must do isinsert it. We start at the
element before the new one (bef or e_pt r). This eement should point to the new element,
So:

before_ptr->nextptr = new ptr;

Page 365

Next isthe new element (new_pt r). It needs to point to the element after it, oraf ter _ptr.
Thisis accomplished with the code:

new ptr->next_ptr = after_ptr;

Theelement af t er _pt r needsto point to the rest of the chain. Because it already does, we
leave it alone. The full code for inserting the new element is:

/] Create new item
new ptr = new |linked_list_item

new ptr->data = itemn
/! Link in the newitem

before _ptr->next_ptr = newptr;
new ptr->next_ptr = after_ptr;

}
Double-linked List

A double-linked list contains two links. One link points forward to the next element; the other
points backward to the previous element. Double-linked lists are useful where the program
needs to go through the list both forward and backward.

The classes for adouble-linked list are:

class double list {

private:
class double_list_elenment {
publi c:
i nt data; /] Data item
private:
doubl e_Iist_elenent *next_ptr; /1 Forward
['ink
doubl e_Iist_elenent *previous_ptr;// Backward
['ink
friend class double |ist;
1
publi c:

doubl e_Iist_elenent *head_ptr; /1 Head of the list
doubl e_Iist(void) {head_ptr = NULL;}
/1 ... Other menber functions
Thisis shown graphically in Figure 20-7.
Toinsert an item into the list, we first locate the insertion point:
void double_list::enter(int item
double Iist_elenent *insert _ptr; // Insert before this el enent
| *

* Warni ng: This routine does not take

Page 366

Ingert_ptr

@ . |/ previoug_pir nrmout_ptt / pmrm[._m_r_

g —

Figure 20-7 Double-linked list

* care of the case where the elenent is
* inserted at the head of the |ist
* or the end of the |ist
*/
insert_ptr = head_ptr;
while (1) (
insert_ptr = insert_ptr->next;

// Have we reached the end?
if (insert_ptr == NULL)
br eak;

/1 Have we reached the right place?
if (item>=insertptr->data)
br eak;

}

Notice that we do not have to keep track of the variableaf t er _pt r . The pointer

i nsert _ptr->previ ous_ptr isusedtolocate the previous element. To insert a new

element, we must adjust two sets of pointers. First we create the new e ement:

/1l Create new el enent
new ptr = new doubl e_list_el ement;

Next we set up the forward pointer for the new item:
new ptr->next_ptr = insert_ptr;

Graphicaly thisis represented by Figure 20-8.

Next we connect the link to the previous element using the code:
new ptr->previous _ptr = insert_ptr->previous_ptr;

Graphically, thisis represented in Figure 20-9.

Page 367

new ptr-rnext ptr = insert_ptr;

S

edt_pir

pomc e

prévious_ptr

insert_ptr

27

previous_pir

W _ptr

Figure 20-8. Double-linked list insert, part #1

Thelinks are set up for the new element. Now all we have to do is break the old links between
items 11 and 36 and connect them to the new item (27).

Getting to item 11 isabit of atrick. We only have apointer toitem 36 (i nsert _ptr).
However, if we follow the previouslink back (i nsert _ptr->previ ous_ptr), we get
theitem (11) that we want. Now all we haveto do isfix thenext _ptr for thisitem.

The C++ code for thisis surprisingly smple:
insert_ptr->previous_ptr->next_ptr = new ptr;
Visually we can see this operation in Figure 20-9.

We have only one remaining link to fix: thepr evi ous_ptr of thei nsert _ptr.InC++
the code looks like:

insert_ptr->previous_ptr = new ptr;
Graphically this operation is represented by Figure 20-11.
In summary, to insert anew item in adouble-linked list, you must set four links:

1. The new item's previous pointer:

new ptr->previous_ptr = insert_ptr->previous_ptr;

Page 368

new ptr->next ptr = insert ptr-:>previous ptr;

nesd_plr .
all ol /,--" -
i w30
previous_ptr .x‘_
*| \
\> J insert_ptr
previous_pir P

| new_ptr

"~ Figure 20-9 Double-linked list insert, part #2
2. The new item's next pointer:
newpt r->nextptr = insertptr;
3. The previous pointer of the item that will follow the new item:
insert_ptr->previous_ptr->next_ptr = new ptr;
4. The next pointer of the item that will precede the new item:

insert_ptr->previous_ptr = new ptr;

Trees

Suppose we want to create an aphabetized list of the words that appear in afile. We could use
alinked list, but searching alinked list is Slow because we must check each element until we
find the correct insertion point. By using a data type called atree, we can reduce the number of
comparisons tremendoudly.

A binary tree structure looks like Figure 20-12.

Each box is called a node of the tree. The box at the top is the root and the boxes at the bottom
are the leaves.* Each node contains two pointers: aleft pointer and aright pointer, which point
to the left and right subtrees.

Page 369

insert_ptr-rpreviocus_ptr->next_ptr = new_ptr;

“-\ B
11 v |36

prmril:'rus_ptr

) * ,/':

(|21

insert_ptr

new_ptr

Figure 20-10. Double-linked list insert, part 3
The structure for atreeis;

class tree {
cl ass node {

publ i c:
char *dat a; /1 Word for this tree
private:
node *right; /] Tree to the right
node *left; /!l Tree to the left
friend class tree;
}s
publ i c:

node *root; // Top of the tree (the root)

tree(void) {root = NULL;);
/ .. . Oher nenber function

}s

Trees are often used for storing a symbol table (alist of variables used in a program). In this
chapter we will use atreeto store alist of words and then to

* Programming trees are written with the root at the top and the |eaves at the bottom Common sense

tellsyou that thisis upside down In case you haven't noticed, common sense has very little to do with
programming

Page 370

ingsert_ptr->previcus ptr = new_ptr;

11 \ e | 30

Non _,
11 + .-'/

_,f' insert_ptr
previous_ptr

\“‘-,. /
—

h re

new_pir

Figure 20-11 Double-linked list insert, Part 4

temon | -
o i
- ‘;,/’ \:ight
apple | pear |,
g \iight '.ll.!ft/ \:ight
E;!“ 4 |orange plum |

o0 OO0 B0

Figure 20-12. Tree

print the list alphabetically. The advantage of atree over alinked list isthat searching atree
takes considerably lesstime.

Page 371

In this example, each node stores a single word. The left subtree stores all the words less than
the current word, and the right subtree stores all the words greater than the current word.

For example, Figure 20-13 shows how we descend the tree to look for the word "orange." We
would start at the root, "lemon." Because "orange” > "lemon," we would descend the right link
and go to "pear." Because "orange" < "pear," we descend the left link, where we find "orange."

(root nods) [P

lEf:;/ \\:i ght

el _pelar
P .1- Ry . g
%] \iigh: 1"“/ \fiﬁhﬂ
/ |
{feal nodes) ,ﬂl.?ll!'g mf” p[iJm
| o0 00 B0

Figure 20-13. Tree search)

Recursion is extremely useful with trees. Our rules for recursion are 1) the function must make
things smpler and 2) there must be some endpoint.

The agorithm for inserting aword in atreeis:

1. If thisisanull tree (or subtree), create a one-node tree with thisword.

2. If this node contains the word, do nothing.

3. Otherwise, enter the word in the left or right subtree, depending on the value of the word.
Does this algorithm satisfy our recursion rules? The function has two definite endpoints:

1. A match isfound.

2. We have anull node.

Otherwise, we enter the word into a subtree (which is simpler than the whole tree).

Page 372

To see how thisworks, consider what happens when we insert the word "fig" into the tree.

First we check the word "fig" against "lemon.” "Fig" is smaller, so we go to "apple." Because
"fig" is bigger, we go to "grape." Because "fig" issmaller than "grape,” wetry theleft link. Itis
NULL, so we create a new node.

This code makes use of anew function: st r dup. Thisfunction creates a copy of a string on
the heap and returns a pointer to the new string. The string may later be returned to the heap

using thedel et e operator.”

The function to enter avaueinto atreeis:

void tree::enter_one(node *&ree_node, char *word)

{
int result; /1l Result of strcnp

/!l See if we have reached the end
if (tree_node == NULL) {

tree_node = new node;

tree _node->l eft = NULL;
tree_node->right = NULL;
tree_node->word = strdup(word);

}
result = strcnp(node->word, word);
if (result == 0)

return;

if (result < 0)
enter_one(tree_node->right, word);
el se
enter_one(tree_node->left, word);

}
And the function to kick it off is:

void tree::enter(char *word)
enter_one(root, word);
s

This function passes a pointer to the root of thetreeto ent er _one. If theroot isNULL,
ent er _one creates the node. Because we are changing the value of a pointer, we must pass a
reference to the pointer.

* The tunction st r dup isnot part of the proposed ANSI standard for C++. It is, however, availablein
all the compilers|'ve seen It appearsto be part of an unwritten standard

Page 373

Printinga Tree

Despite the complex nature of atree structure, it iseasy to print. Again we use recursion. The
printing algorithmis:

1. For the null tree, print nothing.

2. Print the data that comes before this node (I€eft tree).
3. Print this node.

4. Print the data that comes after this node (right tree).

The code for printing the treeis:

void tree::print_one(node *top)

{
if (top == NULL)
return; /1 Short tree
print_one(top->left);
cout << top->word << '\n';
print_one(top->right);
}

void tree::print(void)

print_one(root);

}
The Rest of the Program

Now that we have the data structure defined, al we need to complete the programisafew
more functions. The main function checks for the correct number of arguments and then calls the
scanner and the pr i nt _one routine.

The scan function reads the file and breaks it into words. It uses the standard macroi sal pha.
The macro returns 1 if itsargument is aletter and O otherwise. It is defined in the standard
includefilect ype. h. After aword isfound, the function ent er is called to put theword in
thetree. st r dup creates the space for a string on the heap and then returns the pointer to it.

Example 20-3 is the listing of words.cc.

Example 20-3. words/words. cc

/**

* Wrds -- scan a file and print out a list of words *
* in ASCI | order *
* *
* Usage: *
* words <file> *
**I
#i ncl ude <i ostream h>
Page 374
Example 20-3 words/words. cc (Continued)
#i ncl ude <fstream h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>
class tree {
private:
/1 The basic node of a tree
cl ass node {
private:
node *right; /1l Tree to the right
node *|left; /1l Tree to the left
publ i c:
char *wor d; /1 Word for this tree

friend class tree;

}

/1 The top of the tree
node *root;

/!l Enter a new node into a tree or subtree
voi d enter_one(node *&node, char *word);

/1 Print a single node

voi d print_one(node *top);
public:
tree(void) {root = NULL;}

/1 Add a new word to the tree

voi d enter(char *word) {
enter_one(root, word);

}

/1 Print the tree
voi d print(void)

print_one(root);
}

|
static tree words; /1 List of words we are | ooking for

/**

* Scan -- scan the file for words

*

*

* Par aneters
* nane -- nanme of the file to scan

khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhdhhhdhhhhdhkhdhkrdkhrddrkk**x

voi d scan(char *nane)

{

*
*
*
*
*
*/

char word[100] ; /1 Word we are working on
int index; /1 Index into the word

Page 375
Example 20-3. words/words. cc (Continued)

int ch; /1 Current character
ifstreaemin_file; // Input file

in_file.open(nane, ios::in);
if (in_file.bad()) {
cerr << "Error: unable to open << panme << '\n';

exit(8);

}

while (1)
/1 Scan past the white space
while (1) {

ch = in_file.get();

if (isalpha(ch) || (ch == EOF))
br eak;
}

if (ch == EOF)
br eak;

word[0] = ch;

for (index = 1; index < sizeof(word); ++index) ({
ch = in_file.get();
if (!isalpha(ch))

mai n(i nt argc,

{

}

br eak;
wor d[i ndex]

}

ch;

/! Put a null on the end
word[index] = "\0

wor ds. ent er (wor d) ;

if (argc !'=2) {
cerr << "FError:
cerr << "
cerr <<
cerr << "
exit(8);

}

scan(argv[1]);

words. print();

return (0);

char *argv[])

wrong nunber of paraneters\n";
on the command |ine\n";

"Usage is:\n";
words 'file'\n";

/**

* tree::enter_one -- enter a word into the tree *

*

*

Example 20-3 wor ds/words.cc (Continued)

* Paraneters

* new node -- current node we are | ooking at *

* word -- word to enter

**I

*

voi d tree::enter_one(node *&ew node, char *word)

{

int result;

/1l Result of strcnp

/1l See if we have reached the end
if (new_node == NULL) {
new _node = new node;

new _node- >| ef t
new_node- >ri ght
new_node- >word

}

NULL;

= NULL;

st rdup(word);

result = strcnp(new_node->word, word);

if (result == 0)
return;

if (result < 0)

ent er _one(new_node->right, word);

el se

ent er _one(new _node->l eft, word);

Page 376

/**

* tree::print_one -- print out the words in a tree *
* *
* Paramet ers *
* top -- the root of the tree to print *

**/

void tree::print_one(node *top)

{
if (top == NULL)
return; /1 Short tree
print_one(top->left);
cout << top->word << '\n';
print_one(top->right);
}

Question 20-2: | once made a program that read the dictionary into memory using a tree
structure and then used it in a program that searched for misspelled words. Although trees
are supposed to befast, this program was so slow you would think | used a linked list. Why?

Hint: Graphically construct a tree using the words "able, " "baker," "cook, " "delta,” and
"easy" and look at the result.

Page 377

Data Structuresfor a Chess Program

A classic problem in artificial intelligence is the game of chess. So far, in spite of all our
advances in computer science, no one has been able to create a program that plays chess better
than the best grand masters.

We are going to design a data structure for a chess-playing program. In chess there are several
moves you can make. Y our opponent has many responses, to which you have many answers,
and so on back and forth for several levels of moves.

Our data structure is beginning to look like atree. But thisis not a binary tree, because we have
more than two branches for each node (Figure 20-14).

Your 15! move

1]

Opponent's 15t move

T m[- I I
T\ AN /TN TN

j Your 2md move @f@@iﬁiﬁ g@@ﬁ@ ;ﬂjéjig gﬁé”:ﬁiﬂ‘g I

Figure 20-14. Chesstree

We are tempted to use the following data structure;

cl ass chess {
publi c:
cl ass board_class board; // Current board position
cl ass next_class {
cl ass nove_cl ass nove; /1 Qur next nove
cl ass chess *chess_ptr;
/1 Pointer to the resulting position
} next[MAX_MOVES] ;
b

The problem is that the number of moves from any given position varies dramatically. For
example, in the beginning you have lots of pieces running around.”

* Trivia question. What are the 21 moves you can make in chess from the starting position? (Y ou can
move each pawn up one (8 moves) or two (8 more), and the knights can move out to the left and right
(4 more) (8+8+4=20)) What's the 21st move?

Page 378

Things like rooks, queens, and bishops can move any number of squaresin astraight line.
When you reach the end game (in an evenly matched game), each side probably has only afew
pawns and one major piece. The number of possible moves has been greatly reduced.

We want to be as efficient in our storage as possible because a chess program stresses the
limits of our machine. We can reduce storage requirements by changing the next-move array
into alinked list. The resulting structureis:

cl ass next_class {
cl ass nove_cl ass nove; /1 Qur next nove
cl ass next_class *chess ptr; // Pointer to the resulting position

1
struct chess {
cl ass board_cl ass board; /1 Current board position
class next_class *listptr; /1 List of noves we can nake from
her e
cl ass next_class this_nove; /1 The nmove we are making
1

Graphically, thislooks like Figure 20-15.

Your 15t move

Oppanent's 15! move

Your Znd move 1
SEHS55 RO GG SEEEH

Figure 20-15 Revised chess structure

The new version adds alittle complexity, but saves a great deal of storage.

Programming Exer cises
Exercise 20-1: Write a cross-reference program.
Exer cise 20-2: Write afunction to delete an element of alinked list.

Exer cise 20-3: Write afunction to delete an e ement of a double-linked list.

Page 379

Exer cise 20-4: Write afunction to delete an element of atree.

Answersto Chapter Questions

Answer 20-1: The problem is with the statement:

while ((current_ptr->data != val ue) &&
(current _ptr !'= NULL))

current _ptr->dat a ischecked before we check to seewhether current _ptr isa
valid pointer (!= NULL). If it isNULL we can easily check arandom memory location that

could contain anything. The solution isto check cur r ent _pt r before checking what it is
pointing to:

while (currentptr !'= NULL) {
if (current_ptr->data == val ue)
br eak;

Answer 20-2: The problem was as follows: because the first word in the dictionary was the
smallest, every other word used the right-hand link. In fact, because the entire list was ordered,
only the right-hand link was used. Although this was defined as a tree structure, the result was a
linked list. See Figure 20-16.

ahla

baker| -

1,

a?f ’
4
@ %)

Figure 20-16 Dictionary tree

Page 380

Some of the more advanced books on data structures, such as Wirth's Algorithms + Data
Sructures = Programs, discuss ways of preventing this by balancing a binary tree.

Trivia Answer: You give up. That'sright, the 21st moveisto resgn.

Page 381

21
Advanced Classes

In This Chapter:

Derived Classes
Virtual Functions
Virtual Classes
Function Hiding in
Derived Classes
Constructorsand
Destructorsin
Derived Classes
Summary
Programming
Exercises
Answersto Chapter
Questions

The ruling ideas of each age have ever
been theideas of itsruling class
—Karl Marx

Manifesto of the Communist Party

Derived Classes

Thest ack classthat was defined in Example 13-1 contains one major limitation: it does not
check for bad data. For example, there is nothing that prevents the user from pushing too many
things onto the stack.

We need to define a new bounds-checking stack (b_st ack). Thisnew stack does everything a.
simple stack does but also includes bounds checking. C++ allows you to build new classes on
old ones. In this case we will be building our bounds-checking stack (b_st ack) onthe
existing smple stack (st ack). Technically we will be using the classst ack as abase class
to create a new derived class, the bounds-checking stack.

We start by telling C++ that we are creating b_st ack out of st ack.
class b_stack: public stack (

The keyword publ i ¢ tells C++ to make all the membersof st ack accessible to the outside
world. If we declared st ack aspri vat e thenthepubl i ¢ and pr ot ect ed members of
st ack would be accessibleonly insideb_st ack.

This declaration tells C++ that we are going to use st ack asabasefor b_st ack. Figure
21-1 shows how C++ views this combination.

Now we need to define the new version of the push member function. We first check to see
whether there's room in the stack. If there's no more room, we print

Page 382

_,.-‘"" B — _;""1 i

stack i L |

. .‘h__stack -

Figure 21-1 Derived class h_stack and base class stack

an error message and abort the program. Otherwise we push the item onto the stack. Here'sa
limited version of push.

inline void b_stack::b_push(const int item

{
if (count >= STACK Sl ZE)
cout << "Error: Push overflows stack\n";
exit(8);
}

/1 This calls the push nmenber function of the stack cl ass

push(iten);
}

We have been very careful in selecting the name of this member function. Itiscalledb_push
instead of push for areason. We would like to call it push, but then the code:

inline void b_stack::push(const int iten

{
if (count >= STACK Sl ZE)
cout << "Error: Push overflows stack\n";
exit(8);
}
/1 The next line wongly calls b_stack::push (this function),
/1 not stack:: push
push(iten);
}

would call the member function push intheclassb_st ack not st ack' s push aswe
want. Theresult isthat wecall b_st ack' s push, which performsalimit check and then
callspush. Thispush belongstob_st ack, so we perform a bounds check and call push,
and so on. Theresult isthat push will cal itself over and over until the system runs out of
stack space.

Thisis not want we want. We want to tell C++ that we want to call thepush in st ack. This
can be accomplished by using the scope operator ": : ". The new version of
b_stack: : push lookslike:

inline void b_stack::push(const int item

{
if (count >= STACK SIZE) {
Page 383
cout << "Error: Push overfl ows stack\n";
exit(8);
}
stack: : push(item;
}

The full definition for boththest ack andb_st ack classesis shown in Example 21-1.
Example 21-1. stack c/stack dl.cc

/**

* Stack *
* afile inplenmenting a sinple stack class *

**/

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

const int STACK Sl ZE = 100; /1 Maxi mum si ze of a stack

/**

* Stack class *

*

*
* Menber functions *
* stack -- initialize the stack *

* push -- put an itemon the stack *
* pop -- renove an itemfromthe stack *
**/
/1l The stack itself
cl ass stack {

pr ot ect ed:

int count; /1 Nunber of itens in the stack
private:

i nt data[STACK Sl ZE] ; /1l The itens thensel ves
publ i c:

/1 Initialize the stack
stack(voi d);

/1 -stack() -- default destructor
/1 Copy constructor defaults

/!l Push an itemon the stack
voi d push(const int item;

/1 Pop an itemfromthe stack
int pop(void);
1

/**

* stack::stack -- initialize the stack *

hkhkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhkhdhkrdhkrddrkk **x%

i nline stack::stack(void)

{
}

count = 0; // Zero the stack

Example 21-1 stack c/stack d1.cc (Continued)

/**

* stack::push -- push an itemon the stack

*

Warning: W do not check for overfl ow

Par anet er s
item-- itemto put in the stack

R IR I S I I S I R I S I O R S R R I R I I S I I I R I S

*

*
* *
* *
* *
* *
*

inline void stack::push(const int item

data[count] = item
++count ;
/**
* stack::pop -- renove itemfrom stack *
* *
* Warni ng: We do not check for stack underfl ow *
* *
* Returns *
* the top itemfromthe stack *
**I

inline int stack::pop(void)

{

Page 384

/1 Stack goes down by one
--count;

/] Then we return the top val ue
return (datafcount]);

}

/**

* b_stack -- bound checking stack *
* *
* Menber function *
* push -- push an itemon the stack *
* pop -- renove an itemfromthe stack *
**/
class b_stack: public stack {
publ i c:

[/l bstack -- default constructor

/1l ~b_stack -- default destructor

/1 Copy constructor defaults

/!l Push an itemon the stack
voi d push(const int item;

/! Renove an itemfromthe stack
int pop(void);
}s

/**

* b stack::push -- push an itemon the stack *

* *

Page 385

Example 21-1. stack c/stack dl.cc (Continued)

* Paraneters *
* item-- itemto put in the stack *

**I

inline void b_stack::push(const int item

{
if (count >= STACK Sl ZE)
cerr << "Error: Push overflows stack\n";
exit (8);
}
stack: :push(item;
3**
* b_stack::pop -- get an itemoff the stack *
* *
* Returns *
* the top itemfromthe stack *

***I
inline int b_stack::pop(void)
if (count <= 0)
cerr << "Error: Pop causes stack underfl ow n"
exit (8);

return (stack::pop());
}

Even though these two classes are relatively ssmple, they illustrate some important features of
the C++ language. First we have declared count asapr ot ect ed member variable. This
means that this variable can be used only within the class st ack and in any classes derived
from st ack,suchasb_stack. Theb_st ack functionspush and pop canusecount to
do their work. However, anyone outside of st ack and b_st ack cannot use the variable.

Becauseb_st ack isderived from st ack, you canuseab_st ack type variable wherever
ast ack typevariableisused. In the following example, we createab_ st ack named
bound_st ack that isused as a parameter to the function push_t hi ngs, which takesa
normal, unbounded stack as a parameter.

voi d push_things(stack &a_stack) ({
a_stack. push(1);
a_stack. push(2);

}

11

b stack bounded_stack; // A random stack
I p....
push_t hi ngs (bounded_st ack);

Page 386

Thefunction push_t hi ngs takesast ack asaparameter. Even though the variable
bounded_st ack isab_st ack typevariable, C++ turnsit into ast ack when
push_t hi ngs iscalled.

One way to explain thisisthat athough bounded_st ack isof typeb_st ack, whenitis
used by push_t hi ngs the function islooking through a peephole that allowsit to see only
thest ack part of the variable as shown in Figure 21-2.

D —

stack

stack -
b_stack - b_stack (now imasibieg) .

bounded stack $1ECK "poephole” whit "push_things” 3265

Figure 21-2 How "p_détw_ihi hgs" seesa b_sfack

Let'simprovethe basic st ack so that instead of always alocating afixed-size stack, we
allocate the stack dynamically. The new st ack starts with:

cl ass stack {

private:

i nt *data; /! Pointer to the data in the stack
pr ot ect ed:

i nt count; // Current itemon the stack
publ i c:

stack(const unsigned int size)
data = new i nt[size];

count = 0;

}s

virtual ~stack(void)
del et e dat a;
data = NULL;

/1
(Wediscussthe keyword vi r t ual later in this chapter.)

This stack ismore flexible. To use the new st ack we must give it asize when we declare the
st ack variable. For example:

stack big_stack(1000);
stack smal |l _stack(10);
stack bad_stack; // Illegal, size required

Back to the bound-checking stack. Somehow we need to call the base class constructor
(st ack) with a parameter.

Page 387

The way we do thisisto put the base-constructor unitization just after the declaration of the
constructor for the derived class:

But this flexibility creates some problems for the bound-checking stack: the constructor for
st ack contains a parameter. How is the bound-checking stack to initialize the simple stack?

The solution isto use a syntax similar to initializing a constant data member.

class b_stack: public stack {

private:
const unsigned int stack_size; /1 Size of the sinple stack
publi c:

b_stack(const unsigned int size) : stack(size),
stack_si ze(si ze)
}

In this example, the base classis st ack and the derived classisb_st ack. The constructor
for b_st ack takes asingle parameter, the size of the stack. It needsto pass this parameter to
st ack. Theline:

b_stack::b_stack(cont unsigned int size) : stack(size),
doesthisthrough the st ack(si ze) syntax.
NOTE

Because the new version of st ack uses dynamic memory (new and
del et e), itisvital that we define the "big four" member functions:
the constructor, the destructor, the copy constructor, and the
assignment operator (=).

Virtual Functions
Today there are many different ways of sending a letter. We can mail it by the United States

Postal Service, send it via Federal Express, send it Certified Mail, or even fax it. All of these
methods get the |etter to the person (most of the time), but they differ in cost and speed.

Let's define a class to handle the sending of aletter. We start by defining an address class and
then use this class to define addresses for the sender and the receiver. (The definition of the
address classis "just asimple matter of programming” and is left to the reader.)

class mail {
publ i c:
address sender; // Wio's sending the nail (return address)?
address receiver; // Wio's getting the nmail?

/!l Send the letter

Page 388
voi d send_it(void)
/1 ... Sonme magi c happens here
i

}

Thereis, however, one little problem with this class. We're depending on "magic” to get our
letters sent. The process for sending a letter is different depending on which service we are
using. Oneway to handle thisisto havesend_i t call the appropriate routine depending on
what service we are using:

void mail::send_it(void)
switch (service) {

case POST_OFFI CE:
put _in_local mailbox();
br eak;

case FEDERAL_EXPRESS:
fill_out_waybill();
call _federal for_pickup();
br eak;

case UPS:
put _out _ups yes_sign();
gi ve_package to_driver();
br eak;

//... and so on for every service in the universe

This solution isabit clunky. Our mail class must know about all the mailing servicesin the
world. Also consider what happens when we add another function to the class:

class mail {
publ i c:
/! Returns the cost of mailing in cents
int cost(void) {
/[l ... nore magic

}

Do we create another big swi t ch statement? If we do, we'll havetwo big swi t ch
statements to worry about. What's worse, the sending instructions and cost for each service are
now spread out over two functions. It would be nice if we could group all the functions for the
Postal Service in one class, al of Federal Expressin one class, and so on.

For example, aclass for the Postal Service might be:

cl ass post_office: public mail{
publ i c:
/1 Send the letter
voi d send_it(void)
put _in_local mailbox();
1

/1 Cost returns cost of sending a letter in cents
int cost(void) {
/1 Costs 32 cents to mail a letter

Page 389

return (32); /1 WARNING This can easily becone dated

}s

Now we have the information for each single service in asingle class. The information is
stored in aformat that is easy to understand. The problem isthat it is not easy to use. For
example, let'swrite aroutine to send a letter:

voi d get _address_and_send(nail & etter)

{
letter.from= ny_address;
letter.to = gettoaddress();
letter.send();

}

/1

cl ass post_office sinple letter;
get _address_and_send(sinple_letter);

Thetroubleisthat | ett er isamai | class, sowhenwecall | etter. send() wecal the

send of the base classmai | . What we need isaway of telling C++, "Please call thesend
function of the derived class instead of the base class.”

Thevi rt ual keyword identifies a member function that can be overridden by a member

function in the derived class. If we are using a derived class, then C++ will look for members

in the derived class and then in the base class, in that order. If we are using a base class
variable (even if the actual instance is a derived class), then C++ will search only the base
class for the member function. The exception is when the base class definesavi r t ual
function. In this case, the derived classis searched and then the base class.

Table 21-1 illustrates the various search agorithms.

Table 21-1. Member Function Search Order

Class Type Member Function Type Search Order
Derived Normal Derived->base
Base Normal Base

Base virtual Derived->base

Example 21-2 illustrates the use of vi r t ual functions.

Example 21-2. virt/virt.cc

// 1llustrates the use of virtual functions
#i ncl ude <i ostream h>
cl ass base {

publi c:
void a(void) { cout << "base::a called\n"; }

Example 21-2 virt/virt cc (Continued)

virtual void b(void) { cout << "base::b called\n";
virtual void c(void) { cout << "base::c called\n";

1
cl ass derived: public base {
publ i c:
void a(void) { cout << "derived::a called\n"; }
void b(void) { cout << "derived::b called\n"; }
1
voi d do_base(base &a_base)
{
cout << "Call functions in the base class\n";
a_base. a();
a_base. b();
a _base.c();
}
mai n()
{
derived a _derived
cout << "Calling functions in the derived class\n";
a_derived. a();
a_derived. b();
a_derived. c();
do_base(a_derived);
return (0);
}

Page 390

}
}

The derived class contains three member functions. Two of them are self-defined: a and b. The
third, c, isinherited from the base class. When we call a, C++ looks at the derived class to see

whether that class defines the function. In this case it does, <o the line:

a_derived. a();

outputs:
derived::a called

When b is called the same thing happens, and we get:
derived::b called

It doesn't matter whether the base class definesa and b or not. C++ calls the derived class
and goes no further.

Page 391

However, the derived class doesn't contain a member function named ¢. So when we reach the
line:

a_derived. c();

C++ triesto find ¢ in the derived class and fails. Then it tries to find the member function in the
base class. In this case it succeeds and we get:

base::c call ed

Now let'smove on to the function do_base. Because it takes a base class as its arguments,
C++ redtrictsits search for member functions to the base class. So the line:

a_base. a();
outputs
base::a call ed

But what happens when the member function b iscalled? Thisisavi rt ual function. That
tells C++ that the search rules are changed. C++ first checks whether thereisab member
function in the derived class, and then C++ checks the base class. In the case of b, thereisab
in the derived class, so theline:

a_base. b();
outputs:
derived::b call ed

The member function c isalso avi r t ual function. Therefore, C++ starts by looking for the
function in the derived class. In this case it's not defined there, so C++ then looks in the base
class. It is defined there, so we get:

base::c called

Now getting back to our mail. We need a ssimple base class that describes the basic mailing
functions for each different type of service.

class mail {
publ i c:
address sender; // Wi is sending the nail (return address)?

address receiver; // Wo is getting the mail?

/1 Send the letter

virtual void send_it(void) {
cout << "Error: send_ it not defined in derived class.\n"
exit (8);

1

/1 Cost of sending a letter in pennies

virtual int cost(void) {
cout << "Error: cost not defined in derived class.\n"

Page 392

exit (8);
i
i
Now we can define a derived class for each different type of service. For example:

class postoffice: public mail {
publ i c:
void send_it(void) {
put _letter_inbox();
}

int cost(void)
return (29);
}

}s

Now we can write aroutine to send a letter and not have to worry about the details. All we
havetodoiscal send it andletthevi rt ual function do thework.

Thenmai | classisan abstraction that describes a generalized mailer. To associate areal
mailing service, we need to use it as the base for a derived class. But what happensif the
programmer forgets to put the right member functions in the derived class? For example:

class federal express: public mail ({
publi c:
void send_it(void) {
put _letter_in_box();
}

/1 Something is mssing

}

When we try to find the cost of sending aletter via Federal Express, C++ will notice that
therésnocost functioninf eder al _expr ess andcal theonein mai | . Thecost
functionin mai | knows that it should never be called, so it spits out an error message and
aborts the program. Getting an error message is nice, but getting it at compilation rather than
during the run would be better.

C++ alowsyou to specify vi r t ual functionsthat must be overridden in a derived class. For
this example, the new, improved, abstract mailer is:

class mail {
publ i c:
address sender; // Wi is sending the nail (return address)?

address receiver; // Wwo is getting the mail?

/1 Send the letter

virtual void send it(void) =0

/Il Cost of sending a letter in pennies
virtual int cost(void) = 0;

Page 393

The"= 0" tells C++ that these member functions are pure virtual functions. That is, they can
never be called directly. Any class containing one or more pure virtual functionsis called an
abstract class. If you tried to use an abstract class as an ordinary type, such as.

voi d send_package(voi d)
mail a _nmailer; /] Attenpt to use an abstract class

you would get a compile-time error.

Virtual Classes

Let's design some classes to handle atax form. In the upper right corner of each form is a blank
for your name, address, and Socia Security number. All the forms contain this same
information, so we'll define aclass for this corer of the form.

cl ass nane {
publ i c:
char *narme; /1 Name of the taxpayer
/1... Rest of the class

1
Now let's use this class to design another class for the 1040 form.
class form 1040: public nane {
publ i c:

int inconeg; /1l \Wages, tips, and other incone
/1

b
Our class structure so far isillustrated by Figure 21-3.

!oru_,if.;; ~-|

Figure 21-3. 1040 class structure

Unfortunately our tax returns consist of more than one form. For deductions we need Schedule
A, so let'sdefine aclassfor it.

cl ass schedul e_a: public name {
publi c:
i nt hone_interest; /1 Interest deduction for hone
nort gage

/!l ... Rest of class

Page 394
Putting the two forms together, we get a smple return.

class tax_return: public form 1040, schedul e_a {
/l... Rest of class

1
Figure 21-4 illustrates this class structure.

=] e]
:_) E‘-:r:.';_m;l_ R —| | lﬂh-ﬂ:li_l]

Figure 21-4. Tax return structure

The problem with this structure is that we have two nane classes. But the taxpayer's name
doesn't change from one form to another. What we want is the class structure shown in Figure
21-5.

| _.(_._._ ;..;_ — §|
PN

| schedula_a |

7
e

raturn J

form_ 1040

Figure 21-5. Better tax return structure

Declaring abaseclassvi r t ual tells C++ to combine common base classes. Redefining
tax_returnusngvirtual baseclasseswe get:

class form 1040: virtual public nane {

publi c:
int incone; /1 \Wges, tips, and other incone
/1
b
cl ass schedul e_a: virtual public name {
publi c:
int home_interest; /1 Interest deduction for hone nortgage

Page 395

I/ ... Rest of class

1

class tax_return: public form 1040, schedule_a {
/l... Rest of class

1

Notice that the class name is used as the base for two derived classes; derived classes cause
their base class's constructor to be called to initialize the class. Does this mean that the
constructor for nane will be called twice? The answer is no. C++ is smart enough to know
that nane is used twice and to ignore the second initialization.

Function Hiding in Derived Classes

Example 21-3 defines a base class with the overloaded function do_i t , which comesin both
an integer version and a floating-point version. The program also defines a derived class that
containsthe singleinteger do_i t .

Example 21-3. doit/doit.cc

class sinple {

publi c:
int doit(int i, int j) {return (i*j);}
float do_it(float f) {return (f*2);}
b
class derived: public sinple {
publi c:
int doit(int i, int j) {return (i+);}
b

Clearly, when we are using theder i ved class and we call the integer version of do_i t , we
are calling the one in the derived class. But what happens if we call the floating-point version?
The derived class has no floating point do_i t . Normally, if we don't have a member function
in the derived class, C++ will look to the base class.

However, sinceaversion of do_i t isdefined in the derived class, C++ will look to the
derived classfor all flavorsof do_i t . In other words, if oneform of do_i t isdefined in the
derived class, then that locks out all forms of the function.

mai n() {
derived test; /] Define a class for our testing
int i; /1 Test variable
float f; /1 Test variable

i
f

test.do it(l, 3); /1 Legal; returns 4 (1 + 3)
test.do it (4.0); /1 lllegal; "do it(float)" not defined in
/1 the class "derived"

Page 396

Constructors and Destructorsin Derived Classes

Constructors and destructors behave differently from normal member functions especially
when used with derived classes. When a derived-class variable is created, the constructor for

the base classis called first, followed by the constructor for the derived class.
Example 21-4 defines a simple base class and uses it to create a derived class.
Example 21-4 cons/class cc
#i ncl ude <i ostream h>
cl ass basecl ass {
publi c:
base_cl ass()

cout << "base class constructor called\n";

-base_class() {
cout << "base class destructor called\n";

}
s
cl ass derived_cl ass: public base_class {
publi c:
derived_cl ass()
cout << "derived class constructor called\n";
}
~derived_cl ass() {
cout << "derived class destructor called\n";
}
1

Now when we execute the code:
derived_cl ass *sanpl eptr = new derived_cl ass;
the program prints.

base class constructor called
deri vedcl ass constructor call ed

After the variable is destroyed, the destructors are called. The destructor for the derived class
iscalled first, followed by the destructor for the base class. So when we destroy the variable
with the statement:

del ete sanple _ptr;
sanpl e_ptr = NULL;

we get:

deri vedcl ass destructor called
base cl ass destructor called

Page 397

But C++ has a surprise lurking for us. Remember that derived classes can operate as base
classes. For example:

base cl ass *base _ptr = new derived_cl ass;
is perfectly legal. However, there is a problem when the variable is del eted:

del ete base ptr;

base ptr = NULL;

You see, base_ptr isapointertoabase cl ass. Atthispoint al the code can seeisthe
base cl ass. Thereisnoway for C++ to know that thereisaderi ved cl ass out there.
So when the variable is deleted, C++ failsto call the derived class destructor.

The output of the delete statement is:
base cl ass destructor called
We have just tricked C++ into deleting a class without calling the proper destructor.

We need some way to tell C++, "Hey, there is a derived class out there and you might want to
call itsdestructor.” The way we do thisisto make the destructor for the base class a
vi rtual function.

cl ass base_cl ass {
publi c:
base_cl ass() {
cout << "base class constructor called\n";
}

virtual ~base_class() {
cout << "base class destructor called\n";
}

}

Thekeyword vi rt ual normaly means, "Cal the function in the derived class instead of the
onein the base class." For the destructor, it has adightly different meaning. When C++ seesa
vi rt ual destructor, it will call the destructor of the derived class and then call the destructor
of the base class.

Sowiththevi rt ual destructor in place, we can safely deletethe base_cl ass variable
and the program will output the proper information:

derived_cl ass destructor called
base cl ass destructor called

Question 21-1: Why does Example 21-5 fail when we deletethe variablel i st _ptr ? The
program seems to get upset when it triesto call cl ear at line 20.

Page 398
Example 21-5. blow/blow.cc

1 #include <iostream h>
2 #include <stdlib. h>

3

4 class list {

5 private:

6 int item /1 Current item nunber
7

8 public:

9 virtual void clear() = 0;

10

11 voi d next _item(void) {

12 ++item

13 }

14

15 list(void) {

16 item= 0;

17 }

18

19 virtual ~list() {

20 clear();

21 }

22 };

23

24 class list_of integers : public list {
25 public:

26 int array[100]; /!l Place to store the itens
27

28 voi d clear(void) {

29 int i; /1 Array index
30

31 for (i =0; i < 100; ++i)
32 array[i] = 0;

33 }

34 };

35

36 main()

37 {

38 list_of integers *list _ptr = new |list_of integers;
39

40 /1 Cause probl ens

41 delete list_ptr;

42 list_ptr = NULL;

43 return (0);

44 }

Summary

Since programming began, programmers have been trying to find ways of building re-usable
code. C++, through the use of derived classes, allows you to

Page 399

build classes on top of existing code. This provides agreat deal of flexibility and makes the
code easier to organize and maintain.

Programming Exer cises

Exercise 21-1: Combine the checkbook class of Exercise 13-2 with the queue class of
Exercise 13-3 to implement a checkbook class that can print out the last ten entries of your
checkbook.

Exercise 21-2: Define a"string-match” base class.

class string matcher {
publ i c:
/!l Returns true if string matches, false if not
int match(const char *const string);

Define derived classes that match words, numbers, and blank strings.

Exercise 21-3: Define abase class shape that can describe any simple shape such asa
sguare, circle or equilateral triangle. The size of all these shapes can be reduced to asingle
dimension.

Define derived classes for each of the three shapes.
Createavi rt ual function in the base class that returns the area of each shape.

Note: You will need to more precisely define what dimensions are stored in the base class. (Is
the sizein the base classfor circle, the radius, or the diameter?)

Exercise 21-4: Write abase class called per son that describes a person of either gender.
Define two derived classes called man and wonan that define gender specific items. Write
purevi rt ual functionsin the base class for operations that are common to both sexes yet are
handled in different ways by each of them.

Exercise 21-5: Write abase class nunber that holds asingle integer value and contains one
member function, pri nt _i t . Define three derived classesto print the value in hex, octal, and
decimal.

Answersto Chapter Questions

Answer 21-1: Remember that destructors are called in the order of derived classfirst and then
base class. In this case, the destructor for the derived class, | i st _of i nt egers,iscaled
to destroy the class. The classis gone.

Next, the destructor for the baseclass| i st iscalled. It calsthefunction cl ear . Thisapure
vi rtual function, so C++ must call thecl ear function in the derived class. But the derived
classisgone. Thereisno cl ear function. This

Page 400

makes C++ very upset and it aborts the program. (Actually, only good compilers will cause a
program to abort. Others may do something really strange to your program.)

Y ou should never call purevi r t ual functionsfrom adestructor.

Page 401

\Y
Other Language Features

Page 403

22
Exceptions

In This Chapter:

Stack Exceptions
Runtime Library
Exceptions
Programming
Exercises

How gloriousit is—and also how
painful—to be an exception
—Alfred de Musset

Airplanes fly from one place to another and 99.9% of the time there's no trouble. But when
there istrouble such as a stuck whedl or an enginefire, pilots are trained to handle the
emergency.

Let's examine in detail what happens during an airborne emergency such as an engine catching
fire. Thisisan exception to normal flight. A fire alarm goes off in the cockpit.

This catches the pilots attention and they start going through the fire-emergency procedure.
Thisisan extensive list of thingsto do in case of fire. The airline prepared this list ahead of
time and the pilots have the list memorized. The pilots do what's necessary to handle the
exception: activate the fire extinguisher, shut down the engine, land very quickly, etc.

Let's break down this procedure into C++ pseudocode. When the pilots take off they are going
to try to fly the plane from one point to another without problems. The C++ "code" for thisis:

try {
fly frompoint_a to point_b();
}

Thet r y keyword indicates that we are going to attempt an operation that may cause an
exception.

Page 404
But what happens when we get an exception? We need to handle it. The C++ code for thisis:

catch (fire_energency &fire_info)
active_extinguisher(fire_info.engine);
turn_off(fire_info.engine);
| and_at _next _airport();

}

The keyword cat ch indicates that this section of code handles an exception. In this case the
exception handled isaf i r e_emner gency. Thisisthe type of emergency. It could be afirein

engine number 1, engine number 2, or engine number 3 (assuming a three-engine plane). Which
engineisonfireisstored inthevariablefi re_i nf o.

Thef i re_ener gency class describes what type of fire occurred. Its definition is:

class fire_energency {
publ i c:
i nt engi ne; /1 Wich engine is on fire
[/ Qher information about the fire
1
We've covered everything but the actual detection of the fire. Buried within each engineisa
fire sensor. The code for this sensor is:

/1 Watch for fire in engine #2
voi d sensor_2(void) {
whi | e (engi ne_running())
if (engineonfire()) {
fire_emergency fire_info;

fire_info.engine = 2;

throwmfire_info);

}

When this code senses afire, it putsthe informationinaf i r e_enmer gency variable named
fire_i nfo andtriggersan exception with thet hr ow statement.

When thet hr ow statement is executed, normal processing is stopped. After al, when afire
occurs, normal flying is stopped. Execution is transferred to the catch statement for the
fire_energency.

To summarize, exception handling consists of:
A description of a possible problem, in thiscasethef i re_ener gency class.

A section of code in which the exception may occur, which isenclosed in at r y statement.
In this case, the statement isf | y_from poi nt _at opoi nt b().

Page 405

Something that causes an exception and triggers the emergency procedures through a
t hr ow statement.

Exception-handling code inside acat ch block.

Stack Exceptions

In Chapter 21, Advanced Classes, we defined a stack with bounds checking. If the user
attempted to push too much data on the stack or to pop too much off, the class would issue an
error message and abort. Thisis not agood way to handle an exception. Think of how the
pilots would feel if the plane displayed an error message and shut down every time there was a
fire.

Thefirst thing we need to do is decide what type of exceptions we are going to handle and
describe them as classes. In our stack example, the only exception we expect is an
out-of-bounds error. Wel'll describe this error with asimple string. The class for an
out-of-bounds error is:

const int WHAT MAX = 80; /1 Longest possible error nessage
cl ass bound_err {
publ i c:
char what [WHAT_MAX] ; /1 \What caused the error

/1 Initialize the bound error with a nmessage

bound _err(char * _what) {
/1 WARNING This does not check for "_what" being too |ong
strcpy(what, _what);

}
/1 bound_err(bound err) -- default copy constructor
/1 ~bound_err -- default destructor

}s

Exception checking starts with the keyword t r y. Thistells C++ that exceptions may be
generated in the section of code that follows and that they will be handled immediately after the
t ry block. For example, if we are trying to perform abig stack operation, the code might look
like:

try {
do_bi g _stack operation();
s

Immediately after thet r y block, we need to tell C++ what problems we will handle, by using
acat ch statement. The syntax for this statement is.

catch (problemtype ¶neter) ({
st at enent s;
}

Page 406

The problem _type is the class that describes what happened. For the out-of-bounds error, the
cat ch statement looks like:

catch (bound_err &what _happened) {
cerr << "Error: Bounds exceeded\n";
cerr << "Reason: " << what_happened. what << '\n';

}

Several cat ch statements may be used to catch different types of exceptions. If an exception
isnot caught, it is considered an unexpected exception and will cause acall to the
unexpected-exception handler, which aborts the program by default. If you want to catch all
exceptions, use"..." for the exception type. For example:

catch (bound_err &what happened)
/1 Body of catch
}

catch (...)
clerr << "Something strange happened\n";

}

Now we need to update our old stack program and replace all the "error-message-and-abort”
codewith t hr ow statements. The new procedure for push now looks like:

inline void b_stack::push(const int iten

{
if (count >= STACK Sl ZE)
bounderr overfl ow("Push overfl ows stack");
t hrow overfl ow,
}
stack: :push(item;
}

Actually we don't need a special variable for overflow. The code can be consolidated. In the
previous example we used two statements to explicitly show what is going on. The following
code performs the same operation:

inline void b_stack::push(const int iten

{
if (count >= STACK Sl ZE)
t hrow bound_err (" Push overfl ows stack");
}
stack: :push(item;
}

The basic function definition we've been using so far tells C++, "Expect any exception to be
thrown at any time." The push function can only throw abound_er r exception. C++ allows
you to list al the possible exceptionsin afunction by putting at hr ow directive at the end of
the function declaration:

inline void b_stack::push(const int iten) throw(bound err) {

Page 407

But what happensif we throw an exception that's not in the list of exceptions? C++ will turn
thisinto acal to the function unexpect ed() .

Example 22-1 contains a new version of the bound-checking stack with exceptions.

Example 22-1. stack c/stack el.cc

/**

* Stack *
* afile inplenmenting a sinple stack cl ass *

**I

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

const int STACK SIZE = 100; /1 Maxi mum si ze of a stack

/**

* Stack cl ass *
* *
* Menber functions *
* stack -- initialize the stack *
* *

push -- put an itemon the stack

* pop -- renove an itemfromthe stack *

**/

/1l The stack itself
cl ass stack {

pr ot ect ed:

int count; /1 Nunber of itens in the stack
private:

i nt data[STACK Sl ZE] ; /1l The itens thensel ves
publ i c:

/1 Initialize the stack
stack(voi d);

/1 ~stack() -- default destructor
/1 Copy constructor defaults

/!l Push an itemon the stack
voi d push(const int item;

/1 Pop an itemfromthe stack
int pop(void);
1

/**

* stack::stack -- initialize the stack *

**/*

i nline stack::stack(void)

{
count = 0; // Zero the stack
}
/**
* stack::push -- push an itemon the stack *
* *

Page 408

Example 22-1. stack c/stack el.cc (Continued)

* Warning: We do not check for overflow *
* *
* Paraneters *
* item-- itemto put in the stack *
***I
inline void stack::push(const int item

data[count] = item

count ++;

}

/**

* stack::pop -- get an itemoff the stack

*

Warni ng: W do not check for stack underfl ow

the stack -- stack to initialize

Ret ur ns
the top itemfromthe stack

EE IR R R R S I R I S R I R R S R I R S R I S

*
*
*
*
Par aneters *
*
*
*
*
*

*
*
*
*
*
*
*
*

/

inline int stack:: pop(void)

{
/1 Stack goes down by one
count - -;
/] Then we return the top val ue
return (datafcount]);
}
const int WHAT MAX = 80; /1 Largest possible error nessage
/***
* bound err -- a class used to handl e out-of -bounds *
* excepti ons. *

***/

cl ass bound_err {
publ i c:
char what [WHAT _MAX] ; /1 \What caused the error

/1 Initialize the bound error with a nmessage
bound err(char * _what) {
if (strlen(_what) < (WHAT_MAX -1))
strcpy(what, _what);
el se
strcpy(what, "Internal error: _what is too |long");
}
/1 bound_err(bound err) -- default copy constructor
/1l ~ bound err -- default destructor

}1
/***

* b_stack -- bound-checki ng stack

*

Example 22-1. stack c/stack el.cc (Continued)

Member function
push -- push an itemon the stack
* pop -- renove an itemfromthe stack

EE R I I R R I R I S I S S S R I S R I R S I R I S R

class b_stack: public stack {

* % F

*
*
*
*
*

/

publi c:
/'l bstack -- default constructor
/1l ~b_stack -- default destructor

/1 Copy constructor defaults

/] Push an itemon the stack
voi d push(const int item) throw bound err);

/1 Renove an itemfromthe stack
i nt pop(void) throw bound_err);

/;c**
* b_stack::push -- push an itemon the stack *
* *

*

* Paraneters

Page 409

{

}

*

*

item-- itemto

put in the stack *

*

***/

inline void b_stack::push(const int iten) throw(bound err)

if (count >= STACK Sl ZE)
bound _err overfl ow "Push overfl ows stack");

t hrow overfl ow,

}
st ack: : push(item;

/***

{

*

*

*

*

b stack::pop -- get an itemoff the stack *
*

Ret ur ns *
the top itemfromthe stack *

***/

inline int b_stack::pop(void) throwbound_err)

if (count <= 0)

t hrow bound_err (" Pop causes stack underflow');

}

return (stack::pop());

}

b _stack test_stack;

voi d push_a lot(void) {
int i; /1 Push counter

/1 Define a stack for the bounds checki ng

for (i =0; i < 5000; i++)
test _stack. push(i);

Example 22-1 stack c/stack el.cc (Continued)

}
}
main ()
{
try {

push_a lot();

catch (bound_err &err)

cerr << "Error:
cerr << "Reason:
exit (8);

}

catch (...) {
cerr << "Error:
exit (8);

return (0);

Bounds exceeded\ n";
" << err.what << '\n';

Unexpect ed exception occurred\n”;

Page 410

Runtime Library Exceptions

The exception-handling mechanism is relatively new. The draft ANSI C++ standard defines the
exceptions that should be thrown by the routines in the runtime library. However, these
"standard” exceptions are so new they are still being refined and updated. There are | ots of
details still to be worked out.

Compiler makers need timeto catch up to the standard. At the time of thiswriting, the currently
available C++ compilers generate few if any exceptionsin their runtime library, and none
generates "standard” exceptions. This situation will change as the ANSI standard gets better
defined and compilers improve. About the best advice | can give you isto read your compiler's
reference manual and watch out!

Programming Exer cises

Exercise 22-1: Add code to the queue class of Exercise 13-3 that will trigger an exception
when too many items are put in the queue.

Exercise 22-2: Take the fraction class from Exercise 18-3 and add code to generate an
exception when a divide by zero occurs. Also add code to generate an exception when a bad
number is read.

Exercise 22-3: Update the checkbook class of Exercise 13-2 so it generates an exception when
your balance goes below zero.

Page 411

Exercise 22-4: Writeafunction count _| et t er that takes asingle character. Thisfunction
will count the number of consonants and vowels. If a nonletter is given to the function, it
generates an exception.

Page 413

23
Modular Programming

In This Chapter:

Modules

Public and Private
The extern Modifier
Headers

The Body of the
Module

A Program to Use
Infinite Arrays
The Makefile for
Multiple Files
Using theInfinite
Array

Many, hands make light work.
—John Heywood

So far, we have been dealing with small programs. As programs grow larger and larger, they
should be split into sections, or modules. C++ alows programs to be split into multiple files,
compiled separately, and then combined (linked) to form a single program.

In this chapter, we go through a programming example, discussing the C++ techniques needed
to create good modules. Y ou also are shown how to use mak e to put these modules together to
form a program.

M odules

A moduleisacollection of functions or classes that perform related functions. For example,
there could be a module to handle database functions such as| ookup, ent er ,andsort .
Another module could handle complex numbers, and so on.

Also, as programming problems get big, more and more programmers are needed to finish
them. An efficient way of splitting up alarge project isto assign each programmer a different
module. That way each programmer only has to worry about the internal details of his or her
own code.

In this chapter, we discuss a module to handle infinite arrays. The functionsin this package
allow the user to store data into an array without worrying about its size. The infinite array
grows as needed (limited only by the amount of memory in the computer). The infinite array
will be used to store data for a histogram but can also be used to store things such asline
numbers from a cross reference program or other types of data.

Page 414

Public and Private

Modules are divided into two parts, public and private. The public part tells the user how to
call the functions in the module and contains the definitions of data structures and functions that

are to be used from outside the module. The public definitions are put in a header file, whichis
included in the user's program. In the infinite array example, we have put the public
declarationsin thefileia.h (seelisting on page 417).

Anything internal to the moduleis private. Everything that is not directly usable by the outside
world should be kept private.

The extern Modifier

The ext er n modifier isused to indicate that a variable or function is defined outside the
current file but isused in thisfile. Example 23-1 illustrates a simple use of theext er n
modifier.

Example 23-1. main.cc and count.cc

File: main.cc

#i ncl ude <i ostream h>

/* Nunber of times through the |oop */
extern int counter

/* Routine to increnent the counter */
extern void inc_counter(void);

mai n()

{

i nt i ndex; /* Loop index */

for (index = 0; index < 10; ++i ndex)
inc_counter ();

cout << "Counter is << counter << '\n';
return (0);

}

File: count.cc

/* Nunber of times through the |oop */

int counter = O;

/[* Trivial exanple */
void inc_counter()

{
}

Thefunction mai n usesthe variable count er . Because count er isnot definedin mai n, it
is defined in the file counter.cc. The ext er n declaration is used by

++count er;

Page 415

main.cc toindicate that count er isdeclared somewhere el se, in this case the file counter.cc.
The modifier ext er n isnot used in thisfile, because thisis the "red" declaration of the
variable.

Actually, three modifiers can be used to indicate the filesin which avariable is defined, as
shown in Table 23-1.

Table 23-1. Modifiers

M odifier M eaning

extern Variable/function is defined in another file.

<blank> Variable/function is defined in thisfile (public) and can be used in
other files.

static Variable/functionislocal to thisfile (private)

Notice that the keyword st at i ¢ hastwo meanings. (It isthe most overworked modifier in the
C++ language. For acompletelist of the meanings of st at i ¢ see Table 14-1.) For data
defined globally, st at i ¢ means "privateto thisfile." For data defined inside afunction, it
means "variable is allocated from static memory (instead of the temporary stack)."

C++isvery libera initsuse of therulesfor st ati ¢, ext er n, and <blank> modifiers. Itis
possible to declare avariable as ext er n at the beginning of a program and later define it as
<blank>.

extern sam
int sam= 1; /1 This is |egal

This ability is useful when you have al your external variables defined in a header file. The
program includes the header file (and defines the variables as ext er n), and then defines the
variable for real.

Another problem concerns declaring a variable in two different files.

File: nmmin.cc

i nt flag = 0; /1l Flag is off
mai n()
{
cout << "Flag is " << flag << '"\n';
}

File: sub. cc

i nt flag = 1; /1l Flag is on
What happens in this case? There are several possibilities:

f | ag could be initialized to 0 because mai n. cc isloaded first.

Page 416

f I ag could beinitialized to 1 because the entry in sub. cc overwritesthe onein
mai n. cc.

The compiler could very carefully analyze both programs, and then pick out the value that
ismost likely to be wrong.

In this case, thereis only one global variable called f | ag. It will beinitialized to either 1 or O
depending on the whims of the compiler. It isentirely possible for the program mai n to print
out:

flagis 1

even though we initialized it to zero. To avoid the problem of hidden initidizations, use the
keyword st at i ¢ to limit the scope of variables to the file in which they are declared.

If we had written:

File: main.cc
static int flag = 0; /1l Flag is off
mai n()

{
cout << "Flag is " << flag << '"\n';
}

File: sub. cc

static int flag = 1; /1l Flag is on

thenf | ag in main.ccisan entirely different variable fromr f | ag in sub.cc. However, you
should still give the variables different names to avoid confusion.

Headers

Information that is shared between modules should be put in a header file. By convention, all
header filenames end with ".h". In the infinite array example, we use thefileia.h.

The header should contain al the public information, such as.

A comment section describing clearly what the module does and what is available to the
user

Public class definitions
Common constants

Public structures

Page 417
Prototypes of al the public functions
ext er n declarations for public variables

In the infinite array example, more than half the fileia.h is devoted to comments. This
commenting is not excessive; the real guts of the coding is hidden in the program fileia.cc. The
ia.h file serves both as a program file and as documentation to the outside world.

Notice that there is no mention in theia.h comments about how the infinite array is
implemented. At thislevel, we don't care how something is done. just what functions are

available.

Example 23-2. ia/iah

/**

* Definitions for the infinite array (ia) class *
* *
* An infinite array is an array whose size can grow *
* as needed. Adding nore elenents to the array *
* will just cause it to grow *
K o o o e e e e e e e e e e m e - *
* class infinite_array *
* Menmber functions *
* infinite_array(void) -- default constructor *
* -infinite_array(void) -- destructor *
* int &perator [](int index) *
* gets an element of the infinite array *
khkkhkkhkhkhkhkhkkkhkhhkhkhkhkhkhkhhhhhkhkhkhkkhhkhhkhkhkhkhkkkkhk k khkhkkkkkk k * k,**x*%

/

/1 Number of elenents to store in each cell of the infinite array
const unsigned int BLOCK SIZE = 100;

class infinite_array {
private:
/1 The data for this block
i nt dat a[BLOCK_SI ZF] ;

/] Pointer to the next array

class infinite_array *next;
publ i c:

/1 Default constructor

infinite array(void)

{
next = NULL;

nenset (data, '\0', sizeof(data))

}

/1 Default destructor
-infinite array(void);

/! Return a reference to an element of the array

Page 418

Example 23-2. ia/ia h (Continued)

int &operator[] (const unsigned int index);

}

A few things should be noted about thisfile. Everything in the file is a constant definition, a
data structure definition, or an external definition. Any code that is defined isinline. No actua
code or storage is defined in the header file.

The Body of the Module

The body of the module contains all the functions and data for that module. Private functions

that are not to be called from outside the module should be declared st at i ¢c. Variables
declared outside of afunction that are not used outside the module are declared st at i c.

A Program to Use Infinite Arrays

The infinite array module (ia.cc) is shown in Figure 23-1. The program uses asmple linked
list to store the elements of the array. A linked list can grow longer as needed (until you run out
of memory). Each list element, or bucket, can store 10 numbers. To find element 38, the
program starts at the beginning, skips past the first three buckets, and then extracts element 8
from the data in the current bucket.

1

L — L - | 0o

1 1| 11 1 H

2 ? 7 12 2 n

3 3 1 13 1 n

4 '] 4 14 '] M

5 5 § 15 5 15
L L .

B & [L] [26

7 7 7 7 7 ar

2 [2 18] =
ElEE 8| 1 | RN

next i next ({ naxt U,H_ %)

slemants 0-9 glements 10-19 elements 20-29

Figure 23-1. Infinite array structure

Page 419
Example 23-3 contains the code for module ia.cc.

Example 23-3. ia/ia.cc

/**

* infinite-array -- routines to handle infinite arrays *
* *
* An infinite array is an array that grows as needed. *
* There is no index too large for an infinite array *
* (unless you run out of nenory). *

**I

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

#i ncl ude "ia.h" // Cet common definitions

/**

* operator [] -- find an elenment of an infinite array *
* *
* Paraneters *
* index -- index into the array *
* *
* Returns *
* reference to the element in the array *

*

R IR I S I I S I R I S I O R S R R I R I I S I I I R I S

/

int & nfinite array::operator [] (const unsigned int

{

}

/!l Pointer to the current bucket
class infinite_array *current_ptr;

int current_index; // Index we are working with

current_ptr = this;
current i ndex = index;

while (current_index >= BLOCK SIZE) {
if (current_ptr->next == NULL) {
current _ptr->next = new infinite_array;
if (current_ptr->next == NULL) {
cerr << "Error: Qut of menory\n";
exit(8);
}
}
current _ptr = current_ptr->next;
current _index -= BLOCK Sl ZE;
}

return (current_ptr->datalcurrent_index]);

i ndex)

/**

* ~infinite_array -- destroy the infinite array

**/

infinite_ array::-infinite_array(void)

Example 23-3 ia/ai.cc (Continued)

{

}

Note: W use a cute trick here

Because each bucket in the infinite array is
an infinite array itself, when we destroy

* % X 3k kX F

* [

if (next != NULL)
del et e next;
next = NULL;

The Makefile for Multiple Files

*

next, it will destroy all that bucket's "next"s
and so on recursively clearing the entire array.

Page 420

The utility make is designed to aid the programmer in compiling and linking programs. Before
make, the user had to explicitly type compile commands each time there was a change in the

program:

g++ -WAll -g -ohello hello.cc

NOTE

In this chapter we use the commands for the GNU g++ compiler. The
C++ compiler on your system may have a different name and a
dightly different syntax.

As programs grow, the number of commands needed to create them grows. Typing in aseries
of 10 or 20 commands istiresome and error-prone, so programmers started writing shell
scripts (or, in MS-DOS,.BAT files). Then al the programmer had to typewasdo- i t and the
computer would compile everything. This was overkill, however, because dl the files were
recompiled regardless of need.

As the number of filesin a project grew, this recompiling became a significant problem.
Changing one small file, starting the compilation, and then having to wait until the next day
while the computer executed several hundred compile commands was frustrating—especially
when only one compile was really needed.

The program mak e was created to do intelligent compiles. Its purposeisto first decide what
commands need to be executed and then execute them.

The file Makefile (upper/lowercase is important in UNIX) contains the rules used by make to
decide how to build the program. The Makefile contains the following sections:

Page 421
Comments
Macros
Explicit rules
Default rules
Any line beginning with a# is a comment.
A macro has the format:
name = data

Nameis any valid identifier. Data is the text that will be substituted whenever make sees
$(name).

Example:

#

Very sinple Makefile
#

MACRO = Doi ng A

al | :
echo $(MACRO

Explicit rulestell make what commands are needed to create the program. These rules can
take several forms. The most common is:

target: source [source2] [source3]

comand
[command]
[command]

Target isthe name of afileto create. It is"made,” or created, out of the source file source. If
thetarget is created out of several files, they are al listed.

The command used to create the target islisted on the next line. Sometimes it takes more than
one command to create the target. Commands are listed one per line. Each isindented by atab.

For example, therule:

hell o: hello.cc
g++ -Wall -g -o hello hello.cc

tells make to create the file hello from the file hello.cc using the command:

g++ -Wall -g -o hello hello.cc

Page 422

Make will create hello only if necessary. The files used in the creation of hello, arranged in
chronological order (by modification times), are shown in Table 23-2.

Table 23-2 File Modification Times

UNIX M S-DOS/Windows Modification Time
hello.cc HELLO.CPP Oldest

hello o HELLO OBJ Old

hello HELLO.EXE Newest

If the programmer changes the source file hello.cc, the file's modification time will be out of
date with respect to the other files. make will sense this and re-create the other files.

Another form of the explicit ruleis:

sour ce:
command
[conmand]

In this case, the commands are executed each time make isrun, unconditionaly.

If the commands are omitted from an explicit rule, make uses a set of built-in rulesto
determine what command to execute.

For example, the rule:
hist.o: ia.h hist.cc

tells make to create hist.o from hist.cc and ia.h, using the standard rule for making <file>.o
from <file>.cc. Thisruleis:

g++ $(CFLAGS) -c file.CC
(make predefines the macro $ (CFLAGS).)

We are going to create amain program hist.cc that calls the module ia.cc. Both filesinclude
the header ia.h, so they depend on it. The UNIX Makefile that creates the program hist fromr
hist.cc andia.cc islisted in Example 23-4.

Example 23-4 ia/Makefile

Make file needs debuggi ng
CFLAGS = -g -Wall

SRC = ia.cc hist.cc
MBJ =ia.o0 hist.o
all: hist

hist: $(0BJ)

g++ $(CFLAGS) -0 hist $(0BJ)

Page 423

Example 23-4 ia/Makefile (Continued)

hist.o:ia.h hist.cc
g++ $(CFLAGS) -c hist.cc

ia.o:ia.hia.cc
g++ $(CFLAGS) -c ia.cc

cl ean:
rmhist io.o hist.o

The macro SRC isalist of all the C++ files. OBJ isalist of all the object (.0) files. Thelines:

hist: $(0BJ)
g++ $(CFLAGS) -0 hist $(0BJ)

tell make to create hist from the object files. If any of the object files are out of date, make
will re-create them.

Theline

hist.o:ia.h

tells make to create hist.o fromia.h and hist.cc (hist.cc isimplied). Because no command is
specified, the default is used.

Example 23-5 shows the Makef i | e for MS-DOS/Windows, using Turbo-C++.
Example 23-5. ia/Makefile.dos

#

Makefile for Borland s Turbo-C++ conpiler
#

CC =tcc

#

#

N -- Check for stack overflow
-V - Enabl e debuggi ng

-w -- Turn on all warnings
-m -- Large nodel

-A -- Force ANSI conpliance
#

CFLAGS = -N-v -~w-m -A

#

SRCS = hist.c ia.c

OBJS = hist.obj ia.obj

ia: $(0BIS)

$(CO) $(CFLAGS) -oia.exe $(OBIS)

hist.obj: hist.cpp ia.h
$(CO $(CFLAGS) -c hist.cpp

Page 424
Example 23-5 ia/Makefile.dos (Continued)

ia.obj: ia.c ia.h
$(CC) $(CFLAGS) -c ia.cpp

Thisfileissimilar to the UNIX Makefile except that Turbo-C++ make does not provide any
default rules.

There isone big drawback with make. It only checksto see whether the files have changed,
not the rules. If you have compiled all your program with CFLAGS=- g for debugging and
need to produce the production version (CFLAGS = - 0), make will not recompile.

The command touch changes the modification date of afile. (It doesn't change thefile, it just
makes the operating system think it did.) If you t ouch a source file such as hello.cc and then
run make, the program will be re-created. Thisis useful if you have changed the compile-time
flags and want to force a re-compilation.

Make provides arich set of commands for creating programs. Only afew have been discussed
here.”

Using the Infinite Array

The histogram program (hi st) isdesigned to use the infinite array package. It takes onefile as
itsargument. Thefile contains alist of numbers between 0 and 99. Any number of entries may
be used. The program prints a histogram showing how many times each number appears. (A
histogram is a graphic representation of the frequency of data.)

Thisfile contains a number of interesting programming techniques. Thefirst oneis: Let the
computer do the work whenever possible. For example, don't program like this:

const int LENGTH X = 300; [/ Wdth of the box in dots
const int LENGTH Y = 400; /] Height of the box in dots
const int AREA = 12000; /] Total box area in dots

In this case, the programmer has decided to multiply 300 x 400 to compute the area. He would

be better served by letting the computer do the multiplying:

const int LENGTH X
const int LENGTH Y

300; /1 Wdth of the box in dots
400; /1 Height of the box in dots

const int AREA = (LENGTH X * LENGTH Y); // Total box area in dots

* |f you are going to create programs that require more than 10 or 20 source files, it is suggested you
read the hook Managing ProJects with make (O'Reilly & Associates, Inc)

Page 425

That way, if either LENGTH_X or LENGTH _Y is changed, AREA changes automatically. Also,
the computer is more accurate in its computations. (If you noticed, the programmer made an
error: his AREA istoo small by afactor of 10.)

In the histogram program, the number of data pointsin each output line is computed by the
definition:

const float FACTOR =
((HHGH_BOUND - LOWBOUND) / (float) (NUVBER OF LINES));

The user should be helped whenever possible. Inthe hi st program, if the user does not type
the correct number of parameters on the command line, a message appears telling what is
wrong and how to correct it.

The program usesthe library routine menset toinitiaizethecount er s array. Thisroutine
ishighly efficient for setting all values of an array to zero. Theline:

nenset (counters, '\0', sizeof(counters));

zerostheentirearray count ers. si zeof (count ers) makessurethat al thearray is
zeroed. Example 23-6 contains a program that uses the infinite array for storing data used to
produce a histogram.

Example 23-6. ia/hist.cc

File: hist.cc

/**

* hist -- generate a histogramof an array of nunbers *
* *
* Usage *
* hist <file> *
* *
* \Were *
* file is the name of the file to work on *
**I

#i ncl ude <i ostream h>
#i ncl ude <fstream h>
#i ncl ude <i omani p. h>

#i ncl ude <stdlib. h>
#i ncl ude <string. h>

#i ncl ude "ia.h"

/*

* The following definitions define the histogram
*/

const int NUMBER OFLI NES
const int LOW BOUND
const int H GH BOUND

/*

* if we have NUMBEROFLI NES data to
* output then each item nmust use

50; // #1lines in the result
0; // Lowest nunber we record
99; // Hi ghest nunber we record

Page 426
Exampe 2-6. ia/hist cc (Continued)

* the follow ng factor
*/
const float FACTOR =
((H GH_BOUND - LOWBOUND) / (float)(NUMBER OF LI NES);

/1 Nunber of characters wi de to nake the histogram
const int WDTH = 60;

/] Array to store the data in
static infinite_array data_array;
/1 Nunber of itens in the array
static int data itens;

mai n(int argc, char *argv[])

{
voi d read_data(char *nane);// Get the data into the array
void print_histogram(void);// Print the data
if (argc '=2) {
cerr << "Error: Wong nunber of argunents\n";
cerr << "Usage is:\n";
cerr << " hist <data-file>\n";
exit(8);
}
data_items = O;
read_data(argv[1]);
print_histogram);
return (0);
3**
* read_data -- read data fromthe input file into *
* the data array *
* *
* Paraneters *
* name -- the nane of the file to read *
**I
voi d read_dat a(char *nane)
{

ifstreamin_file(nane); // Input file
i nt data; /1 Data frominput

if (infile.bad() {

cerr << "Error: Unable to open " << nane << '\n';
exit(8);

}
while (lin_file.eof())
in_file >> data;

/] 1f we get an eof we ran out of data in last read
if (in_file.eof())
br eak;
Page 427
Example 23-6 ia/hist.cc (Continued)

data_array[data_itens] = data;
++data_itens;

/**
* print_histogram-- print the histogram out put *

**I
void print_histogran{void)
{
/1 Upper bound for printout
i nt count er s{ NUVMBER_OF_LI NES] ;
int | ow /1 Lower bound for printout
int out_of _range = 0;// Nunber of itens out of bounds
int max_count = 0;// Biggest counter
fl oat scal e; /1 Scale for outputting dots
int index; /1 Index into the data

nmenset (counters, '\0', sizeof(counters));

for (index = 0; index < data_itens; ++index)
int data; // Data for this point

data = data_array[index];

if ((data < LOWBOUND) || (data > H GH_BOUND))
++out of _r ange;

el se {
/1 Index into counters array
i nt count _i ndex;

count _index =int (float(data - LONBOUND) / FACTOR);
++count er s[count _i ndex] ;

if (counters[count_index] > max_count)
max_count = counters[count _i ndex] ;

}
scal e = float(max_count) / float(WDTH);

| ow = LOW BOUND;

for

(index = 0; index < NUMBER OF LI NES; ++index) {
/1 Index for outputting the dots
i nt char _i ndex;

i nt nunber _of dots; /1 Nunber of * to output
cout << setw(2) << index << ' ' <<
setwW3) << low << "-" <<

setw3) << low + FACTOR - 1 << " (" <<

setw(4) << counters[index] << "): ";

Page 428

Example 23-6 ia/hist cc (Continued)

nunber _of dots = int(float(counters[index]) [/ scale);
for (char_index = 0; char_index < nunber_of_dots;
++char _i ndex)
cout << "*';
cout << '\n';
| ow += FACTOR,

}
cout << outofrange << " itens out of range\n";
}
A sample run of this program produces:
% hist t est
0 0_ 2 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
l 2_ 4 (200) R S I I S S b b b I S I I O S b b I O S S S I I I I I S b b O O
2 4_ 6 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
3 6_ 8 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
4: 8- 10 (0):
5 10_ 12 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
6 12_ 14 (50) kkkkkkhkkhkkhkkkk*x
7 14_ 16 (150) R S I S S S b b S S I S b b I I I I O b
8 16_ 18 (50) kkkkkkhkkhkkhkkkk*x
9 18_ 20 (50) kkkkkkhkkhkkhkkkk*x
10 20_ 22 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
ll 22_ 24 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
12 24_ 26 (50) kkkkkikkhkkhkkhkkkkk*k
13 26_ 28 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
14 28_ 30 (50) kkkkkikkhkkhkkhkkkkk*k
15 30_ 32 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
16 32_ 34 (50) kkkkkkhkkhkkhkkkk*x
17: 34- 36 (0):
18 36_ 38 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
19: 38- 40 (1):
20 40_ 42 (150) R S I S S S b b S S I S b b I I I I O b
21 42_ 44 (50) kkkkkkhkkhkkhkkkk*x
22: 44- 46 (250):
R S I I S S b b S I I O O b b S I I I S b b I I O S b S I I I S O b b S I O O
23 46_ 48 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
24 48_ 51 (150) kkkhkkhkkhkhkhkhkkhkkhhkkhkhkhkhkhkhkhhhkkhkikhkhkhkkkkkkkk*%
25 51_ 53 (100) kkkkkkhkhkkhkhkkhkkhhkhkkhkhkhkkhkhkkkkk*k
26 53_ 55 (50) kkkkkkhkkhkkhkkkk*x
27 55_ 57 (200) R S I I S S b b b I S I I O S b b I O S S S I I I I I S b b O O
28 57_ 59 (50) kkkkkkhkkhkkhkkkk*x

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

39:
40:
41
42:
43:
44
45:
46:
47
48:
49:

59- 61
61- 63
63- 65
65- 67
67- 69
69- 71
71- 73
73- 75
75- 77
77- 79

79- 81
81- 83
83- 85
85- 87
87- 89
89- 91
91- 93
93- 95
95- 97
97- 99
99-101

e e N N R N T R N N

e N N N N N N e N N

50):
50):
150):
100):
0):
199):
200):
100):
50):
100):

100):
200):
100):
0):
0):
50):
150):
100):
50):
100):
0):

kkkkhkkkhkhkkhkhk*k

kkkkhkkkhkhkkhkhk*k

khkkhkkhkkhkhkkhkhhhkhhhkhhhkhhkhhhkhhhkhdhkrkkhkrx*x

khkkhkkhkkhkhkhkhkkhkhhkhkhkkhkhkkhkhk*k

khkkhkkhkkhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhhhhkhdhkhdkhkrdk rkk**x

hkhkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhkhhhhhhhhhdhdhkhdhkhdk krkk kr*x%x*

khkkhkkhkkhkhkhkhkkhkhhkhkhkkhkhkkhkhk*k

kkkkhkkkhkhkkhkhk*k

khkkhkkhkkhkhkhkhkkhkhhkhkhkkhkhkkhkhk*k

khkkhkkhkkhkhkkhkhkkhkhhkhkhkkhkhkkhkhk*k

khkkhkkhkkhkhkkhkhhhkhhhkhhkhkhhhhkhkhhhkhhhkhdkhkhkk kr*%x*

khkkhkkhkkhkhkkhkhkkhkhhkhkhkkhkhkkhkhk*k

kkkkhkkkhkkkhk*x

khkkhkkhkkkhkhkhkhhkhkhhkhkhhkhkhhkhhkhkhhhk dhkrkkhkhkkx*

khkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkk*

kkkkhkkkhkhkkkhk*x

khkkhkkhkkhkhkhkhkkhkhhkhkhrkhkhkkhkhk*k

500 itens out of range

Dividing a Task into Modules

Unfortunately, computer programming is more of an art than a science. There are no hard and
fast rulesthat tell you how to divide atask into modules. Knowing what makes a good module
and what doesn't comes with experience and practice.

Page 429

This section describes some general rules for module division and how they can be applied to
real-world programs. The techniques described here have worked well for me. Y ou should use
whatever works for you.

Information isavital part of any program. The key to a program is your decision about what
information you want to use and what processing you want to perform on it. Be sure to anayze
the information flow before you begin the design.

Design the modules to minimize the amount of information that has to pass between them. If you
look at the organization of the Army, you'll seethat it is divided up into modules. Thereisthe
infantry, artillery, tank corps, and so on. The amount of information that passes between these
modulesis minimized. For example, if an infantry sergeant wants the artillery to bombard an
enemy position, he calls up artillery command and says, "There's a pillbox at location Y-94.
Get rid of it." The artillery command handles al the details of deciding which battery to use,
how much firepower to allocate based on the requirements of other fire missions, maintaining
supplies, and many more details.”

Programs should be organized the same way. Information that can be kept inside a module
should be. Minimizing the amount of intermodule communication cuts down on communication

errors aswell as limiting maintenance problems that occur when amodule is upgraded.

* Thisisavery general diagram of the division of an ideal army The system used by the United States
Army is more complex and so highly classified that even the generals don't know how it works

Page 430

Module Division Example: Text Editor

You are already familiar with using atext editor. It is a program that allows the user to display
and change text files. The main piece of information is the text file we are editing. Most editors
are display oriented and continually display about 24 lines of the current file on the screen.

Finally, one more piece of information is needed: the editing commands. The commands are
typed in by the user. This information must be parsed so the computer can understand it. Then it
can be executed. The individua commands are small and perform similar functions (del et e

I i ne isvery muchlikedel et e char act er). Imposng a standard structure on the

command execution modules improves readability and reliability. A block diagram of the
editor can be seen in Figure 23-2.

Complex user 5,
commands £F ag,.
oy f".v}
k'(‘;""‘."b
— = | —
Command Decoder o i :
¥y vov v /v _ [
e Y B
Fife Handier i i
- [.
Fy £
__.-"-.-' .ﬂ_... s s
Display module f——
| p—
| ——
|

Figure 23-2. Module division of the text editor

There is minima communication between the modules. The display section needs to know only
two things: 1) where the cursor is and 2) what the file currently looks like. All the file module

needs to do isread thefile, write the file, and keep track of changes. Even the way the changes
are made can be minimized. All

Page 431
editing commands, no matter how complex, can be broken down into a series of inserts and

deletes. It isthe responsibility of the command module to take the complex user commands and
turn them into smple inserts and deletes that the file handler can process. Information passing
between the modules is minimal. No information passes between the command decoder and the
display module.

A word processor isjust afancy text editor. Where a simple editor only has to worry about
ASCII characters (one font, one size), aword processor must be able to handle many different
Sizes and shapes.

Compiler Construction

In acompiler, the information being processed is C++ code. The job of the compiler isto
transform that information from C++ source to machine-dependent object code. There are
severa stagesin this process. First the code is run through the preprocessor to expand macros,
take care of conditional compilation, and read include files. Next the processed file is passed
to the first stage of the compiler, the lexical analyzer.

The lexical analyzer takes asits input a stream of characters and returns a series of tokens. A
token is a computer-science term meaning word or operator. For example, let's ook at the
English command:

Open the door.

There are 14 characters in this command. Lexical analysis would turn this into three words and
aperiod. These tokens are then passed to the parser where they are assembled into sentences.
At this stage a symbol table is started so that the parser can have some idea what variables are
being used by the program.

Now the compiler knows what the program is supposed to do. The optimizer looks at the
instructions and tries to figure out how to make them more efficient. This step isoptional and is
omitted unlessthe - C flag is specified on the command line.

The code generator turns the high-level statements into machine-specific assembly code. In
assembly language, each assembly-language statement corresponds to one machine instruction.
The assembler turns assembly language into binary code that can be executed by the machine.
The genera information flow of acompiler isdiagrammed in Figure 23-3.

Lexical analysis and parsing are very common and used in awide variety of programs. The
utility lex can generate the lexical analyzer module for a program, given a description of the
tokens used by the program. Another utility, yacc, can generate the parser module. These
programs are described in the book lex &-yacc (O'Reilly & Associates).

Page 432

c
Code ‘ ' &

e e

Preprocessor | 'q.,_
GO '&h charactars
— : I
Lexical Analyzer il e e L
Farser
Optimizer
Code Generator [1
R e,

Assambler

Figure 23-3 Compiler modules

Spreadsheet

A simple spreadsheet takes a matrix of numbers and equations and displays the results on
screen. The information managed by this program is the equations and the data.

The core of a spreadsheet is the equations. To change the equations into numbers, we need to
go through lexical analysis and parsing, just like a compiler.

Page 433

But unlike a compiler, we don't generate machine code. Instead. we interpret the equations and
compute the results.

Results are passed off to the display manager, which puts them on the screen. Add to thisan
input module that allows the user to edit and change the equations, and you have a spreadsheet,
as shown in Figure 23-4.

Madpl
Input Module L.:\ .

Expression Editor
h'j 20
~4 .c?
-t?" '-'l
=
Lexical Analyzer
- A,
e 1)
1- o kl-—"'f
e A
Parser et N
- "N .?x.?
y -3
4 S

Display Manager i
i
|

Figure 23-4 Spreadsheet layout

Module Design Guidelines
Although there are no hard and fast rules when it comes to laying out the modules for a
program, here are some general guidelines.
Page 434
The number of public functionsin a module should be small.
The information passed between modules should be small.
All the functions in a module should perform related jobs.

Modules should contain no more than 1,500 lines. With more lines, they become difficult to
edit, print, and understand.

Programming Exer cises

Exercise 23-1: Writeacl ass that handles page formatting. It should contain the following
functions:

open_file(char *nane)

Opens the print file.

defi ne_header (char *headi ng)
Defines heading text.

print_line(char *line)
Sends alineto thefile.

page(voi d)
Starts a new page.

close _file(void)
Closesthe print file.

Exercise 23-2: Writeamodule caled sear ch_open that first receives an array of
filenames that it searches until it finds one that exists, and then it opens that file.

Exercise 23-3: Writeasymbol tablecl ass containing the following functions:

voi d enter(char *nane)
Enters a name into the symbol table.

i nt | ookup(char *nane)
Returns 1 if the nameisin the table;
returns O otherwise.

voi d renove(char *nane)
Removes a name from the symbol table.

Exer cise 23-4: Take the words program from Chapter 20, Advanced Pointers, and combine it
with the infinite array module to create a cross-reference program. (As an added bonus, teach it
about C++ comments and strings to create a C++ crossreferencer.)

Page 435

24
Templates

In This Chapter:

What | sa Template?
Templates: The
Hard Way

Function
Specialization
Class Templates
Class Specialization
I mplementation
Difficulties
Summary
Programming
Exercises

Thou cunning'st patten of excelling nature
—Shakespeare
Othello, Act V

What |sa Template?

Templates are arelatively new addition to C++. They allow you to write generic classes and
functions that work for severa different data types.

Templates will be avery useful part of the C++ language, when they grow up. The problem is
that dthough the Draft ANS C++ Standard specifies the complete syntax for templates, it says
nothing about how to implement them. The result is that each compiler maker has implemented
templates differently, so programs that use templates tend to be nonportable.

Templates: The Hard Way

Suppose we want to define afunction max to return the maximum of two items. Actualy, we
don't want to define just one max function, but afamily of functions: one to find the maximum
of twoi nt s, onefor f | oat s, onefor char s, and so on.

We start by defining a parameterized macro to generate the code for the function. Thisis called
the definition stage. The macro looks like:
#define define_max(type) type max(type dl, type d2) { \
if (dl > d2) \

return (dl); \
return (d2); \

Page 436
NOTE

Each line except the last one endsin abackdash (\) . A #def i ne
macro spans a single line, so the backdash turns our five linesinto

one. By putting the backdashes in the same column we can easily
tell if we missone.

This macro generates no code. It merely provides the definition that is used in the next phase to
generate the functions we want. Thisis called the generation phase.

defi ne_max(int);

define_nmax(fl oat);

defi ne_max(char);

Finally, somewhere in the code we use the functions we've just defined. (Thisis called the use
phase, of course.)

main (void) {

float f = max(3.5, 8.7);
i nt i = max(100, 800);
char ch = max(' A, 'Q);

Figure 24-1 shows the source code for the #def i ne style templates and the code generated by
them.

This method works adequately for smple functions like max. It doesn't work well for larger
functions. One drawback to this system is that we must invoke the macro def i ne_nax for
each data type we want to use. It would be nice if C++ would call def i ne_max
automatically.

Templates allow you to define a generic function. C++ then uses this template to generate a
specific instance of the function as needed. For example, to define the function max as a
template, we write:

t enpl at e<cl ass ki nd>
ki nd max(kind dl, kind d2)
if (dl > d2)
return (dl);
return (d2);

NOTE

The construct <cl ass ki nd> tells C++ that the word ki nd can be
replaced by any type. (Note: The keyword cl ass isused in this context to
indicate that ki nd can be any type: not only classes, but smple types aswell.)

Thet enpl at e declaration corresponds to the definition of the parameterized macro. Like the
parameterized macro, it generates no code: it merely provides a definition for the next phase

Page 437

Source Code Generated Code
#define make_max(type) 1
cype max{type 41, type 42) {
if (41 = 42) \
recurn {(dl}; b1
return (d2) b
1
define_max (int); - int max (int dl, int 42)
define_max({float); - if (41 = 42 |
define_max{char] ;
return (d2); I
: I
- Float max{fleoat dl, float 42} { |
if (4l = 42) |
|
raturn {42}
i |
1
@ Char max(char dl, char 42) {
if (dl = dz)
return (d2]);
1
main(wvoidl | main{vold) |
float £ = max(3.5, 8.7); float £ = max(3.5%, B.7):
int i = max(100, 800); int i = max(100, BOOD);:
char ch = ma=x{'A*, *Q'); char ch = max{('A", 'Q'1;

Figure 24-1. Code generated by #define style templates

Now we can use the template, much like we used the functions defined by the parameterized
macro:

mai n(voi d) {

float f = max(3.5, 8.7);
i nt i = max(100, 800);
char ch = max(' A, 'Q);

int i2 = max(600, 200);

Y ou may have noticed that we skipped the gener ation phase. That's because C++
automatically performs the generation for us. In other words, C++ looks at the line:

float f = max(3.5, 8.7);

Page 438

and seesthat it usesthefunction max (fl oat, fl oat). Itthen checksto see whether the
code for this function has been generated and generatesit if necessary. In other words,
everything is automatic. (There are practical limits to what can be done autonratically, as you
will seein the section on implementation.)

Figure 24-2 shows the code generated by thet enpl at e implementation of max. From this
you can see that the first time max isused for af | oat it generates the floating point version
of max. Next weusemax for i nt,andthei nt version of max iscreated. Note that the last

line:
int i2 = max(600, 200);

does not generate any function. Thisis because we've already generated the integer version
max and don't need to do it again.

Source Code Generated Code

template<class kind=
kind max{kind 41, kind 42} {
if (41 = d2)
return (dl};
return {(d2);

cow float maxi(float d1, float d42) {
if {dl = 42
return (d1);
return (d2);

)

o dnt maxi(int 41, int d2)
if {4l » 42

raturn {dl);
E return (dZ):

1

< gchar max({char dl, char d42) {

HE LE (dl = 42)

i return [did;

s return (d2);

i |

mainiveid) (il main(void) {

float £ = max(3.5, 8.7): " | float £ = max(3.5, B.7}:
int i = max(100, B00);--' : int i = max{100, BOO);
chat ¢h = max("A", "Q');i o char ch = max{*A", *Q'};
int 12 = max(600, 200);: int 12 = max{600, 200);

Figure 24-2 Template code generation

Page 439

Function Specialization
Templates go a bit further than simple code generation. They can handle special cases as well.
Suppose we want to use the function max to compare strings as well:

char *nanel = "Able";
char *nane2 = "Baker";

cout << max(nanel, nanme2) << '\n';

We have a problem, because strings are represented by a character pointer (char *). The
comparison:

if (dl > d2)

compares the value of the pointers, not the data that's pointed to. What we want to do is tell

C++, "Use the normal comparison except when the datatypeis a string, and then use
strcnp.”

Thisis done through a process called specialization. We declare a special version of the max
function just for strings:

char *max(char *dl, char *d2)
if (strenp(dl, d2) < 0)
return (dl);
return (d2);

}

When C++ first sees the use of the function max it looks through the list of smple functions
before it looks through its list of templates. Thus when we have:

cout << max(nanel, nanme2) << '\n';

C++ will find the smple function max(char *, char *) beforetrying to expand the
template max (ki nd d1, ki nd d2).

Example 24-1 illustrates the use of template functions.

Example 24-1. max-t/max.cc

#i ncl ude <i ostream h>
#i ncl ude <string. h>

/1 Atenplate for the "max" function

t enpl at e<cl ass ki nd>
ki nd max(kind dl, kind d2)
if (dl > d2)
return (di);
return (d2);

}
Page 440
Example 24-1 max-t/max.cc (Continued).
/1 A specialization for the "max" function
/1 because we handle char * a little differently
char *max(char *dl, char *d2) {
if (strcnp(dl, d2) > 0)
return (dl);
return (d2);
}
mai n()
{
/] Let's test max
cout << "max(1l, 2) " << max(l, 2) << '\n';
cout << "max(2, 1) " << max(2, 1) << '\n';
cout << "max(\"able\", \"baker\") " << max("able", "baker") << '\n';
cout << "max(\"baker\", \"able\") " << max("baker", "able") << '\n';

return (0);

Class Templates

Class templates are a little more complex than function templates. Declaring them is easy. They
are defined just like function templates. Example 24-2 showsthe st ack class from Chapter
13, Smple Classes, written as atemplate.

Example 24-2 max-t/stackl cc

#i ncl ude <stdlib. h>
#i ncl ude <i ostream h>

const int STACK SIZE = 100; /1 Maxi mum si ze of a stack

/***

* Stack cl ass *
* *
* Menber functions *
* stack -- initialize the stack *
* push -- put an itemon the stack *
* * pop -- renove an itemfromthe stack *
***I
/1 The stack itself
t enpl at e<cl ass ki nd>
cl ass stack {
private:
int count; /1 Nunber of itens in the stack
ki nd data[STACK SI ZE]; // The itens thensel ves
publi c:

// Initialize the stack
stack (void) {

count = 0; // Zero the stack
}

Page 441

Example 24-2. max-t/stackl.cc (Continued).

/1 Push an itemon the stack
voi d push(const kind item {
data[count] = item

++count ;

}

/1 Pop an itemfromthe stack
ki nd pop(void) {
/1 Stack goes down by one
--count;

/] Then we return the top val ue
return (datafcount]);

}

There is a problem, however. To use this class we need to declare an instance of thisclass. In
the past, we've been able to declare a stack with the statement:

stack a_stack; /1 This won't work

The problemisthat st ack isnow ageneric template. The stack can now contain anything.
When C++ seesthis declaration, it's going to ask, "A stack of what?' We must specify the type
of datawe are storing. The new declarationis:

stack<i nt> a_st ack; /1 A stack of integers

The<i nt > tellsC++touse"i nt " for "ki nd" throughout the stack. We can now use the new
class variable:

a_stack. push(1);
x = a_stack. pop();

Inthest ack class, we defined all the member functions inside the class definition. We could
just as well have specified the procedures outside the class. To do so, we must put the template
clauset enpl at e<cl ass ki nd> infront of each procedure and put the template
parameter (<ki nd>) in the name of the class. For example, the push routine would look like:

/***

* stack::push -- push an itemon the stack

*

Warning: W do not check for overfl ow

item-- itemto put on the stack

*
*
*
*
*
*
LR I I R I S O S S S I R I I I T S S R

*
*
* Paraneters
*
*

/
t enpl at e<cl ass ki nd>
inline void stack<kind>:: push(const kind itemn

{

Page 442

data[count] = item
++count ;

}

Class Specialization
Y ou can think of a class template such as
tenpl ate <cl ass kind>stack { ...

asingtructions that tell C++ how to generate a set of classes named st ack<i nt >,

st ack<doubl e>, st ack<fl oat >, andsoon. C++ will also generate automatically the
member functions: st ack<i nt >: : push, stack<doubl e>: :push, and

st ack<f | oat >: : push.

However, if you explicitly declare a member function yourself, C++ will use your definition
before generating its own. Suppose we want to have a stack store strings (char *). We don't
want to store the pointers; we want to store the actual strings. To do this, we need a special
version of the push function that duplicates the string before pushing it onto the stack:

inline void stack<char *>::push(const char * itemn

{

data[count] = strdup(iten);
++count ;

}

Note that we didn't uset enpl at e<cl ass ki nd> at the beginning of the function. The
t enpl at e keyword tells C++: "Thisis ageneric class. Generate specific versions fromit."
Withnot enpl at e, we aretelling C++: "Thisisthe real thing. Useit directly.”

I mplementation Difficulties

The Annotated C++ Reference Manual by Ellis and Stroustrup is considered the default
standard of the C++ language. It contains a complete definition of the syntax for t enpl at es.
However, it does not explain how compilers should implement them.

Asyou shall see, implementing t enpl at es isnot easy. For example, suppose we put the
st ack template in amodule. The file stack.h defines the class and the file stack.cc defines the
member functions. (We will assume that none of the member functions are inline.)

Now we want to use the template for an integer stack (st ack<i nt >) in the file main.cc.
Figure 24-3 shows the source-code layout.

Thisis where the compiler implementors start pulling their hair out.

Page 443

| Class definilion |
i] atack.h 1 {
| | main.cc || I stack.ce 1 |
| Use of stack<ints Detinivons of push and pop |

e— |
Figure 24-3. Source-code layout for using a stack template

We know that in main.cc, we're going to use st ack<i nt >. Asamatter of fact, thefile
stack.h defined prototypes for the two member functions push and pop. So when the
compiler seesst ack<i nt >, it should automatically generate the code for push and pop.

But how? The bodies of these two member functions are tucked away in the file stack.cc. The
compiler isworking on main.cc. It doesn't know anything about any other file, so it doesn't
know how to generate push<i nt > and pop<i nt >.

But couldn't the compiler generate push<i nt > and pop<i nt > when it compiles stack.cc?
Yes, if it knew that someone had declared ast ack<i nt > variable. But the only one who did
that is main.cc and the compiler isn't working on that file just now. Managers call this situation
"technically challenging." Programmers call it "a nightmare.”

The problems associated with template generation are not smple to solve. Different compiler
makers have chosen different approaches. The problem isthat all these approaches are not

compatible. Code written for one compiler may not work on another. In sorre cases, even code
written for one version of acompiler might not work in another version.

Templates are the leading edge of C++ compiler technology and, like all new programs, there
are just afew bugs to work out. In the following sections, we discuss the various ways
compiler makers have attempted to solve the problems associated with templates. Compiler
technology and standards are constantly evolving, so the information in this section may not be
up to date.

Microsoft's | mplementation
As of this publication date, the Microsoft C++ and Visual C++ compilers do not

have templates. Although extremely smple, this form of "implementation™ is very

Page 444

limited. On the other hand, I've never had any trouble with templates using a Microsoft
compiler.

Turbo-C++ and GNU g++ Templates

The Turbo-C++ and the GNU g++ compilers take a similar approach. If you plan to use
st ack<f | oat >, then you must haveast ack<f | oat > in thefile that defines the member
functions: stack.cc. At the beginning of the stack.cc file, you will need the line:

t ypedef stack<float> floating_point_stack

Actually you never haveto usethetypef | oat i ng_poi nt _st ack. Thet ypedef isthere
just to tell the compiler to generate the needed member functions.

Both compilers also have switches that tell the compiler what to do about inline functions that
can't be handled inline. Suppose you define the function:

t enpl at e<cl ass ki nd>
inl'ine kind max(kind dl, kind d2) {
if (dl > d2)
return (dl);
return (d2);

}

in the header file max.h and then proceed to use the max<f | oat > function in three different
files. Also suppose that the function is so complex that the compiler decided to ignore the
i nl'i ne directive. (I know that'salot of supposing, but it'sthe only way you get to this mess.)

When your three files are compiled, three copies of max<f | oat > are generated. The
Turbo-C++ linker is smart enough to detect this fact and will throw two of them away. The
GNU g++ linker is not so smart, and you'll wind up with three copies of the same routinein
your code.

Both Turbo-C++ and GNU provide you with compiler options that help solve this problem. If
you put the line:

#pragnma interface // G\U g++ only option

inyour code, it tells GNU: "Don't generate the body for any template functions found in this
header." Later, in one of your files, you must put the directive:

#pragma i npl ementation // GNU g++ only option
Thistells GNU, "Here's where you generate the function bodies.”
Turbo-C++ uses similar pragmas. However, the "interface” directiveis:

#pragma option -Jgx // Turbo-C++ only option

Page 445

and the "implementation™ directiveis:
#pragnma option -Jg // Turbo-C++ only option

The options are clunky, nonportable, and difficult to use. They are meant to solve an
implementation problem that has not been properly solved yet.

CFront-Based Compilers

CFront isthe name of the AT& T C++ to C trandator that was the basis of the first C++
compiler. Most C++ compiler makers consider themselves standard if they are compatible with
the latest version of CFront.

CFront handles the problem of template generation by putting it off until link time, so you only
compile and link the file main.cc. At link time, CFront notices that main.cc uses

st ack<f | oat >. It then looks for afile named stack.cc. (Note: Your file must be named
<class>.cc.) Thisfileis used to generate the templates.

Although this method seems simple enough, there are alot of detailsto take care of. For
example, thefile stack.h is automatically included when the linker tries to compile stack.cc.
What'sworse, if you include it yoursalf with a#i ncl ude "st ack. h", the compiler gets
confused.

The CFront approach is a good attempt at solving the template problem, but there are still many
bugs to work out.

Writing Portable Templates

How can you write a portable template? The smple answer is, "Don't use them." However, the
best way to create atruly portable template is to write everything as inline functions and put al
your functionsin asingle-header file. Asfar as| cantell, this method works for every compiler
that has templates. It may not be the most efficient way of doing things, but it is the most
portable.

Summary

Templates provide a convenient way of writing generic classes and functions. However,
implementation of templates is still undergoing refinement. As a practical matter, you may want
to wait until the language settles down alittle before using them.

Programming Exer cises

Exercise 24-1: Write atemplate m n that returns the minimum of two values. Make sure you
handle strings correctly.

Page 446

Exercise 24-2: Write atemplate class to implement an array with bounds checking.

Exer cise 24-3: Define atemplate class that implements a set. The class alows you to set,
clear, and test elements. (An integer version of this class was presented in Exercise 13-4.)

Page 447

25
Portability Problems

In This Chapter:

Modularity

Word Size
Byte-Order Problem
Alignment Problem
NULL-Pointer
Problem

Filename Problems
File Types
Summary
Answersto Chapter
Questions

Wherein | spake of most disastrous changes,
Of moving accidents by flood and field,

Of hair-breadth 'scapesi' the

imminent deadly breadth

—Shakespeare on Program Porting

Othello, Act 1, Scene 3

You've just completed work on your great masterpiece, aray-tracing program that renders
complex three-dimensional shaded graphics on a Cray supercomputer using 30MB of memory
and 5GB of disk space. What do you do when someone comes in and asks you to port this
program to an IBM PC with 640K of memory and 100MB of disk space? Killing him is out.
Not only isitillegal, but it aso is considered unprofessional. Y our only choice is to whimper
and start the port. It is during this process that you will find that your nice, working program
exhibits al sorts of strange and mysterious problems.

C++ programs are supposed to be portable. However, C++ contains many machine-dependent
features. Also, because of the vast difference between unix and ms-Dos/Windows, system
dependencies can frequently be found in many programs. This chapter discusses some of the
problems associated with writing truly portable programs as well as some of the traps you
might encounter.

Modularity

One of the tricks to writing portable programsisto put al the nonportable code into a separate
module. For example, screen handling differs greatly in mspbos/Windows and unix. To design a
portable program, you'd have to write machine-specific screen-update modules.

Page 448

For example, the HP-98752A terminal has a set of function keys labeled F1-F8. The PC also
has a function-key set. The problem is that these keys don't send out the same set of codes. The
HP sends "<esc>p<r et ur n>" for F1 and the PC sends "<null>". In this case, you would
want to writeaget _code routine that gets a character (or function key string) from the
keyboard and trandates function keys. Because the trandation is different for both machines, a
machine-dependent module is needed for each one. For the HP machine, you would put
together the program with main.cc and hp-tty.cc, while for the PC you would use main.cc and
pc-tty.cc.

Word Size

Along int is32bits,ashort int is16" bits andanormal i nt can be 16 or 32 bits
depending on the machine. This can lead to unexpected problems. For example, the following
code works on a 32-bit uNix system, but fails when ported to MS-DOS/Windows:

int zip;

zip = 92126;
cout << "ip code " << zip << '\n';

The problem isthat on MS-DOS/Windows, zi p isonly 16 bits—too small for 92126. To fix
the problem, we declare zi p asa 32-bit integer:

long int zip;

zip = 92126;
cout << Zip code" << zip << '\n';

Now zi p is32 bits and can hold 92126.

Byte-Order Problem

A short i nt consstsof two bytes. Consider the number 0x1234. The two bytes have the
value 0x12 and 0x34. Which value is stored in the first byte? The answer is machine
dependent.

This can cause considerabl e trouble when you try to write portable binary files. Motorola
68000-series machines use one type of byte order (ABCD), while Intel and Digital Equipment

Corporation machines use another (BADC).

One solution to the problem of portable binary filesisto avoid them. Put an option in your
program to read and write ASCI| files. ASCII offers the twin advantages of being far more
portable as well as human readable.

* The draft ANSI standard does not specify the actual sizeof | ong i nt or short int
However, on every machine | know of, al ong i nt is32bitsandashort i nt is16 bits.

Page 449

The disadvantage is that text files are larger. Some files may be too big for ASCII. In that case,
the magic number at the beginning of afile may be useful. Suppose the magic number is
0x11223344 (abad magic number, but a good example). When the program reads the magic
number, it can check against the correct number as well as the byte-swapped version
(0x22114433). The program can automatically fix the file problem:

const int MAAC
const int SWAP_ MAG C

0x11223344; // File identification nunber
0x22114433; [/ Magi c nunber byte swapped

ifstreamin_file; /1 File containing binary data
[ong int magic; /1 NMagi ¢ nunber fromfile

in_file.open("data");
in_file.read((char *)&magic, sizeof(magic));

switch (magic)
case MAG C
/1 No problem
br eak;
case SWAP_MAG C
cout <<"Converting file, please wait\n";
convert _file(in_file);
br eak;
defaul t:
cerr << "Error: Bad magic nunber " << magic << '\n';
exit (8);
}

Alignment Problem

Some computers limit the addresses that can be used for integers and other types of data. For
example, the 68000 series requires that all integers start on a two-byte boundary. If you attempt
to access an integer using an odd address, you generate an error. Some processors have no
alignment rules, while some are even more restrictive, requiring integers to be aligned on a
four-byte boundary.

Alignment restrictions are not limited to integers. Floating point numbers and pointers also
must be aligned correctly.

C++ hides the alignment restrictions from you. For example, if you declare the following
structure on a 68000:

struct funny {
char fl ag; /1 Type of data follow ng
long int value; // Value of the parameter

1
C++ alocates storage for this structure as shown on the left in Figure 25-1.

Page 450

flag | ' flag

value

| 6 |
68000 8086

4

Figure 25-1. Structure on 68000 and 8086 architectures

On an 8086-class machine with no alignment restrictions, thisis alocated as shown on the
right in Figure 25-1.

The problem is that the size of the structure changes from machine to machine. On a 68000, the
structure size is six bytes and on the 8086, it isfive. So if you write abinary file containing
100 records on a 68000, it will be 600 bytes long, while on an 8086 it will be only 500 bytes
long. Obvioudy thefileis not written the same way on both machines,

One way around this problem isto use ASCII files. Aswe have said before, there are many
problems with binary files. Another solution isto explicitly declare a pad byte:

struct new_funny {
char flag; // Type of data follow ng
char pad; /1 Not used
long int value; // Value of the paraneter

}

The pad character makes the field value align correctly on a 68000 machine while making the
structure the correct size on an 8086-class machine.

Using pad charactersis difficult and error-prone. For example, athough new _f unny is
portable between machines with one- and two-byte alignment for 32-bit integers, it is not
portable to any machine with afour-byte integer alignment.

NULL -Pointer Problem

Many programs and utilities were written using UNIx on vAx computers. On this computer, the
first byte of any program is 0. Many programs written on this computer contain a bug: They use

the null pointer as a string.

Page 451
Example:
#define NULL O

char *string;

string = NULL;
cout << "Stringis '" << string "'\n";

Thisisactually anillegal useof st ri ng. Null pointers should never be dereferenced. On the
VAX, this error causes no problems. Because byte zero of the program is zero, st r i ng points
to anull string. Thisis dueto luck, not design.

Onavax, thiswill print:
String is "'

On an old Cédlerity, thefirst byte of the program isa"Q." When this programisrun on a
Celerity, it will print:

String is '@

On other compuiters, thistype of code can generate unexpected results. Many of the utilities
ported from aVAX to a Celerity exhibited the "Q" bug.

Filename Problems

UNIX specifiesfilesas /root/ sub/fil e while mspbos/Windows uses
\root\ sub\fil e. When porting from uNix to ms-bos/Windows, file names must be
changed. For example:

#i f ndef _ MBDOS

#incl ude <sys/stat.h> /* UN X version of the file */
#el se _MBDOS

#i ncl ude <sys\stat.h> /* DOS version of the file */
#endi f _ MSDOS

Question 25-1: Why does Example 25-1 work on UNIX, but when we runitin
MSDOSWindows we get the message:

oot
ew abl e: file not found

Example 25-1. ifstreamin_file

#i fndef _ MSDOS

#defi ne NAME "/root/ new t abl e"
#el se _ MBDOS

#defi ne NAME "\root\newtabl e"
#endi f _ MSDOS

in_file.open(NAMVE);
if (in_file.bad) {

cout << NAME << ": file not found\n";
exit (8);

Page 452

File Types

InuNix thereisonly onefile type. In ms-Dos/Windows there are two, text and binary. The flags
O _BI NARY and O_TEXT are used in ms-bos/Windows to indicate file type. Older versions of
UNIX have no such flags.

Oneway of handling this problem isto write different open calls for each system:

#i f ndef _MSDOS
file_descriptor
#el se _MBDOS
file_descriptor = open("file", O _RDONLY| O Bl NARY);
#endi f _MBDOS

open("file", O RDONLY);

Thisismessy. A far better way isto define dummy O_BI NARY and O_TEXT flags:

#i fndef O BINARY /* Do we have an O Bl NARY? */

#define OBINARY O /* |If not define one (Bl NARY and TEXT)*/
#define O TEXT O /* so they don't get in the way */

#endi f O Bl NARY

file descriptor = open("file", O RDONLY| OBl NARY);

Summary

It is possible to write portable programs in C++. Because C++ runs on many different types of
machines that use different operating systems, it is not easy. However, if you keep portability in
mind when creating the code, you can minimize the problems.

Porting four-letter words

Portability problems are not limited to programming. When
Practical C Programming was trandated to Japanese, the
transator had a problem with one exercise: "Write a program that
removes four-latter words from afile and replaces them with more
acceptable equivalents.”

The problem was, in Japanese, everything is a one-letter word.
When the trandator came to a phrase he couldn't directly trandate,
he did his best and aso put in the English. But for the four-letter
words, he decided to include the English as well as some
additional help (Stars added. | don't use words like that.):

[@ERMEE 7227 r AP THELATHIEERV#, AhwizT3i7o
FSLLEALA L, JOTOTI AL, 714 adiz fourletter words(PXF
B, WIS, (%54 coes, Coow, seen dumb, heer ¥} ERORLGL, £HE
Lo bBPr S ELRARLELOTT,

Answersto Chapter Questions

Page 453

Answer 25-1: The problem isthat C++ usesthe backslash (\) as an escape character. The
character \ r is<return>,\ n is<new line>, and \ t is<tab>. What we really have for aname

IS.
<r et ur n>o0t <new | i ne>ewxt ab>abl e
The name should be specified as:

#defi ne NAME "\\root\\new\tabl e"
NOTE

The#i ncl ude usesafilename, not a C++ string. While you must
use double backslashes (\ \) inaC++ string, you use single
backdashes in an #include. The following two lines are both
correct:

#defi ne NAME "\\root\\new\tabl e"
#i ncl ude "\root\new defs.h"

26
Putting It All Together

In This Chapter:

Requirements
Code Design
Coding
Functional
Description
Testing
Revisions

A Final Warning
Program Files
Programming
Exercises

Page 455

For thereisn't ajob on the top of the earth
the beggar don't know, nor do
—Kipling

In this chapter we create a compl ete program. Every step of the process is covered, from
setting forth the requirements to testing the resuilt.
Requirements

Before we start, we need to decide what it is we are going to do. Thisis avery important step
and isleft out of far too many programming cycles.

This chapter's program must fulfill several requirements. First, it must be long enough to
demonstrate modular programming, but at the same time be short enough to fit insde asingle
chapter. Second, it must be complex enough to demonstrate a wide range of C++ features, but
be smple enough for a novice C++ programmer to understand.

Finally, it must be useful. Thisisnot so simple to define. What's useful to one person might not
be useful to another. We decided to refine this requirement and restate it as "It must be useful to
C++ programmers.” The program we have selected reads C++ source files and generates
simple statistics on the nesting of parentheses, and the ratio of commentsto code lines.

The specification for our statistics programis:

Prelimnary Specification for a C++ Statistics Gathering Program
Steve CQual line
February 10, 1995

Page 456

Theprogram st at gathers statistics about C++ source files and prints them. The command
lineis:

stat files

wheref i | es isalist of sourcefiles. The following shows the output of the program on a
short test file.

Example 26-1. stat/stat.out.

1 (0 {0 #include <iostream h>

2 (O {O /***
3 (0 {0 * calc -- a sinple 4-function cal cul ator *
4 (O {O ***/
5(0 {0 int result; /1 The result of the calcul ations

6 (0 {0 char oper_char; /1 User-specified operator

7 (0 {0 int val ue; /1 Val ue specified after the operator
8 (0 {0 main()

9 (0 {1 ¢{

10 (0 {1 result = 0; /[l Initialize the result
11 (0 {1

12 (0 {1 while (1) {

14 (0 {2 cout << "Result: " << result << '\n';

15 (0 {2 cout << "Enter operator and nunber: ";
16 (0 {2

17 (0 {2 cin >> oper_char >> val ue;

18 (0 {2

19 (1 {2 if ((oper_char =="'q") ||

20 (0 {2 (oper_char == 'Q))

21 (0 {2 br eak;

22 (0 {2

23 (0 {3 switch (oper_char) {

24 (0 {3 case '+';:

25 (0 {3 result += val ue;

26 (0 {3 br eak;

27 (0 {3 case '-'

28 (0 {3 result -= val ue;

29 (0 {3 br eak;

30 (0 {3 case '*';:

31 (0 {3 result *= val ue;

32 (0 {3 br eak;

33 (0 {3 case '/':

34 (0 {4 if (value == 0) {

35 (0 {4 cout << "Error: Dyvide by zero\n";
36 (0 {4 cout << " operation ignored\n";
37 (0 {3 } else

38 (0 {3 result /= val ue;

39 (0 {3 br eak;

40 (0 {3 def aul t:

41 (0 {3 cout << "Unknown operator" <<
42 (0 {3 oper_char << '\n';
43 (0 {3 br eak;

44 (0 {2 }

45 (0 {1 }

Page 457
Example 26-1. stat/stat.out (Continued).

46 (0 {1 return (0);
47 (0 {0 }
Total nunber of lines: 47
Maxi mum nesting of () : 2
Maxi mum nesting of {} : 4

Number of blank lines 4
Nurmber of conment only lines 4
Nurmber of code only lines 36

Nunber of lines with code and comrents 4
Conment to code ratio 20.5%

Code Design

There are severa schools of code design. In structured programming, you divide the code up
into modules and then divide the module into submodules, divide the sub-modulesinto
sub-submodules, and so on. Thisis aso known as procedure- oriented programming. In
object-oriented programming, you try to think of the problem asa collection of data that you
mani pulate through member functions.

There also are other approaches, such as state tables and transition diagrams. All of these have
the same basic principle at heart: "Arrange the program's information in the clearest and
simplest way possible and then try to turn it into C++ code.”

Our program breaks down into severa logical modules. First, there is atoken scanner, which
reads raw C++ code and turnsit into tokens. Actually, this function sub-divides into two
smaller modules. The first reads the input stream and determines what type of character we
have. The second takes in character-type information and uses it to assemble tokens. The other
module contains the statistics gathering and a small main program.

Token Module

Our program scans C++ source code and uses the tokens to generate statistics. A tokenisa
group of characters that form a single word, number, or symbol. For example, the line:

answer = (123 + 456) / 89; [/ Conmpute some sort of result
consists of the tokens:

TID The word "answer"
T_OPERATOR The character "="
T L_PAREN Left Parenthesis
T_NUMBER The number 123

T_OPERATOR The character "+"

Page 458

T_NUMBER The nunber 456

T_R PAREN Right parenthesis
T_OPERATOR The di vi de operat or
T_NUMBER The nunber 89

T_OPERATOR The semi col on

T_COMMENT The // conment

T_NEW.INE The end-of-1line character

Our token module needs to identify groups of characters. For example, an identifier is defined
as aletter or underscore, followed by any number of letters or digits. So our tokenizer needs to
contain the pseudocode:

If the current character is a letter then
scan until we get a character that's not a letter or digit

Asyou can see from the pseudocode, our tokenizer depends a great deal on character types, so
we need amodule to help us with the type information.

Character-type Module

The purpose of the character-type module is to read characters and decode their types. Some
types overlap. For example, C_ALPHA NUMERI Cincludesthe C_ NUMERI C character set.
This module stores most of the type information in an array and requires only alittle logic to
handle the specia typeslike C_ALPHA NUMERI C.

Statistics Class

In this program, a statistic is an object that consumes tokens and outputs statistics. We start by
defining an abstract class for our statistics. This classis used as the basis for the statistics we
are collecting. The classdiagram can be seen in Figure 26-1.

Btar

line counter paTAn countar hrace_countar commant counter

Figure 26-1--Stati stics class hi er_arcHy "

Our definition of astatistic is"something that uses tokens to collect statistics.” These statistics
may be printed at the beginning of each line or at the end of thefile.

Page 459

Our four statistics are more specific. For example, the classpar en_count er countsthe
nesting of parenthesis as well as the maximum nesting. The current nesting is printed at the
beginning of each line (the (" number). The maximum nesting level iswritten out at the end of
thefile.

The other classes are defined in asimilar manner. The only trick used here is that we've made
the line numbering a tatistic. It counts the number of T_NEW LI NE tokens and outputs that
count at the start of each line.

Coding

The coding process was fairly simple. The only problem that came up was getting the
end-of-line correct.

Functional Description

This section describes all the classes and major functions in our program. For a more complete
and detailed description, take alook at the listings at the end of this chapter.

char_type Class

Thechar _t ype class setsthe type of a character. For the most part, thisis done through a
table namedt ype_i nf 0. Sometypes, suchasC_ALPHA_NUMERI C, include two different
types of characters, C ALPHA and C_DI G T. Therefore, in addition to our table, we need a
little code for the special cases.

in_putfile Class

This class reads data from the input file one character at atime. It buffers up aline and on
command writes the line to the output.

token Class

We want an input stream of tokens. We have an input stream consisting of characters. The main
function of thisclass, next _t oken, turns characters into tokens. Actually, our tokenizer is
rather simple, because we don't have to deal with most of the detail< that a full C++ tokenizer
must handle.

The coding for thisfunction is fairly straightforward, except for the fact that it breaks up
multiline commentsinto aseriesof T_COMVENT and T_NEW LI NE tokens.

Page 460

Oneclever trick isused in this section. The TOKEN_LI ST macro is used to generate an
enumerated list of token types as well as a string array containing the names of each of the
tokens. Let's examine how thisis done in more detail.

The definition of the TOKEN_LI ST classis:

#define TOKEN_LI ST \

T(T_NUMBER) /* Sinple nunber (floating point or integer) */ \
T(T_STRI NG, /* String or character constant */ \
T(TCOMVENT) , /* Comment */ \
T(T_NEW.I NE) , /* New ine character */ \
T(T_OPERATOR) , /* Arithnetic operator */ \
T(T_L_PAREN), /* Character "(" */ \
T(T_R_PAREN), /* Character ")" */ \
T(T_L_CURLY), /* Character "{" */ \
T(T_R CURLY), /* Character "}" */ \
T(T_I D), /* ldentifier */ \
T(T_EOF) /* End of File */

When invoked, this macro will generate the code:

T(T_NUVBER) ,
T(T_STRI NG,
/!l .. and so on

If we definea T macro, it will be expanded when the TOKEN_LI ST macro is expanded. We
would liketo usethe TOKEN LI ST macro to generate alist of names, so we definethe T
macro as:

#define T(x) x /1 Define T() as the name
Now, our TOKEN_LI ST macro will generate:

T_NUMBER
T_STRING
/!l .. and so on

Putting all this together with a little more code, we get away to generate a TOKEN_TYPE
enumn list:

#define T(x) x /1 Define T() as the name
enum TOKEN_TYPE {

TOKEN_LI ST
|

#undef T /1 Renove old tenporary nacro

Later weredefine T so it generates a string:
#define T(x) #x /1 Define x as a string

Thisalowsusto use TOKEN LI ST to generate alist of strings containing the names of the
tokens:

#define T(x) #x /1 Define x as a string
const char *const TOKEN_NAMES[] = {

Page 461

TOKEN_LI ST
s
#undef T /1 Renove old tenporary nacro
When expanded, this macro generates:

const char *const TOKEN NAMES[] = {
"T_NUMBER',
"T_STRING',
.. ..

Using tricks like thisis acceptable in limited cases. However, such tricks should be
extensively commented so the maintenance programmer who has to fix your code can
understand what you did.

stat Class

st at classisan abstract class that is used as abasis for the four real statistics we are
collecting. It starts with a member function to consume tokens. This function is a pure virtual
function, which means that any derived classes must define the functiont ake_t oken.

class stat {
publ i c:
virtual void take_token(TOKEN_TYPE token) = O;

Thefunction t ake_t oken generates statistics from tokens. We need some way of printing
them. We print statistics in two places. Thefirst is at the beginning of each line and the second
is at the end of the file. Our abstract class contains two virtual functions to handle these two
cases.

virtual void line_start(void) {};
virtual void eof(void) {};

}

Unliket ake_t oken, these functions have default bodies-empty bodies, but bodies just the
same. What does this mean? Our derived classes must definet ake_t oken. They don't have
todefinel i ne_start oreof.

line_counter class

The simplest statistic we collect is a count of the number of lines processed so far. This
counting isdonethroughthel i ne_count er class. The only token it cares about is
T_NEW LI NE. At the beginning of each line it outputs the line number (the current count of the

T_NEW LI NE tokens). At the end of file, this class outputs nothing. As a matter of fact, the
I i ne_count er classdoesn't even define an eof function. Instead, we let the default in the
base class (st at) do the "work."

Page 462
brace counter class

This class keeps track of the nesting level of the curly braces{ } . We feed the class a stream
of tokensthrough thet ake_t oken member function. This function keeps track of the left and
right curly braces and ignores everything el se.

/] Consune tokens, count the nesting of {}
voi d brace _counter::take token(TOKEN TYPE t oken)
switch (token) {
case T_L_CURLY:
++cur _| evel ;
if (cur_level > max_|evel)
max_| evel = cur_|I evel
br eak;
case T_R CURLY:
--cur_| evel
br eak;
defaul t:
/1 lgnore
br eak;

}

The results of this statistic are printed in two places. Thefirst is at the beginning of each line.
The second is a the end of file. We define two member functions to print these statistics:

/1 Qutput start of line statistics

/1 nanely the current |ine nunber

void brace_counter::line_start(void) {
cout.setf(ios::left);
cout.w dth(2);

cout << '{' << cur_level << ' ';

cout.unsetf(ios::left);
cout.wi dth();

}

/1 CQutput eof statistics
/1 nanely the total nunber of |ines
voi d brace_counter::eof (void)
cout << "Maxi mumnesting of {} : "<< nmax_level << '\n';

}
paren_counter class

Thisclassisvery similar tothebr ace_count er class. Asamatter of fact, it was created
by copying thebr ace_count er classand performing afew smple edits.

We probably should combine the par en_count er classandthebr ace_count er class

into one class that uses a parameter to tell it what to count. Oh well, something for the next
version.

Page 463
comment_counter class

In this class, we keep track of lines with comments in them, lines with code in them, lines with
both, and lines with none. The results are printed at the end of file.

dofile procedure

Thedo_fi | e procedure reads each file one token at atime, and sends them to the
t ake_t oken routine for every statistic class. But how does it know what statistics classesto
use? Thereisalist:

static |line_counter |ine_count; /1 Counter of lines
static paren_counter paren_count; /1 Counter of () levels
static brace_counter brace_count; /1 Counter of {} levels

static comment _counter comment _count; // Counter of comment info

/1 Alist of the statistics we are collecting
static stat *stat list[] = {

&l i ne_count,

&par en_count,

&brace_count,

&conment _count,

NULL

}s

A couple of things should be noted about thislist. Eventhough | i ne_count

par en_count,brace_count,and conment _count areal different types, they are al
based on the type stat. This means that we can put them inan array called st at _| i st. This
design also makesiit easy to add another statistic to the list. All we have to do is define anew
classand put anew entry inthest at _| i st.

Testing

To test this program, we came up with asmall C++ program that contains every different type
of possible token. The results are shown in Example 26-2.

Example 26-2. stat/test.cc

/**

* This is a nulti-line coment *
* T_COWENT, T_NEW.INE *
**/
const int LINE_MAX = 500; /1 T_ID TOPERATOR, T_NUVBER

/1 T_L_PAREN, T_R PAREN
static void do_file(const char *const nane)

{

Page 464

Example 26-2 stat/test cc (Continued)

/1 T_L_CURLY
char *nane = "Test" /1 T_STRI NG

/1 T_R CURLY

}
/I T_ECF

Revisions

Asit stands, the program collects avery limited set of statistics. It might be nice to add things
like average identifier size, per-procedure statistic, and pre-class statistics. One thing we kept
in mind when we designed our program is the need for expendability.

We stopped our statistics collection at four types of statistics because we had fulfilled our
mission to demonstrate a reasonable advanced set of C++ constructs. We didn't add more
because it would make the program too complex to fit in the chapter. On the whole, the
program does its job well.

A Final Warning
Just because you can generate a statistic doesn't mean that it's useful.
Program Files

Thech_typeh file
Example 26-3 stat/ch_type.h

/***

* char_type -- Character type class *
* *
* Menber functions: *
* type -- returns the type of a character. *
* (Limted to sinple types) *
* is(ch, char _type) -- check to see if chis *
* a nenber of the given type. *
* (Works for derrived types as well.) *
***/
cl ass char_type {
publ i c:
enum CHAR TYPE {
C_ECF, /1 End of file character
C WH TE, /1 Wi tespace or control character

C_NEWLI NE, /1 A new ine character

Page 465
Example 26-3. stat/ch_type.h (Continued)

C_ALPHA, /1 Aletter (includes)
CcCDAar, /1 A nunber

C OPERATOR, // Random oper at or
C SLASH, /1 The character '
C L_PAREN, // The character
C R PAREN, // The character
C L CURLY, [/ The character
C R CURLY, [/ The character
C_SI NGLE, /1 The character
C _DQOUBLE, /1 The character
/1 End of sinple types, nore conplex, derived types follow
C HEX DIA T,// Hexadeci mal digit

2 e A — o~~~

C ALPHA NUMERI C /1 Al pha nuneric
b
private:
static enum CHAR TYPE type_
i nf o[256] ; /1 Information on each character
/1 Fill in a range of type info stuff
void fill_range(int start, int end, CHAR TYPE type);
publ i c:
char _type(); /1 Initialize the data
/'l ~char_type -- default destructor

/1 Returns true if character is a given type
int is(int ch, CHAR TYPE ki nd);

CHAR TYPE type(int ch);
1

The ch_type.ccfile
Example 26-4. stat/chtype.cc

/***

* ch_type package *
* *
* The class ch_type is used to tell the type of *
* various characters. *
* *
* The mai n nenber functions are: *
* is -- True if the character is the indicated *
* type. *
* type -- Return type of character. *
***I

#i ncl ude <i ostream h>
#i ncl ude "ch_type. h"
/1 Define the type information array

char _type:: CHAR TYPE char _type::type_info[256];

* fill _range -- fill in a range of types for the *

Page 466
Example 26-4. stat/chtype cc (Continued)

* character type class *

*

* Paraneters

* start, end -- range of itenms to fill in
* type -- type to use for filling

*

**/

voi d char_type::fil
{

int cur_ch;

| _range(int start, int end, CHARTYPE type)

for (cur_ch = start; cur_ch <= end;
type_info[cur_ch] = type;

}
}

/***

type -- initialize the char type table*

***/

* char _type::char_

char _type::char_type()

{

fill_range(0, 255, C WH TE);

fill _range(' A,
fill _range('a',
type_info[' _']

fill _range(' 0",

type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info['
type_info[',"
type_info['
type_info['
type_info['
type_info['
type_info['

* o ._
t R0 255.;4:’5 -
R P A

U I+ '

N UL

VoA

type info['/"]
type_info['\n"]

type_info['
type_info['

~— —~
[R——

"Z', CALPHA);
'z', CALPHA);
C_ALPHA,

‘9", CDAT);

C_OPERATOR;
C_OPERATOR;
C_COPERATCR:
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;
C_OPERATOR;

C_SLASH;
= C_NEWLI NE;

C_L_PAREN;
C_R_PAREN;

Example 26-4. stat/ch_type.cc (Continued)

type_info['{"]

= C L_CURLY:

++cur_ch) {

L

*

Page 467

type_ info['}'] = C R CURLY;

type_info['"'] = C _DOUBLE;
type_ info['\''] = C_SINGE;

}
int char_type::is(int ch, CHAR TYPE ki nd)
{
if (ch == EOF) return (kind == C _EOF);
switch (kind) {
case CHEX DIAT:
if (type_info[ch] == CDAT)
return (1);
if ((ch>="A) & (ch <="F"))
return (1);
if ((ch>="a") & (ch <="f"))
return (1);
return (0);
case C_ALPHA NUMERI C.
return ((type_info[ch] == C ALPHA) ||
(type_info[ch] == CDAT));
defaul t:
return (type_info[ch] == kind);
}
1

char _type:: CHAR TYPE char _type::type(int ch)
if (ch == EOF) return (C_EOF);
return (type_info[ch]);

}

The token. file
Example 26-5. stat/token.h

/**

* token -- token handling nodul e *
* *
* Functi ons: *
* next token -- get the next token fromthe input *

**I

/*

* Alist of tokens

* Note, how this list is used depends on defining the macro T.
* This macro is used for defining the tokens types thensel ves
* as well as the string version of the tokens.

*/

#defi ne TOKEN LI ST \

Page 468
Example 26-5. stat/token.h (Continued)

T(T_NUMBER) /* Sinple nunber (floating point or integer) */ \
T(T_STRI NG, /* String or character constant */ \

T(T_COVVENT), /* Comment */

T(T_NEW.I NE) , /* New ine character */
T(TOPERATOR) /* Arithnetic operator */
T(T_L_PAREN), /* Character "(" */
T(T_R_PAREN), /* Character ") */
T(T_L_CURLY), /* Character "{" */
T(T_R CURLY), /* Character "}" */
T(T_ID), /* Identifier */

T(T_EOF) /* End of File */

— -~

/ *
* Define the enunerated |ist of tokens.
* This makes use of a trick using the T nacro
* and our TOKEN_ LI ST
*/
#define T(x) x /1 Define T() as the name
enum TOKEN_TYPE {
TOKENLI ST
1

#undef T /1 Renove old tenporary nacro

/1 Alist of the names of the tokens
extern const char *const TOKEN NAMES[];

const int LINE_MAX = 500; /1 Longest possible line

/ khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhdhhhdhhhhdhkhdhkrdkhrddrkk**x

input_file -- data fromthe input file

The current two characters are stored in
curchar and next _char

*
*
*
*
*
*
* one character.
*
* The line is buffered and output everytine a newine
* is passed.
kkkkhkkhkhkhkhkkhkkhkhkhhkhkhkhkhkkhhhhkhkhkhkhkhhhkhkhkhkhkhkkkkkhkhk khkhkkkkkk k *,k,**x*%
class input_file: public ifstream {
private:
char |ine[LI NE_MAX]; /1l Current line
char *char _ptr; /1l Current character on the line
publ i c:
int cur_char; /1 Current character (can be EOF)
i nt next_char; /1 Next character (can be ECF)

*
*
*
*
*
The menber function read_char noves everyone up *
*
*
*
*
*

/

/ *
* Initialize the input file and read the first 2
* characters.
*/
Page 469
Example 26-5. stat/token.h (Continued)

i nput_file(const char *const nane) : ifstream name) ({

if (bad())

return,
cur_char = get();
next char = get();

char_ptr = line;
}
/*
* Wite the |line to the screen
*/

voi d flushline()
*char_ptr = '"\0'
cout << line;
cout. flush();

char_ptr = Iline;
}
/*
* Advance one charact er
*/

voi d read_char (void) {
*charptr = cur_char;
++char _ptr;

cur_char = next_char
next _char = get();

}s

#i f ndef TRUE

#define TRUE 1 /1 Define a sinple TRUE/ FALSE val ue
#define FALSE O

#endi f /* TRUE */

/**

* token cl ass *
* *
* Reads the next token in the input stream *
* and returns its type. *

**/

cl ass token {
private:
/1 True if we are in the mddle of a coment
int in_coment;

/1 True if we need to read a character
/1 (This hack is designed to get the new |lines right)
int need to read _one;

/Il Read a /* */ style comment

TOKEN _TYPE read _comment (input_file & n_file);
publ i c:

Example 26-5 stat/token h (Continued)

t oken(voi d) {

Page 470

in_comment = FALSE
need to read one = 0;

}

/!l Return the next token in the stream
TOKEN_TYPE next _token(input_file & n_file);
}s

The token.ccfile

Example 26-6 stat/token.cc

/**

* token -- token handling nodul e *
* *
* Functi ons: *
* next token -- get the next token fromthe input *

**I

#i ncl ude <fstream h>
#i ncl ude <stdlib. h>

#i ncl ude "ch_type. h"
#i ncl ude "t oken. h"

/*

* Define the token name |ist

* Thi s nmakes use of a trick using the T nacro

* and our TOKENLI ST

*/

#define T(x) #x /1 Define x as a string

const char *const TOKEN _NAMES[] = {

TOKENLI ST

H

#undef T /1 Renove old tenporary nacro
static char_type char_type; /1 Character type information

/***
* read_comrent -- read in a comment *
* *
* Paraneters *
* infile -- file to read *
* *
* Returns *
* Token read. Can be a T _COMWENT or TNEWLINE *
* dependi ng on what we read. *
* *
* Mul ti-line comrents are split into nultiple *
* t okens. *
R S S I S S b b S I I I I S b S I I I b b b S S O S S O O b b S I

/

TOKEN_TYPE t oken: :read_comment (i nput_file & n_file)

{

Page 471

Example 26-6 stat/token.cc (Continued)

if (in_file.cur_char == "\n") {
in_file.read_char();
return (T_NEW.I NE)

}
while (1)
i n_comrent = TRUE
if (in_file.cur_char == EOF)
cerr << "Error: ECF inside coment\n";
return (T_EOF);
if (in_file.cur_char == "\n")
return (T_COWENT);
if ((in_file.cur_char =="*") &&
(in_file.next_char == "/"))
i n_conment = FALSE
/1 Skip past the ending */
in_file.read_char();
in_file.read_char();
return (T_COWENT);
}
in_file.read_char();
}
}
/**
* next_token -- read the next token in an input stream*
* *
* Paraneters *
* infile -- file to read *
* *
* Returns *
* next token *
EE R I b I I I L

TOKEN_TYPE t oken: : next _token(input file & n_file)
{

if (need_to_readone)
in_file.read_char();

need to read one = O;

if (in_comrent)
return (read_coment(in_file));

while (char_type.is(in_file.cur_char, char_type::CVWITE)) {
in_file.read_char();

}
if (in_file.cur_char == EOF)
return (T_EOF);

switch (char_type.type(in_file.cur_char)) {
case char_type:: C_ NEW.I NE
in_file.read_char();

Page 472

Example 26-6 stat/token.cc (Continued)

return (TNEW.I NE);
case char_type:: C ALPHA:
while (chartype. is (in_file.cur_char,
char _type:: C_ALPHA NUMERI C))
in_file.read_char();
return (TID);
case char_type::CDAT:
in_file.read_char();
if ((in_file.cur_char =="X) || (in_file.cur_char =="x")) {
in_file.read_char();
while (char_type.is(in_file.cur_char, char_type::C HEX_
in_file.read_char();
return (T_NUMBER);
}
while (char_type.is(in_file.cur_char, char_type::CDIAT))
in_file.read_char();
return (T_NUMVBER);
case char_type:: C SLASH
[l Check for /* characters
if (in_file.next_char =="*") {
return (read_coment(in_file));
}

/1 Now check for double slash coments
if (in_file.next_char =="/")
while (1) {
/1 Comment starting with // and ending with EOF is
| ega
if (in_file.cur_char == EOF)
return (T_COWENT);
if (in_file.cur_char == "\n")
return (T_COWENT);
in_file.read_char();

}

}
/1 Fall through
case char_type:: C OPERATOR
in_file.read_char();
return (TOPERATOR);
case char_type::C L_PAREN
in_file.read_char();
return (T_L_PAREN);
case char_type:: C R PAREN
in_file.readchar();
return (TR_PAREN);
case char_type::C L _CURLY:
in_file.read_char();
return (T_L_CURLY);
case char_type::C R CURLY:
in_file.readchar();
return (TR_CURLY);
case char_type:: C DOUBLE:
while (1) {
in_file.read_char();

Page 473

Example 26-6. stat/token.cc (Continued)

/1 Check for end of string
if (in_file.cur_char =="'"")
br eak;

/| Escape character, then skip the next character
if (in_file.cur_char == "\\")
in_file.read_char();
}
in file.read char();
return (T_STRING;
case char_type:: C SINGLE
while (1) {
in file.read char();
/1 Check for end of character
if (in_file.cur_char == "'\")
br eak;

/| Escape character, then skip the next character
if (in_file.cur_char == "\\")
in_file.read_char();
}
in_file.read_char();
return (T_STRING;

defaul t:

cerr << "Internal error: Very strange character\n";
abort();

}

cerr << "Internal error: W should never get here\n";

abort();

return (T_EOF); /1 Shoul d never get here either

}

The stat.ccfile

Example 26-7 stat/stat.cc

/**

* stat
Produce statistics about a program

Usage:
stat [options] <file-list>

*
* *
* *
* *
* *
* *
**I
#i ncl ude <i ostream h>

#i ncl ude <fstream h>

#i ncl ude <i omani p. h>

#i ncl ude <stdlib. h>

#i ncl ude <nenory. h>

#i ncl ude "chtype. h"
#i ncl ude "t oken. h"

Page 474

Example 26-7. stat/stat.cc (Continued)

/**

* stat -- general purpose statistic *
* *
* Menber functions: *
* take token -- receives token and uses it to *
* conpute statistic *
* line_start -- output stat at the begi nning of *
* aline *
* eof -- output stat at the end of the file *
**/

class stat {

}

publ i c:

virtual void take_token(TOKEN TYPE token) = 0;

virtual void line_start(void) {};
virtual void eof (void) {};

/1 Default constructor

/1 Default destructor

/1 Copy constructor defaults as wel

(probably not used)

/**

*

L B I

*

out puts the current
of the line.

stat.

class line_counter: public stat {

private:

int cur_line; /1 Line nunber for

publ i c:

At EOF it will output the total nunber of

khkkhkkhkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhdhhhhhhhhhhdhkhdkhkhkdkrkk*x*x

line_counter -- handle |ine nunber / |ine count

*

*

*
Counts the nunmber of T_NEWLINE tokens seen and *
i ne nunber at the begi nning *
*

*

*

*

l'i nes
/

the current |ine

// Initialize the line counter -- to zero

line_counter(void) {
cur_line = 0;

}s

/] Default destructor

/1 Default copy constructor (probably never call ed)

/1 Consune tokens, count the nunber
voi d take_t oken(TOKEN_TYPE t oken)
if (token == T_NEW.I NE)
++cur _|ine;

}

/1 Qutput start of line statistics
/1 nanmely the current |ine_nunber
void line_start(void) {

cout << setw(4) << cur_line <<

of new |line tokens

<< setw(0)

Page 475

Example 26- 7. stat/stat.cc (Continued)
}

/1 CQutput eof statistics
/1 nanely the total nunber of |ines
voi d eof (void) {

cout << "Total nunber of lines: " << cur_line << \n';
}

s

/**
* paren_counter -- count the nesting level of () *
* *
* Counts the nunmber of T_LPAREN vs T_R PAREN tokens *
* and wites the current nesting |l evel at the begi nning*
* of each line. *
* *
* Also keeps track of the maxi mum nesting |evel. *

**/

class paren_counter: public stat {

private:
int cur_level; /1 Current nesting |evel
int max_| evel; /1 Maxi mum nesting | evel
publ i c:

/1 Initialize the counter
paren_count er (voi d) {
cur_level = 0;
max_| evel = 0;

/1 Default destructor
/1 Default copy constructor (probably never call ed)

/1 Consune tokens, count the nesting of ()
voi d take_t oken(TOKEN _TYPE t oken)
switch (token) {
case T_L_PAREN:
++cur _| evel ;
if (cur_level > max_|evel)
max_| evel = cur_|Ievel
br eak;
case T_R PAREN:
--cur_| evel
br eak;
defaul t:
/1 lgnore
br eak;

}
}
}
/1 Qutput start of line statistics
/1 nanely the current |ine nunber

void line_start(void) {
cout.setf(ios::left);

Page 476

Example 26-7. stat/stat.cc (Continued)

cout.w dth(2);
cout << '(' << cur_level << ' *;

cout.unsetf(ios::left);
cout.wi dth();

}

/1 CQutput eof statistics
/1 nanely the total nunber of |ines
voi d eof (void) {

cout << "Maxi mumnesting of () : " << max_level << '\n';
}

i

/**
* brace_counter -- count the nesting level of {} *
* *
* Counts the nunmber of T L CURLY vs T_R CURLY tokens *
* and wites the current nesting |l evel at the beginning*
* of each line. *
* *
* Also keeps track of the maxi mum nesting |evel. *
* *
* Note: brace_counter and paren_counter shoul d *
* probably be conbi ned. *
kkhkhkkkhhhkkhkhhkkkhhhkkhhhkhkkhhhkhdhhhkhhhkhdhkk hhxk dhkk hdx* dkkdh*x*d *xk*k,*x*%x

/
class brace counter: public stat {

private:
int cur_level; /1 Current nesting |evel
int max_| evel; /1 Maxi mum nesting | evel
publ i c:

/1 Initialize the counter
brace_counter (void)
cur_level = 0;
max_| evel = 0;

/1 Default destructor
/1 Default copy constructor (probably never call ed)

/] Consune tokens, count the nesting of {}
voi d take_t oken(TOKEN _TYPE t oken) {
switch (token) {
case T_L_CURLY:
++cur _| evel ;
if (cur_level > max_|evel)
max_| evel = cur_|I evel
br eak;
case T_R CURLY:
--cur_|l evel
br eak;
defaul t:

Page 477

Example 26-7 stat/stat.cc (Continued)

}s

}

/1 CQutput start of
/1 nanely the current

/1 lgnore
br eak;

line statistics
i ne nunber

void line_start(void) {
cout.setf(ios::left);
cout.wi dth(2);
cout << '{' << cur_level << "' ';
cout.unsetf(ios: :left);
cout.wi dth();

}

/1 CQutput eof statistics

/1 nanely the total
d eof (void) {
cout << "Maxi mum nesting of {}

VO

nunber of |ines

"<< max_| evel

/**

*

L R R R T S T I

*

comrent _count er

with and without conments.

Qut puts nothing at the begi nning of each |ine,
output aratio at the end of file

will

Note: This class nakes use of two bits:

CF_COMMENT
CF_CODE

to collect statistics.

These are conbined to forman index into the counter
so the value of these two bits is very

array,
i mportant.

counts the nunber of |ines

but

-- a coment was seen
-- code was seen

L R S R T B

*

**/

11
11
11
11
11

static const int CFCOWENT = (1<<0); /1 Line contains coment
static const int CF CODE = (1<<l); /1 Line contains code
/1 These bits are conbined to formthe statistics

0 -- [0] Blank line

CF_COMVENT -- [1] Conmment only line

CF_CODE -- [2] Code only line

CF_COWENTI CF_CODE -- [3] Comments and code on this |line

cl ass conment _counter:

private:

int counters[4];

public stat {

<< '\n';

/1 Count of various types of stats

Page 478

Example 26-7. stat/stat.cc (Continued)

int flags; /1 Flags for the current |ine

publ i c:

/1 Initialize the counters
comment _count er (void) {
nenset (counters, '\0', sizeof(counters));
flags = 0;
1
/1 Default destructor
/1 Default copy constructor (probably never call ed)

/1 Consune tokens, count the proper item
voi d take_t oken(TOKEN_TYPE t oken)
switch (token) {
case T_COMVENT:
flags | = CF_COMVENT;
br eak;
defaul t:
flags | = CF_CODE;
br eak;
case T_NEW.I NE:
++counters[fl ags];

flags = 0;
br eak;
}
}
/1 void line_start(void) -- defaults to base

/1 CQutput eof statistics
/1 nanely the total nunber of |ines
voi d eof (void) {

cout << "Nunber of blank lines "o<<
counters[0] << '\n';

cout << "Nunber of comment only lines "o<<
counters[1l] << '\n';

cout << "Nunber of code only lines "o<<

counters[2] << '\n';
cout << "Nunber of lines with code and coments
counters[3] << '\n';
cout.setf(ios::fixed);
cout . precision(1l);
cout << "Comment to code ratio" <<
float(counters[I] + counters[3]) /
float(counters[2] + counters[3]) * 100.0 << "%n"

"occ

1
1
static |line_counter |ine_count; /1 Counter of lines
static parencounter paren_count; /1 Counter of () levels
static brace_counter brace_count; /1 Counter of {} levels

static comment _counter comment _count; // Counter of comment info

Page 479

Example 26-7. stat/stat.cc (Continued)

/1 Alist of the statistics we are collecting
static stat stat _list[] = {

&l i ne_count,

&par en_count,

&brace_count,

&conment _count,

NULL
s
/***
* do file -- process a single file *
* *
* Paraneters *
* name -- the nanme of the file to process *

***/

static void do_file(const char *const nane)

{
input_file in_file(nane); /[l File to read
t oken token; /1 Token reader/ parser
TOKEN_TYPE cur _t oken; /1 Current token type
class stat **cur_stat; /] Pointer to stat for collection/witing

if (in_file.bad() {
cerr << "Error: Could not open file << name <<

for readi ng\n";

return,
}
while (1)
cur_token = token. next _token(in_file);
for (cur_stat = stat_list; *cur_stat != NULL; ++cur_stat)

(*cur _stat)->take_token(cur_token);
#i f def DEBUG
cout << " " << TOKEN_NAMES[cur _token] << '\n';
#endi f /* DEBUG */

swi tch (cur_token)
case TNEW.I NE:
for (cur_stat = stat_list; *cur_stat != NULL; ++cur_stat)
(*cur_stat)->line_start();
in file. flush_ line();
br eak;
case TECF:
for (cur_stat = stat _list; *cur_stat !
(*cur_stat)->eof ();
return,
defaul t:
/1 Do not hing
br eak;

NULL; ++cur_stat)

Page 480

Example 26—7. stat/stat cc (Continued)

mai n(int argc, char *argv[])

{
char *prog_name = argv[0]; // Nanme of the program
if (argc == 1)
cerr << "Usage is " << prog_nane << "[options] <file-list>\n";
exit (8);
}
for (/* argc set */; argc > 1; --argc)
do_file(argv[1]);
++ar gv;
}
return (0);
}

UNIX Makefilefor CC (Generic Unix)

Example 26-8 stat/makefile.unx

#

Makefile for many UNI X conpil ers using the
"standard" command nanme CC

#

cc=Ccc

CFLAGS=-¢g

OBJS= stat.o ch_type.o token.o

all: stat.out stat

stat.out: stat
stat ../calc3/cal c3.cc >stat. out

stat: $(OBIS)
$(CCO) $(CCFLAGS) -0 stat $(OBIS)

stat.o: stat.cc token.h
$(CC) $(CCFLAGS) -c stat.cc

ch_type.o: ch_type.cc ch_type.h
$(CC) $(CCFLAGS) -c ch_type.cc

t oken. o: token.cc token.h ch_type.h

$(CC) $(CCFLAGS) -c token.cc

cl ean:
rmstat stat.o ch_type.o token.o

Page 481
UNIX Makefile for g++
Example 26-9. stat/makefile.gnu

#

Makefile for the Free Software Foundation's g++ conpiler

#

CC=g++

CFLAGS=-g -wall

OBJS= stat.o ch_type.o token.o

all: stat.out stat

stat.out: stat
stat ../calc3/calc3.cc >stat. out

stat: $(0BJS)
$(CO $(CCFLAGS) -0 stat $(0OBIS)

stat.o: stat.cc token.h
$(CCO $(CCFLAGS) -c stat.cc

ch_type.o: ch_type.cc ch_type.h
$(CO $(CCFLAGS) -c ch_type.cc

t oken. o: token.cc token.h chtype.h

$(CC $(CCFLAGS) -c token.cc

cl ean:
rmstat stat.o ch_type.o token.o

Turbo C++ Makefile
Example 26-10. stat/makefile.tcc

#

Makefile for Borland' s Turbo-C++ conpiler
#

CC=tcc

#

Fl ags

-N -- Check for stack overfl ow
-v -- Enabl e debuggi ng

-w -- Turn on all warnings

-m -- Large nodel

#

CFLAGS=-N -v -w -m
OBJS= stat.obj ch_type.obj token. obj

all: stat.out stat.exe

stat.out: stat.exe

Example 26-10. stat/makefile.tcc (Continued)

stat ..\calc3\cal c3.cpp >stat.out

Page 482

stat.exe: $(0OBIS)
$(CC) $(CCFLAGS) -estat $(OBIS)

stat.obj: stat.cpp token.h
$(CC) $(CCFLAGS) -c stat.cpp

ch_type.obj: ch_type.cpp ch_type.h
$(CC) $(CCFLAGS) -c¢ ch_type.cpp

t oken. obj : token.cpp token.h ch_type.h
$(CC) $(CCFLAGS) -c token.cpp

cl ean:
erase stat.exe stat.obj ch_type.obj token. obj

Borland-C++ Makefile
Example 26-11 stat/makefile.bcc

#

Makefile for Borland' s Borl and-C++ conpil er
#

CC=bcc

#

Fl ags

-N -- Check for stack overfl ow
-v -- Enabl e debuggi ng

-w -- Turn on all warnings

-m -- Large nodel

#

CFLAGS=-N -v -w -mi
OBJS= stat.obj ch_type.obj token. obj

all: stat.out stat.exe

stat.out: stat.exe
stat ..\calc3\cal c3.cpp >stat. out

stat.exe: $(0BIS)
$(CO $(CCFLAGS) -estat $(0OBIS)

stat.obj: stat.cpp token.h
$(CO $(CCFLAGS) -c stat.cpp

ch_type.obj: ch_type.cpp ch_type.h
$(CO $(CCFLAGS) -c ch_type.cpp

t oken. obj: token.cpp token.h ch_type.h
$(CC $(CCFLAGS) -c token.cpp
Page 483

Example 26-11 stat/makefile.bcc (Continued)

cl ean:

erase stat.exe stat.obj ch_type.obj token. obj

Microsoft Visual C++ M akefile
Example 26-12 stat/makefile.msc

#

Makefile for Mcrosoft Visual C++
#

CC=cl

#

Fl ags

AL -- Conpile for |arge nodel
Zi -- Enabl e debuggi ng

WL -- Turn on warni ngs

#

CFLAGS=/ AL /Zi |W
OBJS= stat.obj ch_type.obj token. obj

all: stat.out stat.exe

stat.out: stat.exe
stat ..\calc3\cal c3.cpp >stat. out

stat.exe: $(OBIS)
$(CO $(CCFLAGS) $(0BIS)

stat.obj: stat.cpp token.h
$(CC) $(CCFLAGS) -c stat.cpp

ch_type.obj: ch_type.cpp ch_type.h
$(CC) $(CCFLAGS) -c¢ ch_type.cpp

t oken. obj : token.cpp token.h ch_type.h
$(CC) $(CCFLAGS) -c token.cpp

cl ean:
erase stat.exe stat.obj ch_type.obj token. obj

Programming Exer cises
Exercise 26-1: Write a program that checks atext file for doubled words.

Exercise 26-2: Write a program that removes four-letter words from afile and replaces them
with more acceptable equivalents.

Page 484

Exercise 26-3: Write amailing list program. This program will read, write, sort and print
mailing |abels.

Exer cise 26-4: Update the statistics program presented in this chapter to add a cross-reference
capability.

Exercise 26-5: Write a program that takes a text file and splits each long line into two smaller

lines. The split point should be at the end of a sentenceif possible, or at the end of aword if a
sentence istoo long.

Page 485

27
From C to C++

In This Chapter:

Overview

K & R-Functions
struct

malloc and free
Turning Structures
into Classes
setjmp and longmp
Summary
Programming
Exercise

No distinction so little excites envl asthat which is
derived from ancestors by a long descent.
—Francios De Salignac De LaMothe Fénclon

Overview

C++ was built on the older language C, and there'salot of C code still around. That's both a
blessing and a curse. It's a curse because it means you'll probably have to deal with alot of
ancient code. On the other hand, there will always be work for you. This chapter describes
some of the differences between C and C++ aswell as how to migrate from one to the other.

K& R-Style Functions

Classic C (also called K&R C after its authors, Brian Kernighan and Dennis Ritchie) uses a
function header that's different from the one used in C++. In C++ the parameter types and names
areincluded inside the () defining the function. In Classic C, only the names appear. Type
information comes later:

int do_it(char *name, int function) /] C++ function definition
/1 Body of the function

int do_it(nane, function) // dassic Cdefinition

char *narme;

int function;

/1 Body of the function

Page 486

When C++ came along, the ANSI C committee decided it would be agood ideaif C used the
new function definitions. However, because there was alot of code out there using the old
method, C++ accepts both types of functions. Classic C does not require prototypes. In many
cases, prototypes are missing from

C programs. A function that does not have a prototype has an implied prototype of:
int funct(...); /1 Default prototype for dassic C functions
Also, Classic C prototypes have no parameter lists. They merely consist of "() ," such as
int do_it(); // Cassic C function prototype

ThistellsCthat do_i t returnsani nt and takes any number of parameters. C does not
type-check parameters, so the following are legal callstodo_i t:
i
i
i

do it();
doit(1, 2, 3);
do_ it("Test", 'a');

C++ requires function prototypes, so you have to put them in. There are tools out there such as
the GNU prototize utility that help you by reading your code and generating function
prototypes. Otherwise, you will have to do it manually.

struct

In C++, when you declareast r uct , you can use the structure as a type name. For example:

struct sanple {
int i, j; /1 Data for the sanple

1
sanpl e sanple_var; // Last sanple seen
C ismore strict. Y ou must put the keyword st r uct before each variable declaration:

struct sanpl e sanple_var; /1 Legal in C
sanpl e sanpl e_var; /1 lllegal inC

malloc and free

In C++, you use the new operator to get memory from the heap and use del et e to return the
memory. C has no built-in memory-handling operations. Instead, it makes use of two library
routines: mal | oc andfr ee.

Thefunction mal | oc takes a single parameter—the number of bytes to allocate—and returns a
pointer tothem (asachar * orvoi d *). But how do we know

Page 487

how big a structure is? That'swherethe si zeof operator comesin. It returns the number of
bytes in the structure. So to allocate anew variable of typest ruct f oo we use the code:

foo_var = (struct foo *)mall oc(sizeof (struct foo));

Note that we must use a cast to turn the pointer returned by mal | oc into something useful. The
C++ syntax for the same operator is much cleaner:

foo var = new foo;

Suppose we want to alocate an array of three structures. Then we need to multiply our
alocation size by 3, resulting in:

foo_var = (struct foo *)mall oc(sizeof (struct foo) * 3);
The C++ equivalent is:
foo_var = new foo[3];

Thefunction cal | oc issimilar to mal | oc except that it takes two parameters: the number of
elementsin the array of objects and the size of a single element. Using our array of three foos
example, we get:

foo_var = (struct foo*)calloc(3, sizeof(foo0));

The other differenceisthat cal | oc initializes the structure to zero. Thus the C++ equivaent
is:

foo_var = new foo[3];
nmenset (foo_var, '\0', sizeof(foo) * 3);

Programs can freely mix C-styleal | ocs and C++ new calls. The C memory allocators are
messy, however, and should be converted to C++ whenever possible.

There are anumber of traps concerning C-style memory allocation. Suppose we take our
structure f 0o and turn it into a class. We can but shouldn't use the C memory routines to
allocate space for the class:

class foo {...};
foo var = (struct foo *)nalloc(sizeof (struct foo)); // Don't code |like
this

Because C++ treatsst r uct asaspecia formof cl ass most compilers won't complain
about this code. The problem isthat our mal | oc statement allocates space for f 0o and that's
all. No constructor is called, so it's quite possible that the class will not get set up correctly.

C usesthefunction f r ee to return memory to the heap. Thefunction f r ee takesasingle
character pointer as a parameter (thus making alot of casting necessary):

free((char *)foo_var);
foo_var = NULL;
Page 488
In C++ thiswould be:

del ete foovar;
foo_var = NULL;

for asimple variable and:

delete []foo_array;
foo_array = NULL;

whenf 0o_ar r ay pointsto an array. Again, you must be careful when turning f 0o into a
class. Thef r ee function just returns the memory to the heap. It does not call the destructor for
f 0o.

C-style memory dlocation is messy and risky. When converting to C++ you probably should
getridof al mal | oc, cal |l oc, andfr ee callswhenever possible.

WARNING

According to the ANSI C draft standard, memory allocated by

mal | oc must be deallocated by f r ee. Similarly, memory
allocated by new must be deallocated by del et e. However, most
of the compilers I've seen implement new asacall tomal | oc and
del et e asacall tof r ee. In other words, mixing new f r ee or
mal | oc/ f r ee callswill usually work. To avoid errors, you
should follow the rules and avoid mixing C and C++ operations.

Turning Structuresinto Classes

Frequently when examining C code you may find anumber of st r uct statements that look like
they should becl asses. Actually, astructureisredly just adata-only classwith al the
members public.

C programmers frequently take advantage of the fact that a structure only contains data. One
example of thisis reading and writing a structure to a binary file. For example:

a_struct struct _var; /1 A structure variable

/1 Performa rawread to read in the structure
read_size = read(fd, (char *)&struct_var, sizeof(struct_var));

/!l Performaraw wite to send the data to a file
wite size = wite(fd, (char *)&struct _var, sizeof(struct_var));

Turning this structure into a class can cause problems. C++ keeps extrainformation, such as
virtual function pointers, in aclass. When you write the class to disk using araw write, you are
outputting all that information. What's worse, when you read the class in you overwrite this
bookkeeping data.

Page 489
For example, suppose we have the class:

cl ass sanple {

publ i c:
const int sanple_size; /1 Nunber of sanples
int cur_sanple; /1 Current sanple nunber

sanpl e(void) : sanple_size(100) {} // Set up class

virtual void get_sanple(); // Routine to get a sanple
1

Internally, this class consists of three member variables: a constant, sanpl e_si ze (which
C++ won't dlow you to change); asimple variable, cur _sanpl e; and apointer to the real
function to be used when get _sanpl e iscalled. All three of these are written to disk by the
call:

sanpl e a_sanpl e;
/1
wite size = wite(fd, (char *)&a sanple, sizeof(a_sanple));

When this classisread, all three members are changed. That includes the constant (which we
aren't supposed to change) and the function pointer (which now probably points to something
strange).

C programmers also make use of the menset function to set al the members of a structure to
zero. For example:

struct a struct { ... }

a_struct struct_var;

...

nmenset (&struct_var, '\0', sizeof(struct_var));

Again, be careful when turning a structure into aclass. If we had used the classa_sanpl e
instead of the structurest r uct _var , wewould have zeroed the constant sanpl e_si ze as
well asthe virtual function pointer. The result would probably be a crash if we ever tried to
call get _sanpl e.

setjmp and longjmp

C hasits own way of handling exceptions through the use of set j np and| ongj np. The
set) np function marks aplacein aprogram. Thel ongj np function jumps to the place
marked by set j np.

Normally set j np returns azero. Thistells the program to execute normal code. When an
exception occurs, thel ongj np call returns to the location of the set j np function. The only
difference the program can see between areal set j np cal and afakeset j np call caused
by al ongj np isthat anormally set j np returnsazero. When set j np is"called" by

| ongj np, thereturn value is controlled by a parameter to | ongj np.

Page 490
The definition of theset j np function is:
#i ncl ude <setj np. h>
int setjnp(jnp_buf env);
where:

env
isthe place where set | np savesthe current environment for later use by | ongj np

Returns
0
Normal call

Nonzero
Non-zero return codes are the result of al ongj np call.

The definition of thel ongj np call is:
voi d | ongj np(j np_buf env, int return_code);

where:

env
isthe environment initialized by apreviousset j np call

return_code
isthe return code that will be returned by theset | np call

Figure 27-1 illustrates the control flow when using set j np and| ongj np

Thereis one problem here, however. Thel ongj np call returns control to the corresponding
set) np. It does not call the destructors of any classes that are "destroyed” in the process.

In Figure 27-1 we can seethat inthe subr out i ne we defineaclassnameda_I i st .
Normally we would call the destructor for a_| i st at theend of the functionor at ar et urn
statement. However, in this case we use | ongj np to exit the function. Sincel ongj np isaC
function it knows nothing about classes and destructors and does not call the destructor for

a_l i st.Sowe now have asituation where a variable has disappeared but the destructor has
not been called. The technical name for this situation is a"foul -up.”

When converting C to C++, change al set j np/ | ongj np combinations into exceptions.

Page 491

#include <serjmp.h>
tinclude <iostream.h»

Jjmp_buf lecation; {iPlace to store location data

woid subroutine (void)

[3] Excaption “thrown"

by wsing longimp. . class list a_liste
'n'ETEfCHfJ:ﬂ-'? skips o frhere we detect an exception
sefimp call, “ f/handle it by *longimg® cut of the routipe
™ longimp [env, 5] ;
[IThis code ls pever executed 0 Normal
//Destructor for a_list mever called _— sefimp cal
|I } (sefimp == 0).
maini] e

I. . . 4-"----.
1 (setijmplenv] == 0) |
7 pout <« "Normal execution®\n®;

T gubreutine|] °
) | else [Nonmal
© setimp returns 5 | wcout <c “Exception\n®; execution calls
[6] Exception handling. — :EW n “subrowting”.
[
Figure 27-1. setjmp/longjmp control flow
Summary

What you must do to get C to compile with a C++ compiler:
1. Change K& R-style function headers into standard C++ headers.
2. Add prototypes.
3. Changeset j np/ | ongj np calsinto cat ch/ t hr ow operations.

Following these three steps you have a C+Y%2 program. It works, but it'sreally a C program in
C++'sclothing. To convert it to areal C++ program you need to do the following:

4. Changemal | oc into new.
5.Changefreeintodel ete ordel ete [] cdls.
6. Tunprintf andscanf calsintocout andci n.

7.Whenturning st r uct declarationsinto cl ass variables, be careful of read, wite,
and menset functionsthat use the entire structure or class.

Programming Exercise

Exercise 27-1: Thereare alot of C programs out there. Turn oneinto C++.

Page 493

28

C++'sDustier Corners

In This Chapter:

do/while

gota

The ?: Construct
The Comma
Operator
Overloading the ()
Operator
Pointersto Members
Vampire Features
Answersto Chapter
Questions

There be of them that have | eft
a name behind them.
—FEcclesiasticus XL1V, 1

This chapter describes the few remaining features of C++ that are not described in any of the
previous chapters. It istitled C++'s Dustier Corners because these statements are hardly ever
used in real programming.

do/while

Thedo/ whi | e statement has the following syntax:
do {
st at enent ;

st at enent ;
} while (expression);

The program loops, tests the expression, and stopsiif the expression is fase (0).
NOTE
This construct always executes at |east once.

do/ whi | e isnot frequently used in C++ because most programmers prefer to use a
whi | e/ br eak combination.

goto

All the sample programs in this book were coded without using asingle got o. In actual
practice | find | use agot o statement about once every other year. For those rare times that a
got o isnecessary, its syntax is:

got o |label;

Page 494

where label is a statement label. Statement labels follow the same naming convention as
variable names. Labeling a statement is done as follows:

| abel : statenent;
For example:

for (x =0; x < XLIMT; ++x) {

for (y =0; vy <YLIMT, ++y) {

if (data[x][y] == 0)
goto found;

}
}
cout << "Not found\n";
exit(8);

f ound:
cout << Found at (" << x << ', <<y << ")\n";

Question 28-1: Why does Example 28-1 not print an error message when an incorrect
command is entered? Hint: Thereisareason | put thisin the got o section.

Example 28-1. def/def.cc

#i ncl ude <i ostream h>
#i ncl ude <stdlib. h>

mai n()

{
char [line[10];

while (1) {
cout << "Enter add(a), delete(d), quit(q): ";
cin.getline(line, sizeof(line));

switch (line[0]) {

case 'a':
cout << "Add\n";
br eak;

case 'd':
cout << "Delete\n";
br eak;

case 'q':
cout << "Quit\n";
exit(0);

defual t:
cout << FError: Bad command << line[0] << "\n';
br eak;

}

}

return (0);

Page 495

The ?: Construct

The ? and : operatorswork muchthesameasi f/t hen/ el se. Unlike
i f/then/ el se,the?: operators can be used inside of an expression. The general form of
?. s

(expression) ? exprl: expr2;

For example, the following assignsto anount _owed the value of the balance or zero,
depending on the amount of the balance:

amount _owed = (balance < 0) ? 0 : bal ance
The following macro returns the minimum of its two arguments:
#define mn(x, y) ((x) < (y) ? (x) : (y))
NOTE

It is better to definem n as an inline function instead of asa
parameterized macro. See Chapter 10, The C++ Preprocessor, for
details.

The Comma Operator

The comma operator (,) can be used to group statements. For example:

if (total < 0) {
cout << "You owe not hi ng\n";
total = 0;

}

can be written as;

if (total < 0)
cout << "You owe nothing\n", total = 0;

In most cases, { } should be used instead of a comma. About the only place the comma operator
isuseful isinaf or statement. Thefollowing f or loop increments two counters, t wo and
t hree,by2and 3:
for (two = 0, three = 0;
two < 10;

two += 2, three += 3)
cout << two << ' ' << three << '\n';

Overloading the () Operator

The"() " operator can be overloaded for a class to give the class a"default” function. For
example:

cl ass exanpl e {
publ i c:

Page 496

int operator () (int i) {

return (i * 2);
1
...
exanmpl e exanpl e_var;
j = exanpl e_var(3); /1 J is assigned the value 6 (3 * 2)
Overloading the () operator israrely done. Normal member functions can easily be used for
the same purpose but have the advantage of providing the user with a function name.

Pointersto Members

Theoperator : : * isused to point to amember of aclass. For example, in the following code
wedeclaredat a_pt r asa"pointer to an integer in sample”:
class sanple {
publi c:
int i; /1 A couple of nmenber variabl es
int j;
1
int sanple::* data ptr;

Now dat a_pt r can point to either thei or thej member of sanpl e. (After dl, they arethe
only integer membersof sanpl e.)

Let'sset dat a_pt r soit pointsto the member i :
data ptr = &sanple::i;

An ordinary pointer identifies asingle item. A member pointer identifies a member but does
not identify an individual variable. All we'vedoneisset dat a_pt r to amember of sanpl e.
dat a_pt r doesnot point to a particular integer.

Tousedat a_pt r you need to tell it which class you want:

sanple a_sanple; // A typical sanple
sanpl e b_sanpl e;

cout << a_sanple.*data_ptr << '\n';
cout << b_sanple.*data_ptr << '\ n'

Theline:
cout << a_sanple.*data_ptr << '\n';

tells C++ that we want to print an element of the variablea_sanpl e. The variable
dat a_pt r pointsto an integer member of sanpl e. (Themembersi and j areour only
two integer members.)

Page 497
There is a shorthand notation for use with class pointers as well:

sanpl e *sanple_ptr = &sanpl el ;

cout << sanple ptr->*data ptr << '\n';

The syntax for pointers to membersis alittle convoluted and not terribly useful. I've only seen
it used once by an extremely clever programmer. (The first maintenance programmer who got
the code immediately ripped it out anyway.)

Vampire Features

This section discusses features that have been defined in the draft C++ standard” but have not
yet been implemented in any of the currently available compilers.”” "Vampire features' are
those features of alanguage that have yet to see the light of day.

Because I've been unable to actually use these features, the information presented hereis a bit
sketchy.

bool
Boolean type that can be either true or false

const_cast
A new version of acast that makes the result constant

dynamic_cast
A new casting operator that makes use of runtime-type information to allow safe casting
between types

false
New constant for use with the bool type

mutable
Modifier that indicates that a member of a constant instance of a class can be changed

namespace
This keyword allows the programmer to better divide up the program into different name
spaces or sorts of modules

reinterpret_cast
A cast that helps the programmer safely cast from abase classto a derived class

* Working Paper for Draft Proposed International Standard for information Systems—Programming
Language C++ (20 September 1994), American Nationa Standards I nstitute.

** Turbo-C++, Borland C++ Version 4 5, SunPro CC Version 4.0, g++ Version 2.5.8

Page 498

static_cast
Another new casting operator

true
New constant for use with the bool type
typeid
Allows the programmer to get type information from inside the program at runtime

NOTE

Many header files define macros for "bool," "true," and "false.” This
does not present a problem with compilers that have not yet
implemented the bool type. However, as soon as the compiler
makers catch up with the standard, such macros will cause
problems.

Answersto Chapter Questions

Answer 28-1: The compiler didn't see our default line because we misspelled "default” as
"defualt.” Thiswas not flagged as an error because "defualt” isavalid got o label. That's why
when we compile the program we get the warning:

def.c(26): warning: defualt unused in function main

which means we defined alabel for agot o, but never used it.

Page 499

29
Programming Adages

In This Chapter:

General

Design
Declarations
switch Statement
Preprocessor

Style

Compiling

The Ten Command-
mentsfor C++
Programmers
Final Note
Answersto Chapter
Questions

Second thoughts are ever wiser
—Euripides

General

Comment, comment, comment. Put alot of comments in your program. They tell other
programmers what you did. They also tell you what you did.

Use the "KISS" principle (Keep It Simple, Stupid). Clear and simple is better than complex
and wonderful.

Avoid side effects. Use ++ and - - on lines by themselves.

Never put an assignment inside a conditional. Never put an assignment inside any other
Statement.

Know the difference between = and ==. Using = for == isavery common mistake and is
difficult to find.

Never do "nothing” silently.
/] Don't programlike this

for (index = 0; data[index] < key; ++index);
/1 Ddyou see the semcolon at the end of the last |ine?

Always put in acomment.

for (index = 0; data[index] < key; ++i ndex)
/* Do nothing */;

Practice coding. Practice is crucial for people involved in amost every other profession
that requires asignificant level of skill and creativity (e.g., artists, athletes). Help others
learn to program. It makes good practice for you to go over what you already know, or
think you know.

Page 500
Design

If you come to a choice between arelatively "quick hack” or a somewhat more involved
but more flexible solution, always go for the more flexible solution. Y ou're more likely to
reuseit or learn fromit. You're also more likely to be thankful later on when requirements
shift alittle and your code isready for it.

Never trust any user input to be what you expect. What would your program do at any given
point if a cat walked across the keyboard, several times?

Watch out for signed-unsigned conversions and over/underflow conditions.

Declarations
Put variable declarations one per line and comment them.

Make variable names long enough to be easily understood, but not so long that they are
difficult to typein. (Two or three wordsis usually enough.)

Never use default return declarations. If afunction returns an integer, declare it as type
int.

switch Statement

Always put adefault caseinasw t ch statement. Evenif it does nothing, put it in:
swi tch (expression)
defaul t:
/* Do nothing */;
br eak;

}

Every caseinaswi t ch should end withabreak or a/* fall through */
st at enment .

Pr eprocessor

Always put parentheses, () , around each constant expression defined by a pre-processor
#def i ne directive:

#define BOX SIZE (3 * 10) /* Size of the box in pixels */
Put () around each argument of a parameterized macro:

#define SQUARE(x) ((x) * (x))

Surround macros that contain compl ete statements with curly braces.

// A fatal error has occurred. Tell user and abort
#define DI E(nsg) {(void)printf(msg);exit(8);}
Page 501

When using the#i f def / #endi f construct for conditional compilation, put the
#def i ne and#undef statements near the top of the program and comment them.

Whenever possible, useconst instead of #def i ne.
The use of inline functionsis preferred over the use of parameterized macros.
Style

A single block of code enclosed in {} should not span more than a couple of pages. Split
up any bigger blocks into several smaller, smpler procedures.

When your code starts to run into the right margin, it's about time to split the procedure into
severa smaller, simpler procedures.

Always define a constructor, destructor, and copy constructor for aclass. If using the C++
defaults, "define" these routines with a comment such as:

cl ass exanpl e {
publi c:
/1 Exanple -- default constructor

Compiling

Always create a Makefile so others will know how to compile your program.

When compiling, turn on all the warning flags. Y ou never know what the compiler might
find.

The Ten Commandmentsfor C++ Programmers
By Phin Straite

1. Thou shalt not rely on the compiler default methods for construction, destruction, copy
construction, or assignment for any but the simplest of classes. Thou shalt forget these "big
four" methods for any nontrivia class.

2. Thou shalt declare and define thy destructor as virtual such that others may become helir to
the fruits of your labors.

3. Thou shalt not violate the "is-a" rule by abusing the inheritance mechanism for thine own
twisted perversions.

4. Thou shalt not rely on any implementati on-dependent behavior of a compiler, operating
system, or hardware environment, lest thy code be forever caged within that dungeon.

Page 502

5. Thou shalt not augment the interface of aclass at the lowest level without most prudent
deliberation. Such ill-begotten practices imprison thy clients unjustly into thy classes and
create unrest when code maintenance and extension are required.

6. Thou shalt restrict thy friendship to truly worthy contemporaries. Beware, for thou art
exposing thyself rudely as from a trenchcoat.

7. Thou shalt not abuse thy implementation data by making it public or static except in the
rarest of circumstances. Thy data are thine own; share it not with others.

8. Thou shalt not suffer dangling pointers or references to be harbored within thy objects.
These are nefarious and precarious agents of random and wanton destruction.

9. Thou shalt make use of available class libraries as conscientiously as possible. Code
reuse, not just thine own but that of thy clients aswell, isthe holy grail of OO.

10. Thou shalt forever forswear the use of thevilepr i nt f / scanf , rather favoring the
flowing st r eans. Cast off thy vile C cloak and partake of the wondrous fruit of
flexible and extensible I/O.

Final Note

Just when you think you've discovered al the things C++ can do to you—think again. There are
still more surprisesin store.

Question 29-1: Why does Example 29-1 think everything istwo? (Thisinspired the last
adage)

Example 29-1 not2/not2.cc

#i ncl ude <i ostream h>

mai n()

{
i nt nunber;
cout << "Enter a nunber: ";
cin >> nunber;
i f (nunber =! 2)
cout << "Nunber is not two\n";
el se
cout << "Nunber is two\n";
return (0);
}
Page 503
Answersto Chapter Questions
Answer 29-1: The statement (nunber =! 2)isnot arelational equation, but an assignment

statement. It is equivalent to:
nunmber = (!2);
(Because 2 isnonzero, ! 2 iszero.)

The programmer accidently reversed the not equals! = so it became =! . The statement should
read:

if (nunmber = 2)

Page 505
VI
Appendixes
Page 507
A
ASCII Table
Table A-1. ASCII Character Chart
‘ Dec. ‘ Oct. Hex. | Char. ‘ ‘ Dec. ‘ Oct. ‘ Hex. ‘ Char. ‘

’o ’ooo ‘oo ‘NUL ’ ‘23 ’027 ‘17 ’EI’B ’

1 001 01 SOH 24 030 18 CAN
2 002 02 STX 25 031 19 EM
3 003 03 ETX 26 032 1A SUB
4 004 04 EOT 27 033 B ESC
5 005 05 ENQ 28 034 C FS
6 006 06 ACK 29 035 1D GS
7 007 07 BEL 30 036 E RS
8 010 08 BS 31 037 1F us
9 011 09 HT 32 040 20 sP
10 012 OA NL 33 041 21
11 013 OB VT 34 042 22
12 014 0oC NP 35 043 23 #
13 015 oD CR 36 044 24 $
14 016 OE SO 37 045 25 %
15 017 OF S 38 046 26 &
16 020 10 DLE 39 047 27
17 021 11 DC1 40 050 28 (
18 022 12 DC2 41 051 29)
19 023 13 DC3 42 052 2A *
20 024 14 DC4 43 053 2B +
21 025 15 NAK 44 054 2C
22 026 16 SYN 45 055 2D -
Table A-1. ASCII Character Chart (Continued)

’ Dec. ‘ Oct. Hex. ‘ Char. Dec. ’ Oct. ‘ Hex. ’ Char.
46 056 2E 82 122 52 R
47 057 2F / 83 123 53 S

Page 508

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

060

061

062

063

064

065

066

067

070

071

072

073

074

075

076

077

100

101

102

103

104

105

106

107

110

111

112

113

114

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

124

125

126

127

130

131

132

133

134

135

136

137

140

141

142

143

144

145

146

147

150

151

152

153

154

155

156

157

160

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

77 115 4D M 113 161 71 q
78 116 4E N 114 162 72 r
79 117 4F O 115 163 73 S
80 120 50 P 116 164 74 t
81 121 51 Q 117 165 75 u

Page 509
Table A-1. ASCII Character Chart (Continued)
Dec. Oct. Hex. Char.
118 166 76 v
119 167 7 W
120 170 78 X
121 171 79 y
122 172 7A z
123 173 7B {
124 174 7C |
125 175 7D }
126 176 7E ~
127 177 7F DEL
Page 511
B
Ranges

Tables B-1 and B-2 list the ranges of various variable types.

Table B-1. 32-bit UNIX Machine

Name ’ Bits ’ Low Value ’ High Value ‘ Accuracy

int ’32 ’-2,147,483,648 ’2,147,483,647 ‘

short int 16 -32,768 32,767

long int 32 -2,147,483,648 2,147,483,647

unsigned int 32 0 4,294,967,295

unsigned short int 16 0 65,535

unsigned long int 32 0 4,294,967,295

char 8 System Dependent

unsigned char 8 0 255

float 32 -3.4E+38 3.4E+38 6 digits
double 64 -1.7E+308 1.7E+308 15 digits
long double 64 -1.7E+308 1.7E+308 15 digits
Table B-2 Turbo-C++, Borland C++, and Most Other 16-bit Systems

Name Bits Low Value High Value Accuracy
int 16 -32,768 32,767

short int 16 -32,768 32,767

long int 32 -2,147,483,648 2,147,483,647

unsigned int 16 0 65,535

Page 512

Table B-2. Turbo-C++, Borland C++, and Most Other 16-bit Systems (Continued)

Name Bits Low Value High Value Accuracy
unsigned short int 16 0 65,535

unsigned long int 32 0 4,294,967,295

char 8 -128 127

unsigned char 8 0 255

float 32 -3.4E+38 3.4E+38 6 digits
double 64 -1.7E+308 1.7E+308 15 digits
long double 80 -3.4E+4932 3.4E+4932 17 digits

C

Operator Precedence Rules

Practical Subset of the Operator Precedence Rules

Table C-1. Practical Operator Precedence Rules

Precedence Operator
1 * (multiply) / %
2 + -

Put parentheses around everything el se.

Standard Rules

Table C-2. Sandard C++ Precedence Rules

Precedence Operators
1 0 (] ->
Sk >k *
2 ! ~ ++ - (type)
- (unary) * (de-reference)
& (address of) sizeof
3 * (multiply) / %
4 + -
5 << >>
6 < <= > >=
7 == 1=
8 & (bitwise AND)

Table C-2. Standard C++ Precedence Rules (Continued)

Page 513

Page 514

Precedence Operators

9 A
10 |
11 &&
12 I
13 ?

14 = += = etc.

15

Page 515

D
Computing sine Using a Power Series

This program is designed to compute the sine function using a power series. A very limited
floating-point format is used to demonstrate some of the problems that can occur when using
floating point.

The program computes each term in the power series and displays the result. It continues
computing terms until the last term is so small that it doesn't contribute to the final result. For
comparison purposes, the result of the library function si n is displayed aswell asthe
computed sine.

The program isinvoked by:
si ne value

where value is an angle in radians. For example, to compute sin(0) we use the command:

% sine O
X**| O. OOCE+00
1! 1. OOCE+00

x**1/1! QO OOCE+00
1 term conput ed
si n(O OOCE+00) =
0. OOCE+00
Actual sin(0)=0

And to compute Sin(p) we use the command:

% si ne 3.141

X**1 3. 141E+00
1! 1. OOCE+00
x**1/1! 3.141E+00

t ot al

X**3
3!

3. 141E+00

3. 099E+01
6. 000E+00

x**3/3! 5. 165E+00

t ot al

xX**5

5!

X**5/ 5l
t ot al

X**7

7!

X**7/ 7!
t ot al

X**9

9l

X**9/ 9l
t ot al

X**11

11!

x**11/ 1!
t ot al

X**13

13!

x**13/ 13!
t ot al

X**15

15!

x**15/ 15!
t ot al

X**17

17!

X**17/ 17!
t ot al

X**19

19!

Xx**19/ 19!
t ot al

X**21
21!
x**21/ 21!

- 2. 024E+00

3. 057E+02
1. 200E+02

2. 548E+00
5. 239E-01

. 016E+03
. 040E+03
. 985E-01

g1 o1 w

-7.457E-02

2. 976E+04
3. 629E+05
8. 201E-02

7. 438E-03

. 936E+05
. 992E+07
. 355E-03
. 300E- 05

. 897E+06
. 227E+09
. 652E-04
. 482E- 04

aronN

. 858E+07
. 308E+12
. 185E- 05
. 263E-04

G NNEFEDN

. 819E+08
. 557E+14
. 927E-07
.271E-04

Ga~NwWwnN

. 782E+09
L 217E+17
. 287E-08
.271E-04

G NNEFEDN

2. 744E+10
5. 109E+19
5. 371E- 10

11 term conput ed
si n(3. 141E+00) =
5.271E-04

Actual sin(3.141)=0.000592654

Page 516

Page 517

Makefile
Makefilefor UNIX
Example D-1. sin/Makefile

sine: sine.cc
g++ -g -Wall -0 sine sine.cc -Im

cl ean:
rmsine
Makefile for Turbo-C++
[File: sin/Mkefile.dos]
#
Makefile for Borland' s Turbo-C++ conpil er

#

CC = tcc

#

Fl ags

-N -- Check for stack overflow
-v -- Enabl e debuggi ng

-w -- Turn on all warnings
-m -- Large node

-A -- Force ANSI conpliance
#

CFLAGS = -N -v -w-m -A

#

si ne. exe: sine.c
$(CC) $(CFLAGS) -esine sine.c

Program: sine. cc

Example D-2. sine/sine cc

/**

* sine -- conpute sine using very sinple floating *
* arithnetic *
* *
* Usage: *
* si ne <val ue> *
* *
* <value> is an angle in radi ans *
* *
* Format used in f.fffe+X *
* *
* f.fff is a 4-digit fraction *
* +is asign (+ or -) *
* Xis a single-digit exponent *
* *
* sin(x) = x - X*¥*3 + x**5 - x**7 *
x oo e - - e - - *
* 3! 5! 7! *
* *

Example D-2 sine/sine.cc (Continued)

*
*
*
*
*
*
*
*
*
*

#in
#in
#in
#in

nmai

{

Warning: This programis intended to show sone of

problems with floating point. It is not
intended to be used to produce exact val ues for
the sine function.

Not e: Even though we specify only one digit for the
exponent, two are used for sone cal cul ati ons.
This is due to the fact that printf has no
format for a single-digit exponent.

EE R I I R R I R I S I S S I R S R R I I S I S I R

cl ude <i ostream h>
clude <stdlib. h>
cl ude <mat h. h>

cl ude <stdio. h>

n(int argc, char *argv[])
fl oat total; [// Total of series so far

fl oat new total;// Newer version of tota
fl oat termtop;// Top part of term

*
*
*
*
*
*
*
*
*
*

fl oat termbottom// Bottomof current term

f1 oat term /] Current term
fl oat exp; /1 Exponent of current term

/

Page 518

fl oat
fl oat
i nt

char

ASCI |

\n

fl oat
fl oat

si gn; /1l +1 or -1 (changes on each term
value; [/ Value of the argunent to sin
index; [// Index for counting termns

*float _2 ascii(float nunber); // Turn floating point to

fix _float(float nunber);
factorial (fl oat nunber); /1 Conpute n

/1 Round to correct digits

if (argc '=2) {
cerr << "Usage is:\n";

cerr << " sine <val ue>\n";
exit (8);
}
value = fix_float(atof (&rgv[1][0]));
total = 0.0;
exp = 1.0;
sign = 1.0;

for (index = 0; /* Take care of below */ ; ++index)
termtop = fix_float(pow val ue, exp));
termbottom= fix_float(factorial (exp));
term=fix float(termtop / termbottom
cout << x**" << jnt(exp) << " "<
float_2 ascii(termtop) << '\n';
cout << exp << "I

" << float_2 ascii(termbottonm <<

cout << "x**" << int(exp) << "/" << int(exp) << "l " <<
float _2 ascii(term << "\n";

Page 519

Example D-2 sine/sine cc (Continued)

new total = fix_float(total + sign * tern);
if (newtotal == total)
br eak;
total = new total;
sign = -sign;
exp = exp + 2.0;
cout <<" total "<< float_2 ascii(total) << '\n';

cout <<'\n';
}
cout << index +1 << " term conputed\n”;
cout << "sin(" << float_2 ascii(value) << ")=\n";
cout << " " << float_2 ascii(total) << '\n';
cout << "Actual sin(" << atof(&rgv[1][0]) << ")=" <<
sin(atof (&rgv[1][0])) << "\n';
return (0);

}

/**

* float_2 ascii -- turn a floating point string
* into ASCI

Par anmet ers
nunber -- nunber to turn into ASCl

Ret ur ns
pointer to the string containing the nunber

L I R

Warning: Uses static storage, so later calls
* overwite earlier entries
R S I I S S b b S I I I I S b S I I I b b b S I I O S S O S b b S

char float_2 ascii(float nunber)

{

*
*
*
*
*
*
*
*
*
*
*
*

/

static char result[10]; /1 Place to put the nunber

sprintf(result, "98.3E', nunber);
return (result);

}

/**
* fix_float -- turn high-precision nunbers into

* | ow precision nunbers to sinulate a
very dunb floating-point structure

Par anmet ers
nunber -- nunber to take care of

Ret ur ns
nunber accurate to 5 places only

L T R

L I TR

Not e: This works by changing a nunber into ASCII and
back. Very slow, but it works.

hkhkhkkhkhkhkhkhhhkhhhkhhhkhhhkhhhkhhhkhhhhhhhhdhhhdhhhkhdhkrdhkrdk r*k **x%

Example D-2. sine/sine.cc (Continued)

float fix_float(float nunber)

{
f1 oat result; /1 Result of the conversion
char ascii[10]; /1 ASCI| version of nunber
(void)sprintf(ascii, "9.4e", nunber);
(voi d)sscanf (ascii, "% ", &esult);
return (result);
}
/**
* factorial -- conpute the factorial of a nunber *
* *
* Paraneters *
* nunmber -- nunber to use for factorial *
* *
* Returns *
* factorial (nunmber) or nunber! *
* *
* Note: Even though this is a floating-point routine, *
* usi ng nunbers that are not whol e nunbers *
* does not make sense *
R S S I S S b b I O S b b S I R R S b b I I O S S I I O S b b b O
float factorial (float nunber)
{
if (nunmber <= 1.0)
return (nunber);
el se
return (nunber *factorial (nunber - 1.0));
}

Glossary
A Symbol for the bitwise exclusive OR operator.
~ Symbol for the bitwise complement operator. Inverts all bits.
I Symbol for the logical NOT operator.
I = Not-equal relational operator.
{} Seecurly braces.
| Symbol for the bitwise OR operator.
| | Symbol for the logical OR operator.

/

/

Page 520

Page 521

% Symbol for the modulus operator.
& 1. Symbol for the bitwise AND operator.

2. A symbol used to precede a variable name (asin &x). Means the address of the named
variable (address of x). Used to assign a value to a pointer variable.

Used to declare areference variable.
&& Symbol for the logical AND operator (used in comparison operations).
* 1. Symbol for the multiply operator.

2. Symbol used to precede a pointer variable name that means get the value stored at the
address pointed to by the pointer variable. (* x means get the value stored at x.) Sometimes
known as the de-referencing operator or indirect operator.

+ Symbol for the add operator.
++ Symbol for the incrementation operator.

- Symbol for the subtract operator.

Page 522

- - Symbol for the decrementation operator.
- > Used to obtain amember from a class or structure pointer.
- >* Indicates the item pointed to by a"pointer to member."
/ Symbol for the divide operator.
< Less-than relational operator.
<< 1.Symbol for the left shift operator.

2.Used by thei ost r ean package for outpui.
. Scope operator. Used to indicate which class a particular identifier belongs to.
. . * Used to declare a pointer to a class member.
<= Less-than-or-equal-to relational operator.
== Equal relational operator.
> Greater-than relational operator.
>= Greater-than-or-equal-to relational operator.
>> 1.Symbol for the right shift operator.
2.Used by thei ost r ean package for input.
"\ 0"

End-of-string character (the NULL character).

#defi ne
A C++ preprocessor directive that defines a substitute text for a name.

#endi f
The closing bracket to a preprocessor macro section that began with an #i f def
directive.

#i f def

Preprocessor directive that checks to see whether a macro name is defined. If defined, the
code following it isincluded in the source.

#i f ndef
Preprocessor directive that checks to see whether a macro name is undefined. If itis
currently undefined, the code following isincluded in the macro expansion.

#i ncl ude
A preprocessor directive that causes the named file to be inserted in place of the
#i ncl ude.

#undef
A preprocessor directive that cancelsa#def i ne.

Page 523

_ptr
A convention used in this book. All pointer variables end with the extension _ptr.

A

abstract class
A class containing one or more pure virtual functions.

accuracy
A quantitative measurement of the error inherent in the representation of areal number.

address
A value that identifies a storage location in memory.

AND
A Boolean operation that yields O if either operand is0 and 1 if both operands are 1.

ANSI C
Any version of C that conforms to the specifications of the American National Standards
Institute Committee X3J.

ANSI C++
Any version of C++ that conforms to the specifications of the American National
Standards Ingtitute. At the time of this writing, the standards exist only in draft form and
there are still alot of detailsto be worked out.

array

A collection of data e ements arranged to be indexed in one or more dimensions. In C++,
arrays are stored in contiguous memory.

ASCII
American Standard Code for Information Interchange. A code to represent characters.

assignment statement
An operation that storesavalue in avariable.

auto
A C++ keyword used to create temporary variables.

automatic variable
See temporary variable.

B

base class

A classthat is used as the base for aderived class.
bit

Binary digit; either of the digits O or 1.

Page 524

bit field
A group of contiguous bits taken together as a unit. This C++ language feature allows the
access of individual bits.

bit flip
Theinversion of al bitsin an operand. See also complement.

bit operator
See bitwise operator.

bitmapped graphics
Computer graphics where each pixel in the graphic output deviceis controlled by asingle
bit or agroup of bits.

bitwise operator
An operator that performs Boolean operations on two operands, treating each bit in an
operand as individual bits and performing the operation bit by bit on corresponding bits.

block
A section of code enclosed in curly braces.

Borland C++
A version of the C++ language for personal computers developed by Borland. Thisisthe
high-end version of Borland's Turbo-C++ product.

boxing (a comment)
The technique of using a combination of asterisks, vertical and horizontal rules, and other
typographic characters to draw a box around a comment in order to set it off from the code.

break
A statement that terminates the innermost execution of f or , whi | e, swi t ch, and
do/ whi | e statements.

breakpoint
A location in a program where normal execution is suspended and control is turned over to
the debugger.

buffered 1/0
Input/output where intermediate storage (a buffer) is used between the source and
destination of an 1/0O stream.

byte
A group of eight bits.

C
A genera-purpose computer programming language developed in 1974 at Bell
Laboratories by Dennis Ritchie. C is considered to be a medium- to high-level language.

Page 525

C++
A language based on C invented in 1980 by Bjarne Stroustrup. First called "C with
classes," it has evolved into its own language.

C++code
Computer instructions written in the C++ language.

C++ compiler
Software that trand ates C++ source code into machine code.

C++ syntax
See gyntax.

call by reference
A parameter-passing mechanism where the actual parameter is not passed to afunction,
but instead a pointer is used to point to it. (See also call by value.)

call by value
A procedure call where the parameters are passed by passing the values of the
parameters. (See also call by reference.)

case
Acts as alabel for one of the dlternativesin aswi t ch statement.

cast
To convert avariable from one type to another type by explicitly indicating the type
conversion.

cerr

Standard error stream for C++. (Correspondsto C'sst derr .)

CFront
A program to trandlate C++ code into C code. This program was the basis for the first
C++ compilers. Currently not used for most compilers, as many native C++ compilers
now exist.

CGA
Color graphics adapter. A common color graphics card for the IBM PC.

char

A C++ keyword used to declare variables that represent characters or small integers.
cin

Character in. Standard input stream for C++. (Correspondsto C'sst di n.)
cl ass

A data structure consisting of different data types, protections for the members, and
functions to manipulate them.

Page 526

class (of avariable)
See storage class.

clear abit
The operation of setting an individual bit to zero. Thisis not a defined operation in C++.

cl og
Standard log file for C++.

code design
A document that describesin genera terms how the program is to perform its function.

coding
The act of writing a program in a computer language.

command-line options
Options to direct the course of a program, such as a compiler, that are entered from the
computer console.

comment
Text included in a computer program for the sole purpose of providing information about
the program. Comments are a programmer's notes to himself and future programmers. The
text isignored by the compiler.

comment block
A group of related comments that convey general information about a program or a section
of program.

compilation
The trandation of source code into machine code.

compiler
A system program that does compilation.

compiling
See compilation.

complement
An arithmetic or logical operation. A logical complement is the same as an invert or NOT
operation.

computer language
See programming language.

conditional compilation
The ahility to selectively compile parts of a program based on the truth of conditions tested
in conditional directives that surround the code.

Page 527

conti nue
A flow control statement that causes the next execution of aloop to begin.

control statement
A statement that determines which statement is to be executed next based on a conditional
test.

control variable
A variablethat is systematically changed during the execution of the loop. When the
variable reaches a predetermined value, the loop is terminated.

conversion specification
A Cdtring used by the pr i nt f family of functions that specifies how avariableisto be
printed.

cout
Standard output for C++ programs. (Correspondsto C'sst dout .)

curly braces
One of the characters{ or } . They are used in C++ to delimit groups of elementsto treat
them as a unit.

D

debugging
The process of finding and removing errors from a program.

decision statement
A statement that tests a condition created by a program and changes the flow of the program
based on that decision.

declaration
A specification of the type and name of avariable to be used in a program.

def aul t
Serves as a case label if no case value match is found within the scope of aswi t ch.

define statement
See#def i ne.

del ete
A directive that returns aclass or variable created by new to the heap.

de-referencing operator
The operator that indicates access to thc value pointed to by a pointer variable or an
addressing expression. See also *

derived class
A class built on top of another, baseass.

Page 528

directive
A command to the preprocessor (as opposed to a statement to produce machine code).

doubl e
A C++ language keyword to declare a variable that contains areal number. The number
usually requires twice as much storage astypef | oat .

double linked list
A linked list with both forward and backward pointers. See also linked list.

double quotation mark
ASCII character 34. Used in C++ to delimit character strings.

E
EGA
Enhanced graphics adapter. A common graphics card for the IBM PC.
el se
A claussinani f statement specifying the action to take in the event that the statement
followingthei f conditional isfalse.
enum
A C++ keyword that defines an enumerated data type.
enumerated data type

A datatype consisting of a named set of values. The C++ compiler assigns an integer to
each member of the st.

EOF
End-of-file character defined in stdio.h.

escape character
A specia character used to change the meaning of the character(s) that follow. Thisis
represented in C++ by the backslash character, \.

exclusive OR
A Boolean operation that yields O if both operands are the same and 1 if they are different.

executable file
A file containing machine code that has been linked and is ready to be run on a computer.

exponent
The component of a floating-point number that represents the integer power to which the
number base israised in order to determine the represented number.

exponent overflow
A condition resulting from afloating-point operation where the result is an exponent too
large to fit within the bit field allotted to the exponent.

Page 529

exponent underflow
A condition resulting from afloating-point operation where the result is an exponent too
large in negative value to fit within the bit field allotted to the exponent.

extern
C++ keyword used to indicate that a variable or function is defined outside the current file.

F
fast prototyping
A top-down programming technique that consists of writing the smallest portion of a
specification that can be implemented that will still do something.
fcl ose
A function that closes afile. From the old C-style I/O package stdio.
fflush
A routine to force the flushing of a buffer. From the old C-style I/O package stdio.
fgetc
A function that reads a single character. From the old C-style 1/0O package stdio.
fgets

A stream input library function that reads a single line. From the old C-style I/O package
stdio.

FI LE
A macro definition in stdio that declares afile variable. From the old C-style 1/0 package
stdio.

file
A group of related records treated as a unit.

f | oat
A C++ keyword to declare avariable that can hold areal number.

floating point

A numbering system represented by a fraction and an exponent. The system handles very
large and very small numbers.

floating-point exception (core dumped)
An error caused by a divide-by-0 or other illegal arithmetic operation. It is a somewhat
misleading error because it is caused by integer aswell as floating-point errors.

floating-point hardware
Circuitry that can perform floating-point operations directly without resorting

Page 530

to software. In personal computers, it isfound in the math coprocessor. More advanced
processors such as the 80486 have floating-point units built in.

f open
A function that opens afile for stream 1/0O. From the old C-style I/O package stdio.

fprintf
A function to convert binary data to character data and writeit to afile. From the old
C-style I/O package stdio.

fputc
A function that writes asingle character. From the old C-style I/O package stdio.

fputs
A function that writesasingle line. From the old C-style I/O package stdio.

fread
A binary I/O input function. From the old C-style I/O package stdio.

free
A C function that returns data to the memory pool. Obsolete in C++. This has been replaced
by the C++ del et e operator Seealsomal | oc.

Free Software Foundation
A group of programmers who create and distribute high-quality software for free. Among
their products are the editor emacs and the C++ compiler g++. Their addressis. Free
Software Foundation, Inc., 675 Massachusetts Ave., Cambridge, MA 02139, (617)
876-3296.

friend
A function that although not a member of aclassis able to access the private members of
that class.

f scanf
Aninput routine similar to scanf . From the old C-style I/0O package stdio.

fstream.h
The C++ package for file I/O.

function
A procedure that returns avalue.

fwite
A binary 1/O output function. From the old C-style I/O package stdio.

G

generic pointer
A pointer that can point to any variable without restriction as to type of variable. A pointer
to storage without regard to content.

Page 531

Ghostscript
A PostscriptO -like interpreter that is freely available from the Free Software Foundation.

global variables
Variables that are known throughout an entire program.

guard digit
An extradigit of precision used in floating-point calculations to ensure against oss of
accuracy.

H

header file
Seeincludefile.

heap
A portion of memory used by new to get space for the structures and classes returned by
new. Spaceis returned to this pool by using the del et e operator.

hexadecima number
A base-16 number.

high-level language
A leved of computer language that is between machine language and natura (human)
language.

I/O manipulators
Functions that when "output” or "input” cause no I/O, but set various conversion flags or
parameters.

| EEE floating-point standard
| EEE standard 754, which standardizes floating-point format, precision, and certain
non-numerical values.

i f
A statement that allows selective execution of parts of a program based on the truth of a
condition.

implementation dependence
The situation where the result obtained from the operation of computer or software is not
standardized because of variability among computer systems. A particular operation may
yield different results when run on another system.

includefile
A filethat is merged with source code by invocation of the preprocessor directive
#i ncl ude. Also caled aheader file.

Inclusive OR
See OR.

Page 532

index
A value, variable, or expression that selects a particular element of an array.

indirect operator
See de-referencing operator.

information hiding
A code design system that tries to minimize the amount of information passed between
modules. Theideaisto keep as much information as possible hidden inside the modules
and make information public only if absolutely necessary.

instruction
A group of bits or characters that defines an operation to be performed by the computer.

i nt
C++ keyword for declaring an integer.

integer
A whole number.

interactive debugger
A program that aidsin the debugging of programs.

invert operator
A logical operator that performs anNoOT.

iostreamr.h
Standard C++ 1/O package.

L

left shift
The operation of moving the bitsin abit field left by a specified amount and filling the
vacated positions with zeros.

library
A collection of files.

linked list
A collection of data nodes. Each node consists of avalue and a pointer to the next itemin
thelist.

local include files
Filesfrom a private library that can be inserted by the preprocessor at the directive
#i ncl ude "fil enanme".

local variable
A variable whose scope is limited to the block in which it is declared.

Page 533

logical AND
A Boolean operation that returns true if its two arguments are both true. When used on
integers, each bit is operated on separately.

logical operator
A C++ operator that performs alogical operation on its two operands and returns a true or
afalsevalue.

logical OR
A Boolean operation that returns true if any one of its two argumentsiis true. When used on
integers, each bit is operated on separately.

| ong
A qualifier to specify a data type with longer than normal accuracy.

M

machine code
Machine instructions in a binary format that can be recognized directly by the machine
without further trandation.

machine language
See machine code.

macro
A short piece of text, or text template, that can be expanded into alonger text.

Macro Processor
A program that generates code by replacing values into positions in a defined template.

magnitude (of a number)
The vaue of a number without regard to sign.

maintenance (of a program)
Modification of aprogram because of changing conditions externa to the computer system.

make
A utility of both UNIX and MS-DOS/Windows that manages the compilation of programs.

Makefile
The file that contains the commands for the utility make.

mal | oc
A C procedure that manages a memory heap. This function is now obsolete. The C++
operator new supersedes this function.

mask
A pattern of bitsfor controlling the retention or elimination of another group of bits.

Page 534

member
An dement of aclass or structure.

module
Onelogica part of aprogram.

MS-DOS
An operating system for IBM personal computers developed by Microsoft.

N

new
C++ operator to get a new variable from the heap.

new-line character
A character that causes an output device to go to the beginning of anew line.

nonsignificant digits
Leading digits that do not affect the value of a number (Os for a positive number, Isfor a
negative number in complement form).

normalization
The shifting of afloating-point fraction (and adjustment of the exponent) so there are no
leading nonsignificant digitsin the fraction.

NOT
A Boolean operation that yields the logical inverse of the operand. NOT 1 yieldsa 0 and
NOT Ovyieldsa 1.

not a number
A specia value defined in IEEE 754 to signal an invalid result from a floating-point
operation

NULL
A constant of value O that points to nothing.

null pointer
A pointer whose bit pattern is all zeros. Thisindicates that the pointer does not point to
valid data.

O

object-oriented design
A design methodology where the programmer bases his or her design on data objects
(classes) and the connections between them.

octal number
A base-eight number.

ones complement
An operation that flips all the bitsin ainteger. Ones become zeros and zeros become ones.

operator
A symbol that represents an action to be performed.

Page 535

OR
A Boolean operation that yieldsa 1 if either of the operandsisal or yieldsa zero if both
of the operands are 0.

overflow error
An arithmetic error caused by the result of an arithmetic operation being greater than the
space the computer providesto store the resullt.

P

packed structure
A data-structure technique whereby bit fields are only as large as needed, regardless of
word boundaries.

pad byte
A byte added to a structure whose sole purpose is to ensure memory alignment.

parameter
A dataitem to which a vaue may be assigned. Often means the arguments that are passed
between a caller and a called procedure.

parameterized macro
A macro consisting of atemplate with insertion points for the introduction of parameters.

parameters of amacro
The values to be inserted into the parameter positions in the definition of amacro. The
insertion occurs during the expansion of the macro.

permanent variable
A variable that is created before the program starts, isinitialized before the program starts,
and retainsits memory during the entire execution of the program.

pixel
The smallest element of a display that can be individually assigned intensity and color.

From Picture Element.

pointer
A datatype that holds the address of alocation in memory.

pointer arithmetic
C++ allows three arithmetic operations on pointers:

1. A numeric value can be added to a pointer.
2. A numeric value can be subtracted from a pointer.
3. One pointer can be subtracted from another pointer.

pointer variable
See pointer.

Page 536

Portable C compiler
A C compiler written by Stephen Johnson making it relatively easy to adapt the compiler to
different computer architectures.

precision
A measure of the ability to distinguish between nearly equal values.

preprocessor
A program that performs preliminary processing with the purpose of expanding macro
code templates to produce C++ code.

preprocessor directive
A command to the preprocessor.

printf
A C library routine that produces formatted output. From the old C-style I/O package stdio.

private
A C++ keyword indicating that the members that follow are to be accessible only from
inside the class or by friends of the class.

procedure
A program segment that can be invoked from different parts of a program or programs. It
does not return avaue (function of typevoi d).

program
A group of instructions that cause a computer to perform a sequence of operations.

program header
The comment block at the beginning of a program.

program specification
A written document that states what a program isto do.

programmer

Anindividua who writes programs for a computer.

programming (a computer)
The process of expressing the solution to a problem in alanguage that represents
instructions for a computer.

programming language
A scheme of formal notation used to prepare computer programs.

prot ect ed
A C++ keyword indicating that the members that follow are accessible inside the class,
inside the class's friends, or inside any derived classes, but are not accessible to the
outside world.

Page 537

pseudocode
A coding technique where precise descriptions of procedures are written in easy-to-read
language constructs without the bother of precise attention to the syntax rules of a computer
language.

public
A C++ keyword indicating that the membersto follow are accessible outside the class.

pure virtual function
A virtua function that does not have a default body. The class containing a pure virtua
function cannot be used directly but must be the base for another class. (See also derived
classes and abstract classes.)

Q

qualifier
A word used to modify the meaning of a data declaration.

R

radix
The positive integer by which the weight of the digit place is multiplied to obtain the
weight of the next higher digit in the base of the numbering system.

real number
A number that may be represented by afinite or infinite numeral in afixedradix numbering
system.

recursion
Recursion occurs when afunction callsitself directly or indirectly. (For arecursive
definition, see recursion.)

redirect
The command-line option >f i | e allowsthe user to direct the output of a program into a
file instead of to the screen. A similar option, <f i | e, existsfor taking input from afile
instead of the keyboard.

reduction in strength
The process of substituting cheap operations for expensive ones.

relational operator
An operator that compares two operands and reports either true or false based on whether
the relationship istrue or false.

release
The completion of a programming project to the point where it is ready for general use.

replay file
A filethat is used instead of the standard input for keyboard data.

Page 538

r et ur n statement
A statement that signals the completion of a function and causes control to return to the
caller.

revision
The addition of significant changes to the program.

right shift
The operation of moving the bitsin abit field right by a specified amount.

round
To delete or omit one or more of the least significant digitsin a positional representation
and adjust the part retained in accordance with some specific rule, e.g., minimize the error.

rounding error
An error due to truncation in rounding.

S

savefile
A debugging tool where all the keystrokes typed by the user are saved in afile for future
use. See also replay file.

scanf
A library input function that reads numbers directly from the keyboard. Hard to use. In most
casesan f get s/ sscanf combination is used. From the old C-style I1/O package stdio.

scope
The scope of avariableisthe portion of a program where the name of the variableis
known.

segmentation violation
An error caused by a program trying to access memory outside its address space. Caused
by de-referencing a bad pointer.

set abit
The operation of setting a specified bit to 1. Thisis not a defined operation in C++.

setw
An 1/0O manipulator to set the width of the next output.
shift
The operation of moving the bitsin abit field either left or right.

short
An arithmetic data type that is the same size as, or smaller than, an integer.

side effect
An operation performed in addition to the main operation of a statement such

Page 539
asincrementing avariable in an assgnment statement: r esul t = begi n++ - end; .
significand
The most significant digit of a floating-point number without regard to placement of the
radix point.
significant digit
A digit that must be kept to preserve a given accuracy.

single quotation mark
ASCII character 39. Used in C++ to delimit asingle character.

si zeof
Operator that returnsthe size, in bytes, of a datatype of variable.

source code
Symbolic coding in its original form beforeit is trandated by a computer.

sourcefile
A file containing source code.
specification
A document that describes what a program does.

sprintf
Similartof pri nt f except it uses a string output. From the old C-style |/O package stdio.

sscanf
A library input routine. From the old C-style I/O package stdio.

stack
An area of memory used to hold alist of data and instructions on atemporary basis.

stack overflow
An error caused by a program using too much temporary space (stack space) for its
variables. Caused by a big program or by infinite recursion.

stack variable
See temporary variable.

static
A storage class attribute. Inside a set of curly braces, it indicates a permanent variable.
Outside a set of curly braces, it indicates afile-local variable. For class membersit
denotes a variable or function that is instance independent. See Table 14-1 for a complete
list of uses.

stderr
Predefined standard error file. From the old C-style |/O package stdio.

Page 540

stdin
Predefined input source. From the old C-style 1/0O package stdio.

stdio.h
The old C-style 1/0 package.

st dout
Predefined standard output. From the old C-style I/O package stdio.

storage class
An attribute of avariable definition that controls how the variable will be stored in
memory.

string
A sequence of characters or an array of characters.

struct
A C++ keyword that identifies a structure data type.

structure
A hierarchical set of namesthat refers to an aggregate of dataitems that may have different
attributes.

style sheet
A document that describes the style of programming used by a particular company or
ingtitution.

Sunview
A graphics and windowing system available on SUN workstations.

swi tch
A multiway branch that transfers control to one of several case statements based on the
value of an index expression.

syntax
Rules that govern the construction of statements.

syntax error
An error in the proper construction of a C++ expression.

T

temporary variable
A variable whose storage is alocated from the stack. The variable isinitialized each time
the block in which it is defined is entered. It exists only during the execution of that block.

test abit
The operation of determining whether a particular bit is set. Thisis not a defined operation
in C++,

test plan
A specification of the tests that a program must undergo.

Page 541

text editor
Software used to create or ater text files.

trandation
Creation of anew program in an alternate language logically equivaent to an existing
program in a source language.

tree
A hierarchical data structure.

truncation
An operation on areal number whereby any fractional part is discarded.

Turbo-C++
A version of the C++ language for personal computers developed by Borland.

typecast
See cast.

t ypedef
A operator used to create new types from existing types.

typing statement
A statement that establishes the characteristics of avariable.

U

unbuffered I/O
I/O in which each read or write resultsin a system call.

uni on
A data type that allows different data names and data types to be assigned to the same
storage location.

UNIX
A popular multiuser operating system first developed by Ken Thompson and Dennis
Ritchie of the Bell Telephone Laboratories.

unsi gned

A qualifier for specifying i nt and char variables that do not contain negative numbers.

upgrading (of a program)
Modification of a program to provide improved performance or new features.

Vv

value
A quantity assigned to a constant.

variable
A name that refersto avalue. The data represented by the variable name can, at different
times during the execution of a program, assume different values.

variable name
The symbolic name given to a section of memory used to store a variable.

Page 542

version
A term used to identify a particular edition of software. A customary practiceisto include
aversion number. Whole numbers indicate major rewrites. Fractions indicate minor
rewrites or corrections of problems.

vi rtual
A C++ keyword indicating that a member function can be overridden by afunctionina
derived class.

voi d
A datatypein C++. When used as a parameter in afunction call, it indicates thereis no
returnvalue. voi d * indicatesthat a generic pointer valueis returned. When used in
casts, it indicates that a given value is to be discarded.

vol atil e
A C++ keyword that indicates that the value of a variable or constant can be changed at any
time. This attribute is used for memory-mapped |/O, shared memory applications, and other
advanced programming.

\W

whi |l e
An iterative statement that repeats a statement as long as a given condition is true.

X

X Window System
A graphics and windowing system, available from the X Consortium, that is currently
running on many computing systems.

Z

zero-based counting

A system of counting where the first object is given the count zero rather than one.

-- (decrement) operator, 79, 80, 325

- (for command-line options), 242
- (negative) operator, 324
- (subtraction) operator, 52, 323
- (unary) operator, 322
I (logical NOT) operator, 86, 326
I= (not equal to) operator, 86, 323
'(quotation mark), 59
"(quotation mark), 59
with include files, 159
for strings, 60, 65
(preprocess) operator, 162
diagnostic tag, 106
% (modulus) operator, 52, 323

%= (modulus into) operator, 79, 325

%c conversion, 274
%(d conversion, 273
%e conversion, 274
%f conversion, 274
%Id conversion, 274
%Iu conversion, 274
%o0 conversion, 274
%s conversion, 274
%u conversion, 274

%X conversion, 274

Page 543

& (address of) operator, 229, 322, 324
(see aso pointers)
& (bitwise AND) operator, 168-170, 323
& (for reference variables), 75
& & (logical AND) operator, 86, 326
&= (AND into) operator, 325
() (default class function) operator, 330
overloading, 495
() parentheses
with macro parameters, 160
and simple operators, 52
* (dereference) operator, 229, 324
* (multiplication) operator, 52, 323
*= (multiply by) operator, 79, 325
+ (addition) operator, 52, 323
+ (positive) operator, 324
++ (increment) operator, 79, 80, 325
+= (increase) operator, 79, 325
, (comma) operator, 330, 495
. (dot) operator, 362
/ (division) operator, 52, 58, 323
* *I comment markers, 36
/= (divide into) operator, 79, 325
:construct, 495
.. (scope) operator, 382, 496
; (semicolon), 51
with if-else statements, 87
and preprocessor directives, 152

< (less than) operator, 86, 323

<< (left snift) operator, 172, 323
<< (number-to-character) operator, 256
<< (output) operator, 53, 273, 322, 326-329
<<= (shift left) shortcut operator, 325
<= (lessthan or equal to) operator, 86, 324
= (assignment) operator, 56

for classes, 211

versus == (equal to) operator, 95

Page 544

= = (equal to) operator, 86, 323

versus = (assignment) operator, 95
-= (decrease) operator, 79, 325
-> (class member) operator, 330
> (greater than) operator, 86
-> (structure pointer) operator, 362
->* (pointer to member) operator, 330
>= (greater than or equal to) operator, 86, 324
> (greater than) operator, 323
>> (character-to-number) operator, 260
>> (input) operator, 67, 322, 326-329
>> (right shift) operator, 172, 323
>>= (shift right) shortcut operator, 325
? construct, 495
[] (index) operator, 329
\ (backdlash)

as escape character, 59

in preprocessor directives, 152
\O character, 64, 237
\b (backspace character), 59

\f (form-feed character), 59
\n (newline character), 59
\r (return character), 59
\t (tab character), 59
N (exclusive OR) operator, 171, 323
A= (exclusive OR into) operator, 325
{} (curly braces), 69, 86
and structures, 187
| (bitwise OR) operator, 171, 323
to merge flags, 265
|= (OR into) operator, 325
| | (logical OR) operator, 86, 326
~ (bitwise NOT) operator, 171, 324

~ (tilde) in class destructor names, 206

A
abstract classes, 393, 458
stat, 461
accuracy of floating-point
arithmetic, 347-352
float versus double datatypes, 350
add function (for complex numbers), 321
adding
complex numbers, 321
element to linked list, 360
floating-point numbers, 344
addition (+) operator, 52, 323
address of (&) operator, 229, 322, 324
(see also pointers)

addresses, variable, 228

alignment problems and portability, 449
ampersand (&)
for reference variables, 75
(see d'so AND operator)
AND (& &) operator, logical, 86, 326
AND (&) operator, binary, 168-170, 323
AND into (&=) operator, 325
apostrophe (see quotation mark)
argc and argv arguments, 241
arguments, command-line, 241
arrays, 63-64
of bits (see bitmapped graphics)
index operator [], 329
infinite, module for (example), 413-429
initializing, 69, 71, 195
multidimensional, 70-71, 141
as parameters, 141
and pointers, 232-237
optimizing, 315
of structures, 195
(see also structures)
ASCII characters, 59
ASCII files (seefiles, ASCII)
assembly language, 10
assignment (=) operator, 56
for classes, 211
versus == (equal to) operator, 95
assignment statements, 5, 56-57

placement of, 92

author, comments about, 39
auto qualifier, 132
auto variable class, 77
automatic
generation of member functions, 210

variables, 132

B
backdlash (\)
as escape character, 59
in preprocessor directives, 152
backspace character (\b), 59
bad member function, 253

base classes, 381
initializing, 386
search order, 389
binary files, 260
with multiple structures, 270
binary /0O, 262, 276
binary operations (see bits)
binary operators, 322
- (subtraction), 323
% (modulus), 323
& (AND), 168-170, 323
versuslogica AND (&&), 169
* (multiplication), 323
+ (addition), 323
/ (division), 323
<< (left shift), 172, 323

Page 545

>> (right shift), 172, 323

N (exclusve OR), 171, 323

| (OR), 171, 323

to merge flags, 265

~(NOT), 171, 324
binary search, debugging, 296
binary trees, 368-373

nodes, 368

recursion with, 371
bit fields, 193
bit flip operator - (see NOT operator, binary)
bitmapped graphics, 176-181
bits, 55

operations on, 167-182

muliplication versus shifting, 172

setting, clearing, and testing, 173-176
bitwise operators (see binary operators)
<blank> modifier, 415
blocks, 129

stack of, 131

(see aso local variables)
boldface in comments, 38
Boolean operators (see bits, operations on)
Borland C++ compiler, 15

Makefile for, 104
bottom-up programming, 147
brackets{} (see curly braces)
branching statements, 85

if statements, 85-88

switch statements, 120-125
break command (debugger), 292

(see also gdb debugger)
break statements, 91, 125

in switch statements, 121, 123
browsers, class, 109
byte order and portability, 448
bytes, 55, 167

pad, 450

C
%c conversion, 274
C language, 3
binary | O, 276
and C++ language, 485-491
compiler, 151
conversion routines, 273
I/O (input/output), 270
handling exceptionsin, 489
programming tools for, 109
C++ compiler
Borland, 15
g++, 15
Microsoft Visual, 15
Turbo, 15
UNIX CC. 14
C++ file /O, 252-256
C++ language, 4
compared with C language. 485-491

programming tools for, 109

standard functionsin, 5
C++ preprocessor, 151-165
#define directive, 151-157
#include directive. 159
call by address, 141, 146
call by value, 135, 138, 146
and copy constructors, 209
callback functions. 144
<carriage return> character, 261
case labels (see switch statements)
case sensitivity, 42, 54
cast operators, 192, 331
catch keyword, 404
cerr (console error) class variable, 252
CFront templates. 445
char variable type, 73, 77
character(s)
ASCII, 59
constants. 59
(see dso strings)

data (seefiles, ASCII)

Page 546
character(s) (continued)
special, 59
treated as bits, 173-176
variables, 73
character-to-number (>>) operator, 260
character-type modules, 458

cin (console input) class variable. 67-69, 252

class keyword, 203
class member (->) operator, 330
class, variable (see variables, classes of)
classes, 4, 197-216, 355
() operator for, 330
abstract, 393, 458
accessing members of, 203
assignment (=) operator for, 211
base, 381
browsers for, 109
complex, 332-341
constant members of, 220
constructors and destructors, 205-211
copy constructors, 208-210
default constructors, 210
derived, 381-387
friends of (seefriend classes)
hierarchy of, 458
I/O stream, 51
member functions, 210
member variables, 202
members of static, 222
and pointers, 355
problems reading, 489
programming style for, 212-214
pure virtual functions, 461
search order of, 389
standard, 51
stat, 461

and structures, 488
templates of, 440-442
virtual, 393-395
clearing bits, 173-176
clog (console log) class variable, 252
close member function, 253
close system call, 266
COBOL, 11
code (see programs; source files)
comma (,) operator, 330, 495
command-line
arguments, 241
debugging switch, 290
comment boxes, 37
comments, 36, 110
in headers, 39, 50
marking variable units, 41
stylesfor, 38
comparing strings (see strcmp function)
compiler
Borland C++, 15
construction of, 431
gt++, 15, 420
Microsoft Visual C++, 15
Turbo-C++, 15
UNIX CC, 14
compiling, conditional, 157-159
complex class, 332-341
complex numbers, 319-341

adding, 321
concatenating expressions (,) operator, 330
concatenating strings (see strcat function)
conditional

breakpoints, 307

clauses (see branching statements)

compilation, 157-159

statements (see: construct; ? construct; switch statements)
confessional method of debugging, 309
const keyword, 220

versus #define directive, 156
const parameters, 136

reference, 139
const variable type, 74
constant call by value, 146
constants

character, 59

class members as, 220

declaring, 74, 151-157

#define versus const, 156

hexadecimal, 78

naming, 42

octal, 78

pointers as, 232
constructors, class, 205-211

copy, 208-210

default, 210

in derived classes, 396-398

Page 547

overloading, 207
parameterized, 207
cont command (debugger), 293
(see a'so gdb debugger)
continue statements, 92, 125
control statements, 5
control variables, 118-120
(see also for statements)
conversion
flags, 256
integer-to-floating-point, 58
routines for, 256
C-style1/O, 270, 273
copy constructors, 208-210
copying strings (see strcpy function)
corefiles, 307
cout (console out) class, 51, 53, 252
for debugging, 290
diagnostic use of, 106
temporary, 290
in Turbo-C++, 251
cross-references, 109
ctype.h includefile, 373
curly braces{}, 69, 86

and structures, 187

D
%(d conversion, 273
data

inputting, 67-69

protecting, 201
stacks of (see stacks)
datatypes, 511
changing (see cast operators)
classes, 201-216
defining special, 190
enum (enumerated), 191-193, 221
pointers, 227-247
stacks, 197-203
structures, 185-187
unions, 188-190
debugger as browser, 110
debugging, 35, 99, 106-108, 281-309
binary search, 296
confessional method of, 309
divide-and-conquer method, 290
interactively (see interactive debugging)
playback file, 287
saving keystrokes, 284
with text editor, 292
using aprogram switch, 290
within program code, 290
dec I/0O manipulator, 258
decimal numbers, 256
decimal places for numbers, 74
declaring
constants, 74, 151-157
#define versus const, 156

file variables, 270

functions, 133
pointers, 229
structures, 187
style of, 500
templates, 436
variables, 41, 54, 132
decrease (-=) operator, 79, 325
decrement (--) operator, 79, 80, 325
default
constructors, 210
parameters, 143
statements, in switch statements (see switch statements)
#define directive, 151-157, 501
versus const keyword. 156
versus enum statement, 191
versus typedef statement, 191
defining variable types, 190
delete function, 486
delete operator, 330, 358
using brackets[] with, 358
deleting derived classes, 397
dereference (*) operator, 229, 324
derived classes, 381-387
constructors and destructors, 396-398
deleting, 397
hiding members functionsin, 395
search order, 389
designing

file formats, 268-270

modules, 433

programs, 457-459, 500
destructors, 205-207, 210

calling virtua functions from, 397

in derived classes, 396-398

names for, 206

virtual, 397

Page 548

diagnostic cout, 106
disk files, | O with, 252
divide by O error, 307
divideinto (/=) operator, 79, 325
divide-and-conquer debugging method, 290
dividing floating-point numbers, 58, 346
division () operator, 52, 58, 323
do while loops (see while loops)
documentation, Oualline's law of, 39
dot () operator, 362
double keyword, 348
double qualifier, 74, 77

versus float datatype, 350
double quote (see quotation mark)

double-linked lists, 365

E

%e conversion, 274
elements, array, 63-64
€else statements, 87

#endif directive, 157, 501
end! I/O manipulator, 259

end-of-line puzzle, 261
end-of-string character, 237
end-of-string marker, 64
ends I/O manipulator, 259
enum (enumerated) datatype, 191-193, 221
egual to (==) operator. 86, 323
versus = (assignment) operator, 95
errors
eliminating from code (see debugging)
handling within programs, 403411
infinite recursion, 148
roundoff (floating-point), 347
runtime (see runtime errors)
stack overflow, 131
escape character (\), 59
evaluation order, 79-81
exceptions, 403-411
inC, 489
runtime library, 410
exclusive OR () operator, 171, 323
exclusive OR into (=) operator, 325
executable programs, 12
exponential notation, 57
expressions, simple, 51
extended precision (see long double qualifier)
extern modifier, 414-416

extern variable class, 77

F

%f conversion, 274

"I/ fal through" comment, 123
fast prototyping, 102
fclose (file close) function, 271
fgetc (get character) function, 271
fgets (get string) function, 272
file formats, comments on, 40
filenames, portability of, 451
files
ASCII, 251-261
binary, 260
with multiple structures, 270
changing modification date of, 424
core, 307
designing formats for, 268-270
directing debugging information
into, 292
disk, 252
header, 159
1/0O with (see 1/O)
identification numbers for, 270
include (see include files)
multiple (see modules)
object (see object files)
playback, for debugging, 287
source (see source files)
standard unbuffered, 265
types of, and portability, 452
variablesfor, 270
find function (linked lists), 361

flags
conversion, 256
open, 265
float datatype, 74, 77
versus double datatype, 350
float keyword, 57
float h include file, 350
floating-point numbers, 57-59, 74
arithmetic, 343-352
accuracy of, 347-352
guard digit, 344

overflow and underflow, 346

floating-point numbers (continued)
arithmetic (continued)
roundoff error, 347, 348
speed of, 350
converting to integers, 58
dividing, 58
versus integers, 316
flush command. 308
flush I/O manipulator, 259, 264
fopen (file open) function, 271
for statements, 117-120
formatting
files, 268-270
floating-point numbers, 343
programs, 43-45
form-feed character (\f), 59

Page 549

FORTRAN, 11
fputc (put character) function, 272
fputs (put string) function, 272
fractional numbers
fread routine, 276
free function (C language), 486-438
friend classes, 217-219
friend directive. 218
fscanf function, 275
fstream class. 252
fstream.h file, 252
functions, 133-146
callback, 144
as class members, 203
inline, 144, 313
versus parameterized macros, 162
K&R style, 485
length of, 45
as operators, 322-330
overloading, 142
parameters of, 133-146
arraysas, 141
const, 136
reference, 137-141
recursive, 148-149
static, 223
templates of, 436-440
virtual, 387-393
pure, 393

functions, standard (see standard functions)

fwrite routine, 276

G
-g (compiler option), 14
g++ compiler, 15, 420
Makefile for, 104
templatesin, 444
gdb debugger, 292-296
example of using, 298-307
generating templates, 436
getline member function, 254
global variables, 129-131
goto statements, 493
programming without. 43
graphics, bitmapped, 176-181
greater than (>) operator, 86, 323
greater than or equal to (>=) operator, 86, 324
guard digits, 344

(see aso floating-point numbers)

H
header files, 159
headers, 416-418
commentsin. 39, 50
help, online UNIX, 32
hex 1/0 manipulator, 258
hexadecimal numbers, 59, 78, 167, 256
hiding member functions, 395
hierarchy, class, 458

high-level languages. 11

hyphen (-) for command-line options, 242

I
I/O (input output), 251-279
binary, 262
C-style, 276
C++ file package, 252-256
conversion routines, 256
C-style, 270
with disk files. 252
manipulators, 258
operators
<< (output), 326-329
>> (input), 326-329
unbuffered, 264-268

|/O stream classes, 51

Page 550

IDE (integrated development environment), 13
if statements, 85-88

with else statement, 87

(see dso ? construct;: construct; switch statements)
#ifdef directive, 501
#ifndef directive, 157
ifstream

::bad, 253

::close, 253

:.open, 252
implementing templates, 442-445
#include directive, 159

includefiles, 159, 416-418

ctype.h, 373
float.h, 350

fstream.h, 252

iomanip.h, 258

iostream.h, 252

local, 159

nested, 160

stdio.h, 270
inclusive OR operator (see OR operator)
increase (+=) operator, 79, 325
increment (++) operator, 79, 80, 325
indentation, 43, 86

styles of, 44

toolsfor, 109
index [] operator, 329
index, array, 63
infinite arrays, module for (example), 413-429
infinite recursion error, 148
info command (debugger), 295

(see also gdb debugger)
init function, 202
initializing

arrays 69, 71, 195

base classes, 386

stacks, 199, 202

automatically, 205
strings, 70
structures, 187

temporary variables, 131

variables, 69
inline directive, and classes, 211
inline functions, 144, 313, 315-316

versus parameterized macros, 162
input (>>) operator, 67, 322, 326-329
inputting data, 67-69
int (integer) keyword, 54
int number type, 77

long versus short, 72

(see also size qualifiers, variables)
integers, 55

converting to floating-point

numbers, 58

dividing, 58

signed versus unsigned, 72
integrated development environment (IDE), 13
interactive debugging, 292-296

conditional breakpoint trick, 307
invert (-) operator (see NOT operator, binary)
iomanip.h file, 258
i0s

:app flag, 255

.ateflag, 255

::binary flag, 256, 261

::dec flag, 257

-:fixed flag, 257

:-hex flag, 257

iinflag, 255

‘internal flag, 257

::left flag, 256
::nocreate flag, 256
::noreplace flag, 256
:.oct flag, 257
:.out flag, 255
-:right flag, 257
:.scientific flag, 257
:.showbase flag, 257
::showpoint flag, 257
:showpos flag, 257
::skipws flag, 256
::stdio flag, 257
::trunc flag, 256
-:unitbuf flag, 257
::uppercase flag, 257
iostream
class, 252
ofill, 258
::precision, 258
-setf, 256
;:unsetf, 256
iostream.h include file, 51, 159, 252

Page 551
ipfx member function, 327
isalpha macro, 373
istreamr
class, 252
--getline, 254
-ipfx, 327

italics in comments, 38

J
judtification, 256

K
K&R-style functions, 485

L
L character, for long integers, 72
labels for goto statements, 494
languages
assembly (machine), 10
C (see C language)
C++ (see C++ language)
other high-level, 11
%!1d conversion, 274
left shift (<<) operator, 172, 323
length function, 66
less than (<) operator, 86, 323
less than or equal to (<=) operator, 86, 324
|etters (see character constants)
libraries, standard, 12, 51
LIFO (last-in-first-out) order, 197
linear programs, 85
<line-feed> character, 261
linked lists, 356, 359-368
double-linked, 365
ordered, 362
linkers, 12
list command (debugger), 293
(see a'so gdb debugger)

lists, linked (seelinked lists)
local include files, 159
local variables, 129-131
static, 131
logical operators, 326
' (NQOT), 86, 326
&& (AND), 86, 326
versus bitwise AND, 169
|1(OR), 86, 326
and relational operators, 86
long double qualifier, 74
long int keyword, 61
long int type, 72
long qudifier, 77
longjmp function (C language), 489
looping statements, 85, 88-92
and break statements, 91
control variablesin (see control variables)
for statements, 117-120
optimizing order of, 310, 314
while loops, 88-93, 493

%Iu conversion, 274

M
machine language, 10
macros
parameterized, 160-162
replacement, 152
magic numbers, 270, 449

main function, 133

make program, 103-105, 420-424
Makefile, 103-105. 501
for multiple files, 420-424

malloc function (C language), 486-488

man pages (UNIX), 32

manipulators, 1/0 (see I/0O manipulators)

markers, end-of-string, 64
member functions
automatically generated, 210
hiding, 395
inling, 211
operators as, 330-331
static, 223
member variables, 202
access privileges to, 202
constant, 220
static, 222
memory leak, 359
memset library routine, 313, 425
merging flags, 265
Microsoft C++ compiler, 15
templates, 443
modification date, changing, 424
modules, 5, 413-434
character-type, 458

modul es (continued)
design guidelinesfor, 433
dividing task into, 429

Page 552

Makefile for, 420-424
for nonportable code, 447
private versus public parts, 414
token, 457
modulus (%) operator, 52, 323
modulus into (%=) operator, 79, 325
more than (see greater than)
Morse code, 80
multidimensional arrays, 70-71
as parameters, 141
multiplication (*) operator, 52, 323
multiply by (*=) operator, 79, 325
multiplying
floating-point numbers, 345
versus shifting, 172

N
naming
class destructors, 206
constants, 42
functions, 142
variables, 41, 54, 500
negative (-) operator, 324
negatives (see signed qualifier)
nested include files, 160
new function, 486
new operator, 330, 355-357
newline character (\n), 59
next command (debugger), 293
(see also gdb debugger)

nodes, tree, 368
NOT (!) operator, logical, 86, 326
NOT (~) operator, binary, 171, 324
not equal to (=) operator, 86, 323
NUL character, 64, 237
null effect warning, 52
NULL pointers, 232
and portability, 450
numbers
complex (see complex numbers)
conversions for, 256
determining parity of, with &, 170
floating-point (see floating-point numbers)
hexadecimal (see hexadecimal)
number of decimal placesfor, 74
octal (see octal numbers)
sign of, 77

number-to-character (<<) operator, 256

O

%0 conversion, 274
O_APPEND open flag, 265
O_BINARY open flag, 265
O_CREAT open flag, 265
O_EXCL open flag, 265
O_RDONLY open flag, 265
O_RDWR open flag, 265
O_TRUNC open flags, 265
O_WRONLY open flag, 265
object files, 12, 14

object-oriented design (OOD), 4
oct 1/0 manipulator, 258
octal character codes, 59
octal numbers, 78, 256
ofstream class, 252
open flags, 255
ones complement operator ~ (see NOT operator, binary)
open flags, 265
open member function, 252
open system call, 264
operation cost, 315
operator functions, 322-330
operator member functions, 330-331
operator precedence, 513
operators
binary (see binary operators)
bitwise (see binary operators)
I/O (see I/O operators)
logical (seelogical oeprators)
overloading, 319-342
relational (seerelational operators)
unary (see unary operators)
optimizing programs, 309-317
calculation speed, 350
considering operation costs, 315
considering powers of two, 311-314
inline functions, 315-316
integers versus floating-point numbers, 316

loop order, 310, 314

pointers versus arrays, 315

options, command-line command, 242
OR (") operator, exclusive, 171
OR (|) operator, binary, 171, 323
to merge flags, 265
OR (| |) operator, logical, 86, 326
ORinto (| =) operator, 325
order of operations, 79-81
ordered linked lists, 362
ostrearr
class, 252
parameter, 327
::read, 262
write, 262

Qualline's law of documentation, 39

output (<<) operator, 53, 273, 322, 326-329

output files, 255
output redirection, 292
overflow error, 131
overflow, floating-point, 346
overloading
() (default class function)
operator, 495
class constructors, 207
functions, 142
operators, 319-342

P
packed structures, 193

Page 553

pad bytes, 450
parameters
in class constructors, 207
default, 143
function, 133-146
arraysas, 141
reference, 137-141
in macros, 160-162
versus inline functions, 162
types of, 146
unused, 143
parentheses ()
in simple operators, 52
with macro parameters, 160
parity, determining with &, 170
PASCAL, 11
permanent variables, 131-132
playback file, 287
pointers, 227-247, 355-380
->* gperator, 330
and arrays, 232-237
optimizing, 315
binary trees (see binary trees)
and classes, 355
constant, 232
NULL, 232
to other pointers, 230
printing value of, 233
and structures, 240, 355

pop function, 203
popping stacks (removing data), 197-201
portability, 447-453

alignment problems, 449

byte order, 448

of file types, 452

filenames, 451

and modularity, 447

NULL pointers, 450

of templates, 445

word size, 448
positive (+) operator, 324
power series, 351

sine function computed as, 515-520
powers of two, 311-314
#pragma

interface (GNU g++), 444

-Jgx option (Turbo-C++), 444
precedence, operator, 513
precision (decimal places) of numbers, 74
precision of floating-point

arithmetic, 347-352
prefix operator (see decrement operator; increment operator)
preprocess (#) operator, 162
preprocessor directives, C++, 151-165

backdlash (\) in, 152

#define, 151-157

#include, 159

parentheses () with, 500

semicolons (;) with, 152
print command (debugger), 293
(see aso gdb command)
printf functions, 273

printing
binary trees, 373

printing (continued)
debugging information, 292
pointer values, 233
private
member variables, 202
module parts, 414
programs, 5, 12

basic structure of, 50

changing control variables, 118
debugging, 35, 99, 106-108, 281-309

switch for, 290

decision-making in (see branching statements)

defining special datatypes, 190

designing, 457-459, 500

for different machines, 157-159

format of, 43-45
handling errorsin, 403-411

minimizing roundoff error, 348

optimizing, 309-317
calculation speed, 350

placement of assignment statements, 92

portability of, 447-453

Page 554

revising and updating, 99, 108, 464
specifications for, 97, 100
gplitting into modules, 413-434
templates, 435-446
testing, 99, 105, 463
toolsfor, 109
working with UNIX operating system, 99
wrapper, 12
writing style (see style, programming)
protected member variables, 202
protecting datain stacks, 201
pseudocode, 101
_ptr extension (see pointers)
public
member functions, 434
module parts, 414
public member variables, 202
pure virtual functions, 393, 461
push function, 203
pushing stacks (entering data), 197-201, 382
put member function, 261

Q
qualifiers, 76

auto, 132
guotation mark (), 59
quotation mark (™), 59
with include files, 159

for strings, 60, 65

ranges of, 511
read member function, 262
reading strings, 272
real numbers (see floating-point numbers)
recursion, 148-149
with binary trees, 371
infinite, 148
redirecting output, 292
redirection 1/0, 252
reference parameters, 137-141
const, 139
reference variables, 75
references, in comments, 39
register qualifier, 310
register variable class, 76
relational operators, 86, 323
I= (not equd to), 86, 323
< (lessthan), 86, 323
<= (lessthan or equal to), 86, 324
== (equal to), 86, 323
> (greater than), 86, 323
>= (greater than or equal to), 86, 324
and logical operators, 86
remainder (see modulus)
replacement macros, 152
reserved words, 54
resetiosflags 1/0O manipulator, 258
return character (\r), 59

return statement, 134-139

(see also functions)
return(0), 50
revising programs, 99, 108, 464
revision history in comments, 40

right shift (>>) operator, 172, 323

roundoff error (floating-point), 347, 348

run command (debugger), 292
(see also gdb debugger)

runtime errors, 307-308

runtime execeptions, 410

S
%s conversion, 274
saving keystrokes for debugging, 284
scanf function, 275
scientific notation, 57
scope (:) operator, 382, 496
scope, variable, 129-131
search order, virtual functions, 389
search, binary, 296
searching binary trees. 369
segmentation fault (core dumped), 298
Segmentation Violation error, 307
semicolon (;), 51

with if-else statements, 87

and preprocessor directives, 152
setbase |/O manipulator, 258
setf member function, 256
setfill 1/O manipulator, 259

Page 555

setiosflags 1/0O manipulator, 258
setjmp function (C language), 489
setprecision 1/O manipulator, 258
setting bits, 173-176
setw /O manipulator, 258
shift operators
left (<<), 172
left (<<=) shortcut, 325
right (>>), 172
right (>>=) shortcut, 325
short int type, 72
short qualifier, 77
side effects, 79
signed integers, 72
signed qualifier, 77
simple variables, 5
sine function, power series, 515-520
single quote (see quotation mark)
single-precision floating-point numbers (see float datatype)
size qualifiers, variables, 77
sizeof operator, 254
source files (source code), 12
specia characters, 59
specialized class templates, 442
specialized template functions, 439
specifications, program, 97, 100
speed of floating-point calculations, 350
splitting strings. 237-240
spreadsheets, 432

sscanf function, 275
stack overflow error, 307
stack trace, 299
stacks, 131, 197-203, 381
class datatype (see classes)
exceptions for, 405-410
initializing, 199, 202
structures versus classes. 201
standard classes, 51
cin (console input), 67-69
cout (see cout class)
standard files
C 271
unbuffered, 265
standard functions, C++, 5
standard libraries, 12
stat class, 461
Satements
assignment (see assignment statements)
branching (see branching statements)
declaration (see declaring variables)
looping (see looping statements)
static
definition of, 224
member functions, 223
member variables, 222
variables, 131
static keyword, 224, 416
static modifier, 415

static variable class, 76
stderr (standard error) file, 271
stdin (standard input) file, 271
stdio.h include file, 270
stdout (standard output) file, 271
step command (debugger), 293

(see also gdb debugger)
storage class, variable, 131-132
strcat (string concatenate) function, 65
strchr function, 237
stremp (string compare) function, 65, 66, 88
strepy (string copy) function, 65
streams, 252

string h library, 65

Page 556
strings, 60, 64-67
comparing (see strcmp function)
concatenating (see strcat function)
copying (see strcpy function)
end-of-string character, 237
end-of-string markers, 64
functions for, 65
getting length of (see length function)
initializing, 70
reading, 272
splitting, 237-240
variable-length, 65
strlen (string length) function, 65
struct keyword, 186

in C versus C++, 486
structure pointer (->) operator, 362
structured programming
techniques, 146-147
structures, 5, 185-187, 355
arrays of, 195
and classes, 488
initializing, 187
packed, 193
and pointers, 240, 355
stacks (see stacks)
versus classes, 201
(see also unions)
style, programming, 35-47, 97-113, 499-503
classes, 212-214
commenting. 38
structured programming techniques, 146-147
subtracting
floating-point numbers, 344
subtraction (-) operator, 52, 323
suffix operator (See decrement operator; increment operator)
switch statements, 120-125, 500

switches, command-line command, 242

T
tab character (\t), 59
templates. 435-46
CFront-style, 445
of classes, 440-442
of functions, 436-440

in g++ compiler, 444
implementing, 442-445
in Microsoft C++ compiler, 443
portable, 445
specialized, 439
in Turbo-C++ compiler, 444
in Visual C++ compiler, 443
temporary variables, 131-132
testing
bits, 173-176
programs, 99, 105, 463
text (see character constants; strings)
text editor
debugging with, 292
modules of, 430
text editor as browser, 110
things, 227
this keyword, 331
tilde (~) in class destructor names, 206
token modules, 457
tokens, 431
top-down programming, 147
touch command, 424
trees, 356
trees, binary, 368-373
nodes, 368
recursion with, 371
try keyword, 405

Turbo-C++ compiler, 15

cout, handling in, 251

Makefile for, 104

templates, 444
typecast operation, 192
typedef statements, 190
types, variable, 53

U
%u conversion, 274
unary operators, 322, 324

- (negative), 324

& (address of), 324

* (dereference), 324

+ (positive), 324

~ (ones complement), 324
unbuffered 1/0, 264-268
#undef directive, 501
underflow, floating-point, 346
unequal to (=) operator, 86, 323
unions, 188-190

units for variables, 41
UNIX
online help for, 32
working with, 99
UNIX CC compiler, 14
-D switch, 158
Makefile for, 103

unpacked structures (see packed structures)

unsetf member function, 256

Page 557

unsigned integers, 72
unsigned qualifier, 77
unused parameters, 143
updating programs, 99, 108
upgrading programs, 35

\%
variable types, 53
variable-length strings, 65
variables, 41
addresses of, 228
automatic, 132
changing datatypes (see cast operators)
character, 73
classes of, 76
control (see control variables)
conversions for numbers, 256
declaring, 54, 132
defining special datatypes, 190
for files, 270
global, 129-131
initializing, 69
local, 129-131
member (see member variables)
naming, 54, 500
permanent versus temporary, 131-132
pointers, 227-247
reference, 75
and reserved words, 54

scope of, 129-131

signed versus unsigned, 77
smple, 5
size qualifiers, 77
static, 131
storage class of, 131-132
unchanging (see constants)
(see aso datatypes)
version information in data files, 269
virtual
classes, 393-395
destructors, 397
functions, 387-393
called from destructor, 397
pure, 393, 461
search order, 389
virtual keyword, 389, 397
Visua C++ compiler templates, 443
volatile keyword, 76

W
walkthrough debugging, 309
warning, null effect, 52
where command (debugger), 293
(see a'so gdb debugger)
while loops, 88-93, 493
and assgnment statements. 93
and break statements, 91
and continue statements, 92
versus for statements, 117

whitespace, 43, 67, 256, 259

(see a so formatting programs)
wildcards, command-line, 241
word size and portability, 448
wrapper programs, 12
write member function, 262
write system call. 266
writing programs (see programs)

ws |/O manipulator, 259

X

%x conversion, 274

X++ Vs, ++X, 80

XOR operator (see exclusive OR)

operator, 171

Page 583

About the Author

Steve Oualline wrote hisfirst program when he was eleven. It had abug in it. Since that time
he has studied practical ways of writing programs so that the risk of generating abug is
reduced. He has worked for Motorola and Celerity Computing, and is currently a special
consultant for Hewlett Packard, working in the research department of their Ink-Jet division.

Colophon

The animal on the cover of Practical C++ Programming is an Eastern chipmunk, a striped
ground squirrel found mostly in eastern North America. Eastern chipmunks have five dark and
two light stripes on their backs, extending from head to rump, and two stripes on their long,
bushy tails. They are distinguished from other ground squirrels by the white stripes above and
below their eyes. The coloration of chipmunks throughout North Americavaries, but is quite
uniform within regions.

Chipmunks often make their homes in sparse forests or farms, where they can build the
entrances to their lodges in stone walls, broken trees, or thick underbrush. The lodges consist
of amaze of tunnelsleading to alarge leaf-lined nest. Chipmunks spend nost of the daylight
hours outdoors, but head for their lodges before nightfall. Although they are excellent climbers,

chipmunks live primarily on the ground.

Chipmunks eat nuts, seeds, insects, and occasionally birds eggs. Like all ground squirrels, they
have large cheek pouches, sometimes extending as far back as their shoulders, in which they
can store food. They collect and store nuts and seeds through the summer and fall. When the
weather starts to get cool, al the chipmunks in aregion will suddenly disappear into their
lodges where they begin hibernation. On warm winter days one can often see chipmunk
pawprints in the snow, as they will sometimes wake up and leave their lodges for brief periods
when the temperature rises.

Mating season for Eastern chipmunksis mid-March to early April. The gestation period is 31
days, after which alitter of threeto six is born. Baby chipmunks leave the lodge after one
month, and are mature by July.

The chipmunk most likely got its name from the noise it makes, which sounds like a loud
"cheep." You can occasionally see a chipmunk hanging upside down from atree branch
"cheeping” its call.

Page 584

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictoria Archive. The cover layout was produced with Quark XPress 3.3 using the ITC
Garamond font. Whenever possible, our books use RepKoverQ , adurable and flexible lay-flat
binding. If the page count exceeds RepKover's limit, perfect binding is used.

The inside layout was designed by Edie Freedman, with modifications by Nancy Priest, and
implemented in FrameMaker by Mike Sierra. The text and heading fonts are ITC Garamond
Light and Garamond Book. The illustrations that appear in the book were created in Aldus
Freehand 5.0 by Chris Rellley and Michelle Willey. This colophon was written by Clairemarie
Fisher O'Leary.

	Table of Contents
	Preface
	I: The Basics
	II: Simple Programming
	III: Advanced Types and Classes
	IV: Advanced Programming Concepts
	V: Other Language Features
	D: Computing sine Using a Power Series

	Preface
	Scope of This Handbook
	How This Book Is Organized
	How to Read This Book If You Already Know C
	Font Conventions
	Obtaining Source Code
	Comments and Questions

	I The Basics
	1 What Is C++?
	A Brief History of C++
	C++ Organization
	How to Learn C++

	2 The Basics of Program Writing
	Programs from Conception to Execution
	Creating a Real Program
	Creating a Program Using a Command- Line Compiler
	Creating a Program Using an Integrated Development Environment
	Getting Help in UNIX
	Getting Help in an Integrated Development Environment
	Programming Exercises

	3 Style
	Comments
	C++ Code
	Naming Style
	Coding Religion
	Indentation and Code Format
	Clarity
	Simplicity
	Consistency and Organization
	Further Reading
	Summary

	4 Basic Declarations and Expressions
	The Elements of a Program
	Basic Program Structure
	Simple Expressions
	The cout Output Class
	Variables and Storage
	Variable Declarations
	Integers
	Assignment Statements
	Floating Point Numbers
	Floating Point Versus Integer Divide
	Characters
	Programming Exercises
	Answers to Chapter Questions

	5 Arrays, Qualifiers, and Reading Numbers
	Arrays
	Strings
	Reading Data
	Initializing Variables
	Multidimensional Arrays
	Types of Integers
	Types of Floats
	Constant and Reference Declarations
	Qualifiers
	Hexadecimal and Octal Constants
	Operators for Performing Shortcuts
	Side Effects
	Programming Exercises
	Answers to Chapter Questions

	6 Decision and Control Statements
	if Statement
	else Statement
	How Not to Use strcmp
	Looping Statements
	while Statement
	Break Statement
	continue Statement
	The Assignment Anywhere Side Effect
	Programming Exercises
	Answers to Chapter Questions

	7 The Programming Process
	Setting Up
	The Specification
	Code Design
	The Prototype
	The Makefile
	Testing
	Debugging
	Maintenance
	Revisions
	Electronic Archaeology
	Mark Up the Program
	Use the Debugger
	Use the Text Editor as a Browser
	Add Comments
	Programming Exercises

	II Simple Programming
	8 More Control Statements
	for Statement
	switch Statement
	switch, break, and continue
	Programming Exercises
	Answers to Chapter Questions

	9 Variable Scope and Functions
	Scope and Storage Class
	Functions
	Summary of Parameter Types
	Structured Programming Basics
	Recursion
	Programming Exercises
	Answers to Chapter Questions

	10 The C++ Preprocessor
	# define Statement
	Conditional Compilation
	# include Files
	Parameterized Macros
	Advanced Features
	Summary
	Programming Exercises
	Answers to Chapter Questions

	11 Bit Operations
	Bit Operators
	The AND Operator (&)
	Bitwise OR (|)
	The Bitwise Exclusive OR (^)
	The Ones Complement Operator (NOT) (~)
	The Left and Right Shift Operators (<<, >>)
	Bitmapped Graphics
	Programming Exercises
	Answers to Chapter Questions

	III Advanced Types and Classes
	12 Advanced Types
	Structures
	Unions
	typedef
	enum Type
	Bit Fields or Packed Structures
	Arrays of Structures
	Programming Exercises

	13 Simple Classes
	Stacks
	Designing a Stack
	Improved Stack
	Using a Class
	Introduction to Constructors and Destructors
	Automatically Generated Member Functions
	Shortcuts
	Style
	Programming Exercises

	14 More on Classes
	Friends
	Constant Functions
	Constant Members
	Static Member Variables
	Static Member Functions
	The Meaning of static
	Programming Exercises

	15 Simple Pointers
	const Pointers
	Pointers and Printing
	Pointers and Arrays
	Splitting Strings
	Pointers and Structures
	Command- Line Arguments
	Programming Exercises
	Answers to Chapter Questions

	IV Advanced Programming Concepts
	16 File Input/ Output
	C++ File I/ O
	Conversion Routines
	Binary and ASCII Files
	The End- of- Line Puzzle
	Binary I/ O
	Buffering Problems
	Unbuffered I/ O
	Designing File Formats
	C- Style I/ O Routines
	C- Style Conversion Routines
	C- Style Binary I/ O
	Programming Exercises
	Answers to Chapter Questions

	17 Debugging and Optimization
	Debugging
	Serial Debugging
	Divide and Conquer
	Debug- Only Code
	Debug Command- Line Switch
	Going Through the Output
	Interactive Debuggers
	Debugging a Binary Search
	Runtime Errors
	The Confessional Method of Debugging
	Optimization
	The Power of Powers of 2
	How to Optimize
	Case Study: Inline Functions Versus Normal Functions
	Case Study: Optimizing a Color- Rendering Algorithm
	Programming Exercises
	Answers to Chapter Questions

	18 Operator Overloading
	Operator Functions
	Operator Member Functions
	Full Definition of the Complex
	Programming Exercises
	Answers to Chapter Questions

	19 Floating Point
	Floating- Point Format
	Floating Addition/ Subtraction
	Multiplication
	Division
	Overflow and Underflow
	Roundoff Error
	Accuracy
	Minimizing Roundoff Error
	Determining Accuracy
	Precision and Speed
	Power Series
	Programming Exercises

	20 Advanced Pointers
	Pointers, Structures, and Classes
	delete Operator
	Linked List
	Ordered Linked Lists
	Double- linked List
	Trees
	Printing a Tree
	The Rest of the Program
	Data Structures for a Chess Program
	Programming Exercises
	Answers to Chapter Questions

	21 Advanced Classes
	Derived Classes
	Virtual Functions
	Virtual Classes
	Function Hiding in Derived Classes
	Constructors and Destructors in Derived Classes
	Summary
	Programming Exercises
	Answers to Chapter Questions

	V Other Language Features
	22 Exceptions
	Stack Exceptions
	Runtime Library Exceptions
	Programming Exercises

	23 Modular Programming
	Modules
	Public and Private
	The extern Modifier
	Headers
	The Body of the Module
	A Program to Use Infinite Arrays
	The Makefile for Multiple Files
	Using the Infinite Array
	Dividing a Task into Modules
	Module Division Example: Text Editor
	Compiler Construction
	Spreadsheet
	Module Design Guidelines
	Programming Exercises

	24 Templates
	What Is a Template?
	Templates: The Hard Way
	Function Specialization
	Class Templates
	Class Specialization
	Implementation Difficulties
	Summary
	Programming Exercises

	25 Portability Problems
	Modularity
	Word Size
	Byte- Order Problem
	Alignment Problem
	NULL- Pointer Problem
	Filename Problems
	File Types
	Summary
	Answers to Chapter Questions

	26 Putting It All Together
	Requirements
	Code Design
	Token Module
	Coding
	Functional Description
	Testing
	Revisions
	A Final Warning
	Program Files
	UNIX Makefile for CC (Generic Unix)
	Microsoft Visual C++ Makefile
	Programming Exercises

	27 From C to C++
	Overview
	K& R- Style Functions
	struct
	malloc and free
	Turning Structures into Classes
	setjmp and longjmp
	Summary
	Programming Exercise

	C++' s Dustier Corners
	do/ while
	goto
	The ?: Construct
	The Comma Operator
	Overloading the () Operator
	Pointers to Members
	Vampire Features
	Answers to Chapter Questions

	29 Programming Adages
	General
	Design
	Declarations
	switch Statement
	Preprocessor
	Style
	Compiling
	The Ten Commandments for C++ Programmers
	Final Note
	Answers to Chapter Questions

	VI Appendixes
	A ASCII Table
	B Ranges
	C Operator Precedence Rules
	Practical Subset of the Operator Precedence Rules
	Standard Rules

	D Computing sine Using a Power Series
	Makefile
	Program: sine. cc

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the Author
	Colophon

