
Practical C++ Programming

Steve Oualline

O'Reilly & Associates, Inc.
Beijing · Cambridge · Köln · Paris · Sebastopol · Taipei · Tokyo

Page iv

Practical C++ Programming
by Steve Oualline

Copyright © 1995 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Editors: Adrian Nye and Dale Dougherty
Production Editor: Nicole Gipson
Printing History:

August 1995 First Edition.
January 1997: Minor corrections.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks and The Java Series is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps or
initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book is printed on acid-free paper with 85% recycled content, 15% post-consumer waste.
O'Reilly & Associates is committed to using paper with the highest recycled content available
consistent with high quality.

ISBN. 1-56592-139-9 [12/98]

Page v

Table of Contents

Preface xv

I: The Basics 1

1: What Is C++? 3 3

A Brief History of C++ 3

C++ Organization 4

How to Learn C++ 6

2: The Basics of Program Writing 9

Programs from Conception to Execution 12

Creating a Real Program 13

Creating a Program Using a Command-Line Compiler 13

Creating a Program Using an Integrated Development Environment 16

Getting Help in UNIX 32

Getting Help in an Integrated Development Environment 33

Programming Exercises 33

3: Style 35

Comments 36

C++ Code 4 41

Naming Style 42

Coding Religion 43

Indentation and Code Format 43

Page vi

Clarity 44

44

Simplicity 45

Consistency and Organization 46

Further Reading 46

Summary 46

4: Basic Declarations and Expressions 49

The Elements of a Program 49

Basic Program Structure 50

Simple Expressions 51

The cout Output Class 53

Variables and Storage 53

Variable Declarations 54

Integers 55

Assignment Statements 56

Floating Point Numbers 57

Floating Point Versus Integer Divide 58

Characters 59

Programming Exercises 60

Answers Chapter Questions 61

5: Arrays, Qualifiers, and Reading Numbers 63

Arrays 63

Strings 64

Reading Data 67

Initializing Variables 69

Multidimensional Arrays 70

Types of Integers 72

Types of Floats 74

74

Constant and Reference Declarations 74

Qualifiers 76

Hexadecimal and Octal Constants 78

Operators for Performing Shortcuts 78

Side Effects 79

Programming Exercises 82

Answers to Chapter Questions 82

Page vii

6: Decision and Control Statements 85

if Statement 85

else Statement 87

How Not to Use strcmp 88

Looping Statements 88

while Statement 88

Break Statement 91

continue Statement 92

The Assignment Anywhere Side Effect 92

Programming Exercises 94

Answers to Chapter Questions 95

7. The Programming Process 97

Setting Up 99

The Specification 100

Code Design 101

The Prototype 102

The Makefile 103

103

Testing 105

Debugging 106

Maintenance 108

Revisions 108

Electronic Archaeology 109

Mark Up the Program 109

Use the Debugger 110

Use the Text Editor as a Browser 110

Add Comments 110

Programming Exercises 113

II: Simple Programming 115

8: More Control Statements 117

for Statement 117

switch Statement 120

switch, break, and continue 125

Programming Exercises 127

Answers to Chapter Questions 128

Page vii

9: Variable Scope and Functions 129

Scope and Storage Class 129

Functions 133

Summary of Parameter Types 146

Structured Programming Basics 146

Recursion 148

148

Programming Exercises 149

Answers to Chapter Questions 149

10. The C++ Preprocessor 151

#define Statement 151

Conditional Compilation 157

#include Files 159

Parameterized Macros 160

Advanced Features 162

Summary 163

Programming Exercises 163

Answers to Chapter Questions 164

11: Bit Operations 167

Bit Operators 168

The AND Operator (&) 168

Bitwise OR (|) 171

The Bitwise Exclusive OR (^) 171

The Ones Complement Operator (NOT) (-) 171

The Left and Right Shift Operators (<<, >>) 172

Setting, Clearing, and Testing Bits 173

Bitmapped Graphics 176

Programming Exercises 181

Answers to Chapter Questions 182

III: Advanced Types and Classes 183

12: Advanced Types 185

Structures 185

185

Unions 188

typedef 190

Page ix

enum Type 191

Bit Fields or Packed Structures 193

Arrays of Structures 195

Programming Exercises 196

13: Simple Classes 197

Stacks 197

Improved Stack 201

Using a Class 203

Introduction to Constructors and Destructors 205

Automatically Generated Member Functions 210

Shortcuts 211

Style 212

Programming Exercises 214

14: More on Classes 217

Friends 217

Constant Functions 219

Constant Members 220

Static Member Variables 222

Static Member Functions 223

The Meaning of static 224

Programming Exercises 225

225

15: Simple Pointers 227

Constant Pointers 232

Pointers and Printing 233

Pointers and Arrays 233

Splitting Strings 237

Pointers and Structures 240

Command-Line Arguments 241

Programming Exercises 245

Answers to Chapter Questions 245

Page x

IV: Advanced Programming Concepts 249

16: File Input/Output 251

C++ File I/O 252

Conversion Routines 256

Binary and ASCII Files 260

The End-of-Line Puzzle 261

Binary I/O 262

Buffering Problems 263

Unbuffered I/O 264

Designing File Formats 268

C-Style I/O Routines 270

C-Style Conversion Routines 273

C-Style Binary I/O 276

Programming Exercises 278

278

Answers to Chapter Questions 278

17: Debugging and Optimization 281

Debugging 281

Serial Debugging 289

Divide and Conquer 290

Debug-Only Code 290

Debug Command-Line Switch 290

Going Through the Output 292

Interactive Debuggers 292

Debugging a Binary Search 296

Runtime Errors 307

The Confessional Method of Debugging 309

Optimization 309

The Power of Powers of 2 311

How to Optimize 314

Case Study: Inline Functions Versus Normal Functions 316

Case Study: Optimizing a Color-Rendering Algorithm 316

Programming Exercises 317

Answers to Chapter Questions 317

Page xi

18: Operator Overloading 319

Operator Functions 322

Operator Member Functions 330

Full Definition of the Complex Class 332

332

Programming Exercises 341

Answers to Chapter Questions 342

19 : Floating Point 343

Floating-Point Format 343

Floating Addition/Subtraction 344

Multiplication 345

Division 346

Overflow and Underflow 346

Roundoff Error 347

Accuracy 347

Minimizing Roundoff Error 348

Determining Accuracy 348

Precision and Speed 350

Power Series 351

Programming Exercises 352

20: Advanced Pointers 355

Pointers, Structures, and Classes 355

delete Operator 358

Linked List 359

Ordered Linked Lists 362

Double-linked List 365

Trees 368

Printing a Tree 373

The Rest of the Program 373

Data Structures for a Chess Program 377

Programming Exercises 378

378

Answers to Chapter Questions 379

21: Advanced Classes 381

Derived Classes 381

Virtual Functions 387

Page xii

Virtual Classes 393

Function Hiding in Derived Classes 395

Constructors and Destructors in Derived Classes 396

Summary 398

Programming Exercises 399

Answers to Chapter Questions 399

V: Other Language Features 401

22: Exceptions 403

Stack Exceptions 405

Runtime Library Exceptions 410

Programming Exercises 410

23: Modular Programming 413

Modules 413

Public and Private 414

The extern Modifier 414

Headers 416

The Body of the Module 418

A Program to Use Infinite Arrays 418

The Makefile for Multiple Files 420

Using the Infinite Array 424

424

Dividing a Task into Modules 429

Module Division Example: Text Editor 430

Compiler Construction 431

Spread sheet 432

Module Design Guidelines 433

Programming Exercises 434

24: Templates 435

What Is a Template? 435

Templates: The Hard Way 435

Function Specialization 439

Class Templates 440

Class Specialization 442

Implementation Difficulties 442

Page xiii

Summary 445

Programming Exercises 445

25: Portability Problems 447

Modularity 447

Word Size 448

Byte-Order Problem 448

Alignment Problem 449

NULL-Pointer Problem 450

Filename Problems 451

File Types 452

452

Summary 452

Answers to Chapter Questions 453

26: Putting It All Together 455

Requirements 455

Code Design 457

Coding 459

Functional Description 459

Testing 463

Revisions 464

A Final Warning 464

Program Files 464

Programming Exercises 483

27: From C to C++ 485

Overview 485

K&R-Style Functions 485

struct 486

malloc and free 486

Turning Structures into Classes 488

ssetjmp and longjmp 489

Summary 491

Programming Exercise 491

Page xiv

28. C++'s Dustier Corners 493

do/while 493

493

goto 493

The ?:Construct 495

The Comma Operator 495

Overloading the ()Operator 495

Pointers to Members 496

Vampire Features 497

Answers to Chapter Questions 498

29: Programming Adages 499

General 499

Design 500

Declarations 500

switch Statement 500

Preprocessor 500

Style 501

Compiling 501

The Ten Commandments for C++ Programmers 501

Final Note 502

Answers to Chapter Questions 503

VI: Appendixes 505

A: ASCII Table 507

B: Ranges 511

C: Operator Precedence Rules 513

D: Computing sine Using a Power Series 515

Glossary 521

Index 543

Page xv

Preface

This book is devoted to practical C++ programming. It teaches you not only the mechanics of
the language, but also style and debugging. The entire life cycle of a program is discussed,
including conception, design, writing, debugging, release, documentation, maintenance, and
revision.

Style is emphasized. Creating a good program involves more than just typing code. It is an art
in which writing and programming skills blend to form a masterpiece. A well-written program
not only functions correctly, but also is simple and easy to understand. Comments allow
programmers to include descriptive text in their programs. Clearly written, well-commented
programs are highly prized.

A program should be as simple as possible. Avoid the use of clever tricks. Cleverness and
complexity can kill programs. This book stresses simple, practical rules. For example, the 15
operator-precedence rules in C++ can be simplified to 2:

1. Multiply and divide before you add and subtract.

2. Put parentheses around everything else.

Consider two programs. One was written by a clever programmer, using all the tricks. The
program contains no comments, but it works. The other is nicely commented and well
structured, but doesn't work. Which program is more useful? In the long run, the ''broken" one is
more useful because it can be fixed and maintained easily. Although the clever one works now,
sooner or later it will have to be modified. The hardest work you will ever have to do is
modifying a cleverly written program.

Page xvi

Scope of This Handbook

This handbook is written for people with no previous programming experience, for
programmers who know C and want to upgrade their skills to C++, and for those who already
know C++ and want to improve their programming style and reliability. You should have
access to a computer and know how to use the basic functions such as the text editor and file
system.

Computer languages are best learned by writing and debugging programs. Sweating over a
broken program at two o'clock in the morning only to find that you typed = where you should
have typed == is a very effective teaching tool. Many programming examples are used
throughout this book. Most of them contain deliberate errors. You are encouraged to enter the
examples into your computer and then run and debug them. This process introduces you to
common errors using short programs so you will know how to spot and correct such errors in

your own larger programs. (Instructions for obtaining copies of the programs presented in this
book are located at the end of this chapter.)

Several dialects of C++ are presented:

• A "generic" UNIX compiler that should work on most UNIX systems

• The GNU C++ compiler, named g++ (available for most UNIX systems*)

• Borland's Turbo C++ compiler for MS-DOS

• Borland C++ for MS-DOS/Windows

• Microsoft's Visual C++ for MS-DOS/Windows

As far as standard C++ is concerned there are only minor differences among the various
compilers. This book clearly indicates where compiler differences can affect the programmer.
Specific instructions are given for producing and running programs using each of these
compilers. The book also gives examples of using the programming utility make for automated
program production.

How This Book Is Organized

You must crawl before you walk. In Part I: The Basics you learn how to crawl. These chapters
teach you enough to write very simple programs. You start with the mechanics of programming
and programming style. Next, you learn how to use variables and very simple decision and
control statements.

* The GNU g++ compiler can be obtained by anonymous FTP from prep.al mit edu, or you can
contact the Free Software Foundation, Inc, at 675 Massachusetts Avenue, Cambridge, MA 02139,
(617) 876-3296.

Page xvii

At this point you will have learned enough to create very simple programs; therefore, in
Chapter 7, The Programming Process, you embark on a complete tour of the programming
process that shows you how real programs are created.

Chapter 1, What Is C++?, gives you an overvie ins the basic programming process and gives
you enough information to write a very simple program.w of C++, describes its history and
uses, and explains how the language is organized.

Chapter 2, The Basics of Program Writing, expla

Chapter 3, Style, discusses programming style. Ho

Chapter 4, Basic Declarations and Expressions, int w to comment a program is covered, as
well as how to write clear and simple code. roduces simple C++ statements. Basic variables
and the assignment statement are covered in detail along with the arithmetic operators: +, -,
*, /, and %.

Chapter 5, Arrays, Qualifiers, and Reading Numbers, covers arrays and more complex

variables. The shorthand operators ++, --, *=, =, +=, -=, and %= are described.

Chapter 6, Decision and Control Statements, explains simple decision statements including if,
else and for. The problem of == versus = is discussed.

Chapter 7, The Programming Process, takes you through the steps required for creating a
simple program, from specification through release. Structured programming, fast prototyping,
and debugging are discussed.

Part II: Simple Programming, describes all the other simple statements and operators that are
used in programming. You also learn how to organize these statements into simple functions.

Chapter 8, More Control Statements, describes additional control statements. Included are
while, break, and continue. The switch statement is discussed in detail.

Chapter 9, Variable Scope and Functions, introduces local variables, functions, and
parameters.

Chapter 10, The C++ Preprocessor, describes the C++ preprocessor, which gives you great
flexibility in creating code. It also provides a tremendous number of ways for you to screw up.
Simple rules that help keep the preprocessor from becoming a problem are described.

Chapter 11, Bit Operations, discusses the logical C++ operators that work on bits.

In Part III: Advanced Types and Classes, you learn how basic declarations and statements can
be used in the construction of advanced types such as structures, unions, and classes. You also
learn about the concept of pointers.

Page xviii

Chapter 12, Advanced Types, explains structures and other advanced types. The sizeof
operator and the enum type are included.

Chapter 13, Simple Classes, introduces the concept of a class. This is one of the more
powerful features of C++. Classes allow you to group data and the operations that can be
performed on that data into one object.

Chapter 14, More on Classes, describes additional operations that can be performed with
classes.

Chapter 15, Simple Pointers, introduces C++ pointer variables and shows some of their uses.

Advanced programming techniques are explored in Part IV: Advanced Programming
Concepts. In this section, you explore a number of C++ features that let you create complex, yet
easy-to-use objects or classes.

Chapter 16, File Input/Output, describes both buffered and unbuffered input/output (I/O).
ASCII and binary files are discussed and you are shown how to construct a simple file. Old
C-style I/O operations are also included.

Chapter 17, Debugging and Optimization, describes how to debug a program, as well as how
to use an interactive debugger. You are shown not only how to debug a program, but also
how to write a program so that it is easy to debug. This chapter also describes many

optimization techniques to make your programs run faster and more efficiently.

Chapter 18, Operator Overloading, explains that C++ allows you to extend the language by
defining additional meanings for the language's operators. In this chapter, you create a complex
type and the operators that work on it.

Chapter 19. Floating Point, uses a simple decimal floating-point format to introduce the
problems inherent in using floating points, such as roundoff errors, precision loss, overflow,
and underflow.

Chapter 20, Advanced Pointers, describes advanced use of pointers to construct dynamic
structures such as linked lists and trees.

Chapter 21, Advanced Classes, shows how to build complex, derived classes out of simple,
base ones.

Finally a number of miscellaneous features are described in V: Other Language Features.

Chapter 22, Exceptions, explains how to handle unexpected conditions within a program.

Page xix

Chapter 23, Modular Programming, shows how to split a program into several files and use
modular programming techniques. The make utility is explained in more detail.

Chapter 24, Templates, allows you to define a generic function or class that generates a family
of functions.

Chapter 25, Portability Problems, describes the problems that can occur when porting a
program (moving a program from one machine to another).

Chapter 26, Putting It All Together, details the steps necessary to take a complex program
from conception to completion. Information hiding and modular programming techniques, as
well as object-oriented programming, are stressed.

Chapter 27, From C to C++, describes how to turn C code into C++ code, and addresses
many of the traps lurking in C code that bite the C++ programmer.

Chapter 28, C++'s Dustier Corners, describes the do/while statement, the comma operator,
and the ?: operators.

Chapter 29, Programming Adages, lists programming adages that will help you construct good
C++ programs.

Appendix A, ASCII Table, contains a list of character codes and their values.

Appendix B, Ranges, lists the numeric ranges of some C++ variable types.

Appendix C, Operator Precedence Rules, lists the rules that determine the order in which
operators are evaluated.

Appendix D, Computing sine Using a Power Series, contains a program that shows how the
computer can compute the value of the sine function.

How to Read This Book If You Already Know C

C++ is built on the C language. If you know C, you will find much of the material presented in
Chapters 2 through 12 familiar.

C++ does introduce a number of new features, including:

• An entirely new I/O system. (The basics are described in Chapter 4, Basic Declarations
and Expressions. The new file system is discussed in detail in Chapter 16, File
Input/Output.)

• Constant and reference variables. (Described in Chapter 5, Arrays, Qualifiers, and
Reading Numbers.)

Page xx

• Function overloading, inline functions, reference parameters, and default parameters. (Read
Chapter 9, Variable Scope and Functions.)

Starting with Chapter 13, Simple Classes, you will begin to learn entirely new concepts.
Classes are unique to C++ and are one of the more powerful features of the language.

Font Conventions

The following conventions are used in this book:

Italic
is used for directories and to emphasize new terms and concepts when they are introduced.
Italic is also used to highlight comments in examples.

Bold
is used for C keywords.

Constant Width
is used for programs and the elements of a program and in examples to show the contents of
files or the output from commands. A reference in text to a word or item used in an example
or code fragment is also shown in constant width font.

Constant Bold
is used in examples to show commands or other text that should be typed literally by the
user. (For example, rm foo means to type "rm foo" exactly as it appears in the text or the
example.)

Constant Italic
is used in examples to show variables for which a context-specific substitution should be
made. (The variable filename, for example, would be replaced by some actual
filename.)

Quotes
are used to identify system messages or code fragments in explanatory text.

%

is the UNIX C shell prompt.

$
is the UNIX Bourne shell or Korn shell prompt.

is the UNIX superuser prompt (either Bourne or C shell). We usually use this for examples
that should be executed only by root.

Page xxi

[]
surround optional values in a description of program syntax. (The brackets themselves
should never by typed.)

. . .
stands for text (usually computer output) that's been omitted for clarity or to save space.

The notation CTRL-X or ^X indicates use of control characters. It means hold down the
"control" key while typing the character "x". We denote other keys similarly (e.g., RETURN
indicates a carriage return).

All examples of command lines are followed by a RETURN unless otherwise indicated.

Obtaining Source Code

You can obtain the source code for the programs presented in this book from O'Reilly &
Associates through their Internet server.

The example programs in this book are available electronically in a number of ways: by FTP,
Ftpmail, BITFTP, and UUCP. The cheapest, fastest, and easiest ways are listed first. If you
read from the top down, the first one that works for you is probably the best. Use FTP if you
are directly on the Internet. Use Ftpmail if you are not on the Internet, but can send and receive
electronic mail to Internet sites (this includes CompuServe users). Use BITFTP if you send
electronic mail via BITNET. Use UUCP if none of the above works.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is shown,
with what you should type in boldface.

 % ftp ftp.uu.net
 Connected to ftp.uu.net.
 220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.
 Name (ftp.uu.net:joe): anonymous
 331 Guest login ok, send domain style e-mail address as password.
 Password: joe@ora.com (use your user name and host here)
 230 Guest login ok, access restrictions apply.
 ftp> cd /published/oreilly/nutshell/practcpp
 250 CWD command successful.
 ftp> binary (Very important! You must specify binary transferfor
compressed files)
 200 Type set to I.
 ftp> get examples.tar.gz

 200 PORT command successful.
 150 Opening BINARY mode data connection for examples.tar.gz.
 226 Transfer complete.

Page xxii

 ftp> quit
 221 Goodbye.
 %

The file is a compressed tar archive; extract the files from the archive by typing:

 % gzcat examples.tar.gz | tar xvf -

System V systems require the following tar command instead:

 % gzcat examples.tar.gz | tar xof -

If gzcat is not available on your system, use separate gunzip and tar or shar commands.

 % gunzip examples.tar.gz
 % tar xvf examples.tar

Ftpmail

Ftpmail is a mail server available to anyone who can send electronic mail to and receive it
from Internet sites. This includes any company or service provider that allows email
connections to the Internet. Here's how you do it.

You send mail to ftpmail@online.ora.com. In the message body, give the FTP commands you
want to run. The server will run anonymous FTP for you and mail the files back to you. To get
a complete help file, send a message with no subject and the single word "help" in the body.

The following is a sample mail session that should get you the examples. This command sends
you a listing of the files in the selected directory and the requested example files. The listing is
useful if there's a later version of the examples you're interested in.

 % mail ftpmaileonline.ora.com
 Subject:
 reply-to janetvgxyz.com (Where you want files mailed)
 open
 cd /published/oreilly/nutshell/practcpp
 mode binary
 uuencode
 get examples.tar.gz
 quit
 ..

A signature at the end of the message is acceptable as long as it appears after "quit."

BITFTP

BITFTP is a mail server for BITNET users. You send it electronic mail messages requesting
files, and it sends you back the files by electronic mail.BITFTP currently

Page xxiii

serves only users who send it mail from nodes that are directly on BITNET, EARN, or
NetNorth. BITFTP is a public service of Princeton University. Here's how it works.

To use BITFTP, send mail containing your ftp commands to BITFTP@PUCC. For a complete
help file, send HELP as the message body.

The following is the message body you send to BITFTP:

 FTP ftp.uu.net NETDATA
 USER anonymous
 PASS myname@podunk.edu Putyour Internet email address here (not your BITNETaddress)
 CD /published/oreilly/nutshell/practcpp
 DIR
 BINARY
 GET examples.tar.gz
 QUIT

Once you've got the desired file, follow the directions under FTP to extract the files from the
archive. Since you are probably not on a UNIX system, you may need to get versions of
uudecode, uncompress, atob, and tar for your system. VMS, DOS, and Mac versions are
available.

UUCP

UUCP is standard on virtually all UNIX systems and is available for IBM-compatible PCs and
Apple Macintoshes. The examples are available by UUCP via modem from UUNET; UUNET'S
connect-time charges apply.

You can get the examples from UUNET whether you have an account there or not. If you or
your company has an account with UUNET, you have a system somewhere with a direct UUCP
connection to UUNET. Find that system, and type:

 uucp uunet\!~/published/oreilly/nutshell/practcpp/examples.tar.gz
 yourhost\!~/yourname/

The backslashes can be omitted if you use the Bourne shell (sh) instead of csh. The file should
appear some time later (up to a day or more) in the directory /usr/spool/uucppublic
yourname. If you don't have an account, but would like one so that you can get electronic
mail, contact UUNET at 703-204-8000.

It's a good idea to get the file /published/oreilly/ls-lR.Z as a short test file containing the
filenames and sizes of all the files available.

Once you've got the desired file, follow the directions under FTP to extract the files from the
archive.

Page xxiv

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street
Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

Acknowledgments

Thanks to Peg Kovar for her proofreading and editing help. Special thanks to Dale Dougherty
for ripping apart my first book and forcing me to put it together correctly. I greatly appreciate
the hard work put in by Phil Straite and Gregory Satir. I especially thank all those people who
reviewed and edited my book. My thanks also go to the production group at O'Reilly &
Associates—Nicole Gipson, project manager and production editor; John Files, Juliette
Muellner, and Jane Ellln, production assistants; and Mike Sierra, book design implementor.
Finally, special thanks go to all the hard-working programmers out there whose code has taught
me so much.

Page 1

I
The Basics

Page 3

1
What Is C++?

In This Chapter:

• A Brief Histoty of
C++

 •• C++ Organization
 •• How to Learn C++

Profanity is the one language that all programmers understand.
—Anonymous

The ability to organize and process information is the key to success in the modern age.
Computers are designed to handle and process large amounts of information quickly and
efficiently. However, they can't do anything until someone tells them what to do. That's where
C++ comes in. C++ is a high-level programming language that allows a software engineer to
efficiently communicate with a computer.

C++ is a highly flexible and adaptable language. Since its creation in 1980, it has been used for
a wide variety of programs including firmware for micro-controllers, operating systems,
applications, and graphics programming. C++ is quickly becoming the programming language
of choice. There is a tremendous demand for people who can tell computers what to do, and
C++ lets you do so quickly and efficiently.

A Brief History of C++

In 1970 two programmers, Brian Kernighan and Dennis Ritchie, created a new language called
C. (The name came about because C was preceded by the old programming language they were
using called B.) C was designed with one goal in mind: writing operating systems. The
language was extremely simple and flexible and soon was used for many different types of
programs. It quickly became one of the most popular programming languages in the world.

Page 4

C had one major problem, however. It was a procedure-oriented language. This meant that in
designing a typical C program, the programmer would start by describing the data and then
write procedures to manipulate that data. Programmers eventually discovered that it made a
program clearer and easier to understand if they were able to take a bunch of data and group it
together with the operations that worked on that data. Such a grouping is called an object or
class. Designing programs by designing classes is known as object-oriented design (OOD).

In 1980 Bjarne Stroustrup started working on a new language, called ''C with Classes." This
language improved on C by adding a number of new features, the most important of which was
classes. This language was improved, augmented, and finally became C++.

C++ owes its success to the fact that it allows the programmer to organize and process
information more effectively than most other languages. Also, it builds on the work already
done with the C language. In fact, most C programs can be transformed into C++ programs with
little trouble. These programs usually don't use all the new features of C++, but they do work.
In this way, C++ allows programmers to build on an existing base of C code.

C++ Organization

C++ is designed as a bridge between the programmer and the raw computer. The idea is to let
the programmer organize a program in a way that he or she can easily understand. The compiler
then translates the language into something the machine can use.

Computer programs consist of two main parts: data and instructions. The computer imposes
little or no organization on these two parts. After all, computers are designed to be as general
as possible. The idea is for the programmer to impose his or her own organization on the
computer and not the other way around.

The data in a computer is stored as a series of bytes. C++ organizes those bytes into useful
data. Data declarations are used by the programmer to describe the information he or she is
working with. For example:

 int total; // Total number accounts

tells C++ that you want to use a section of the computer's memory to store an integer named
total. You can let the compiler decide what particular bytes of memory to use; that's a minor
bookkeeping detail you don't need to worry about.

Page 5

The variable total is a simple variable. It can hold only one integer and describe only one
total. A series of integers can be organized into an array. Again, C++ will handle the details,
imposing that organization on the computer's memory.

 int balance[100]; // Balance (in cents) for all 100 accounts

Finally, there are more complex data types. For example, a rectangle might have a width, a
height, a color, and a fill pattern. C++ lets you organize these four attributes into one group
called a structure.

 struct rectangle {
 int width; // Width of rectangle in pixels
 int height; // Height of rectangle in pixels
 color_type color; // Color of the rectangle
 fill_type fill; // Fill pattern
 };

However, data is only one part of a program. You also need instructions. As far as the
computer is concerned it knows nothing about the layout of the instructions. It knows only what
it's doing for the current instruction and where to get the next instruction.

C++ is a high-level language. It lets you write a high-level statement such as:

 area = (base * height) / 2.0; // Compute area of triangle

The compiler translates this statement into a series of cryptic machine instructions. This sort of
statement is called an assignment statement. It is used to compute and store the value of an
arithmetic expression.

You can also use control statements to control the order of processing. Statements such as the
if and switch statements enable the computer to make simple decisions. Statements can be
repeated by using looping statements such as while and for.

Groups of statements can be wrapped to form functions. Thus you only need to write a
general-purpose function to draw a rectangle once and then you can reuse that function
whenever you want to draw a new rectangle. C++ provides a rich set of standardfunctions that
perform common functions such as searching, sorting, input, and output.

A set of related functions can be grouped together to form a module, and modules are linked to
form programs.

One of the major goals of the C++ language is to organize instructions into reusable
components. After all, you can write programs much faster if you "borrow" most of your code
from somewhere else. Groups of reusable modules can be combined into a library. For
example, if you need a sort routine, you can use the standard function qsort from the library
and link it into your program.

Page 6

A computer divides the world into data and instructions. For a long time, highlevel languages
such as C kept that dividing line in place. In C you can define data or write instructions, but you
can't combine the two.

One of C++'s major innovations is the idea of combining data and instructions together in a
construct called a class or object. Object-oriented programming allows you to group data with
the operations that can be performed on that data. This concept is taken one step further in C++
by allowing you to derive new classes from existing ones.

This last feature is extremely powerful. It allows you to build complex classes on top of
smaller, simpler ones. It also allows you to define a basic, abstract class and then derive
specific classes from it. For example, an abstract class of shape might be used to define the
shapes rectangle, triangle, and circle.

Organization is the key to writing good programs. In this book, you know that the table of
contents is in the front and the index is in the back, because that's the way books are organized.
Organization makes this book easier to use.

The C++ language lets you organize your programs using a simple yet powerful syntax. This
book goes beyond the C++ syntax and teaches you style rules that enable you to create highly
readable and reliable programs. By combining a powerful syntax with a good programming
style you can create powerful programs that perform complex and wonderful operations.

How to Learn C++

The only way to learn how to program is to write programs. You'll learn a lot more by writing
and debugging programs than you ever will by reading this book. This book contains many
programming exercises, and you should try to do as many of them as possible. When doing the
exercises keep good programming style in mind. Always comment your programs, even if
you're doing the exercises only for yourself. Commenting helps you organize your thoughts,
and commenting your own programs is good practice for when you go into the "real world."

Don't let yourself be seduced by the idea that, "I'm only writing these programs for myself, so I
don't need to comment them." First of all, code that looks obvious to you when you write it can
often be confusing and cryptic when you revisit it a week later. Writing comments also helps
you organize your ideas. (If you can write out an idea in English, you are halfway to writing it
in C++.)

Finally, programs tend to be around far longer than expected. I once wrote a program that was
designed to work only on the computer at Caltech. The program was highly system dependent.
As I was the only one who would ever

Page 7

use the program, the program would print the following message if I got the command line
wrong:

 ?LSTUIT User is a twit

A few years later I was a student at Syracuse University. The secretary at the School of
Computer Science needed a program that was similar to my Caltech listing program, so I
adapted my program for her use. Unfortunately, I had forgotten about my funny little error
message.

Imagine how horrified I was when I came into the Computer Science office and was accosted
by the chief secretary. This lady had so much power she could make the dean cringe. She
looked at me and said, "User is a twit, huh?" Luckily she had a sense of humor, or I might not
be here today.

Sprinkled throughout this book are "broken" programs. Spend the time to figure out why they
don't work. Often the problem is very subtle, such as a misplaced semicolon or using = instead
of ==. These programs let you learn how to spot mistakes in a small program. That way when
you make similar mistakes in a big program, and you will make mistakes, you will be trained to
spot them.

Page 9

2
The Basics of Program Writing

In This Chapter:
 • • Programs from

Conception to
Execution

 •• Creating a Real
Program

 •• Creating a Program
Using a Command-
Line Compiler

 •• Creating a Program
Using an Integrated
Development
Environment

 •• Getting Help
 •• Programming

Exercises

The first and most important thing of all, at least for writers today, is to
strip language clean, to lay it bare down to the bone
—Ernest Hemingway

Computers are very powerful tools that can store, organize, and process a tremendous amount
of information. However, they can't do anything until someone gives them detailed instructions.

Communicating with computers is not easy. They require instructions that are exact and

detailed. Wouldn't life be easier if we could write programs in English? Then we could tell the
computer, "Add up all my checks and deposits, and then tell me the total," and the machine
would balance our checkbooks.

But English is a lousy language when you must write exact instructions. The language is full of
ambiguity and imprecision. Grace Hopper, the grand old lady of computing, once commented
on the instructions she found on a bottle of shampoo:

Wash
Rinse
Repeat

She tried to follow the directions, but she ran out of shampoo. (Wash-rinse-repeat.
Wash-rinse-repeat. Wash-rinse-repeat. . . .)

Of course, we can try to write in precise English. We'd have to be careful and make sure to
spell everything out and be sure to include instructions for every contingency. If we worked
really hard, we could write precise English instructions, right?

Page 10

As it turns out, there is a group of people who spend their time trying to write precise English.
They're called the government, and the documents they write are called government regulations.
Unfortunately, in their effort to make the regulations precise, the government also has made the
documents almost unreadable. If you've ever read the instruction book that comes with your tax
forms, you know what precise English can be like.

Still, even with all the extra verbiage the government puts in, problems can occur. A few years
ago California passed a law requiring all motorcycle riders to wear a helmet. Shortly after this
law went into effect a cop stopped a guy for not wearing a helmet. The man suggested the
police officer take a closer look at the law.

The law had two requirements: 1) that motorcycle riders have an approved crash helmet and 2)
that it be firmly strapped on. The cop couldn't give the motorcyclist a ticket because the man
did have a helmet firmly strapped on—to his knee.

So English, with all its problems, is out as a computer language. Now, how do we
communicate with a computer?

The first computers cost millions of dollars, while at the same time a good programmer cost
about $15,000 a year. Programmers were forced to program in a language where all the
instructions were reduced to a series of numbers, called machine language. This language
could be directly input into the computer. A typical machine-language program looks like:

 1010 1111
 0011 0111
 0111 0110
 .. and so on for several hundred instructions

Whereas machines "think" in numbers, people don't. To program these ancient machines,
software engineers would write out their programs using a simple language where each word
would stand for a single instruction. This was called assembly language because the

programmers had to manually translate, or assemble, each line into machine code.

A typical program might look like:

 Program Translation
 MOV A,47 1010 1111
 ADD A,B 0011 0111
 HALT 0111 0110
 .. and so on for several hundred instructions

This process is illustrated by Figure 2-1.

Translation was a difficult, tedious, exacting task. One software engineer decided this was a
perfect job for a computer, so he wrote a program, called an assembler, that would do the job
automatically.

Page 11

Figure 2-1. Assembling a program

He showed his new creation to his boss and was immediately chewed out: "How dare you
even think of using such an expensive machine for a mere 'clerical' task?" Given the cost of an
hour of computer time versus the cost of an hour of programmer's time, this was not an
unreasonable attitude.

Fortunately, as time passed the cost of programmers went up and the cost of computers went
down. So it became more cost-effective to let the programmers write programs in assembly
language and then use a program called an assembler to translate the programs into machine
language.

Assembly language organized programs in a way that was easier for the programmers to
understand. However, the program was more difficult for the machine to use. The program had
to be translated before the machine could execute it. This was the start of a trend. Programming
languages became more and more convenient for programmers to use and started requiring
more and more computer time to translate them into something useful for computers.

Over the years a series of high-level languages has been devised. These languages are
attempts to let programmers write in something that is easy for them to understand and that is
also precise and simple enough for computers to understand.

Early high-level languages were designed to handle specific types of applications. FORTRAN
was designed for number crunching; COBOL, for writing business reports; and PASCAL, for
student use. (Many of these languages have far outgrown their initial uses. It is rumored that
Nicklaus Wirth has said, "If I had known that PASCAL was going to be so successful, I would

have been more careful in its design.")

Later on, Brian Kernighan and Dennis Ritchie developed C and Bjarne Stroustrup turned it into
C++.

Page 12

Programs from Conception to Execution

C++ programs are written in a high-level language using letters, numbers, and the other
symbols you find on a computer keyboard. Computers actually execute a very low-level
language called machine code (a series of numbers). So, before a program can be used, it
must undergo several transformations.

Programs start out as an idea in a programmer's head. He writes down his thoughts in a file,
called a sourcefile or source code, using a text editor. This file is transformed by the compiler
into an objectfile. Next a program called the linker takes the object file, combines it with
predefined routines from a standard library, and produces an executable program (a set of
machine-language instructions). In the following sections, you'll see how these various forms of
the program work together to produce the final program.

Figure 2-2 shows the steps that must be taken to transform a program written in a high-level
language into an executable program.

Figure 2-2 Transformation of a high-level language into a program

Wrappers

Fortunately you don't have to run the compiler, assembler, and linker individually. Most C++
compilers use "wrapper" programs, which determine which tools need to be run and then run
them.

Page 13

Some programming systems go even farther and provide the developer with an integrated
development environment (IDE). The IDE contains an editor, compiler, linker, project manager,
debugger, and more in one convenient package. Both Borland and Microsoft provide IDES with
their compilers.

Creating a Real Program

Before you can actually start creating your own programs you need to know how to use the
basic programming tools. This section will take you step by step through the process of
entering, compiling, and running a simple program.

This section describes how to use two different types of compilers. The first type is the
standalone or command-line compiler. This type of compiler is operated in a batch mode from
the command line. In other words, you type a command and the compiler turns your source
code into an executable program. The other type of compiler is contained in an IDE.

Most UNIX systems use command-line compilers. A few IDE-type compilers are available for
UNIX, but they are rare. On the other hand almost all the compilers used with MS-DOS and
Windows contain an integrated development environment. For command-line die-hards, these
compilers do contain command-line compilers as well.

Creating a Program Using a Command-Line Compiler

In this section you'll go through the step-by-step process needed to create a program using a
command-line compiler. Instruction is given for using a generic UNIX compiler, the Free
Software Foundation's g++ compiler, Turbo-C++, Borland C++, and Microsoft Visual C++.

However, if you are using a Borland or Microsoft compiler, you might want to skip ahead to
the section on using the IDE.

Step 1: Create a Place for Your Program

It is easier to manage things if you create a separate directory for each program you are
working on. In this case you'll create a directory called hello to hold your hello program.

In UNIX, type:

 % mkdir hello
 % cd hello

Page 14

In MS-DOS, type:

 C: MKDIR HELLO
 C: CD HELLO

Step 2: Create the Program

A program starts out as a text file. Example 2-1 shows the hello program in source form.

Example 2-1 Source for the hello.cc program

#include <iostream.h>
int main()
{
 cout << "Hello World\n";
 return (0);
}

Use your favorite text editor to enter the program. In UNIX your file should be named hello.cc
and in MS-DOS/Windows the file should be named HELLO.CPP.

WARNING

MS-DOS/Windows users should not use a word-processing
program such as Microsoft Word or WordPerfect to write their
programs. Word-processing programs add formatting codes to
the file that confuse the compiler. You must use a text editor
such as the MS-DOS EDIT program that is capable of editing
ASCII files.

Step 3: Run the Compiler

The compiler changes the source file you just created into an executable program. Each
compiler has a different command line. The commands for the most popular compilers are
listed below.

UNIX CC Compiler (Generic UNIX)

Most UNIX-based compilers follow the same generic standard. The C++ compiler is named CC.
To compile our hello program we need the following command:

 % CC -g -ohello hello.cc

The -g option enables debugging. (The compiler adds extra information to the program to
make it easier to debug.) The switch -ohello tells the compiler that the program is to be
called hello, and the final hello.cc is the name of the source file. See your compiler
manual for details on all the possible options. There are several different C++ compilers for
UNIX, so your command line may be slightly different.

Page 15

Free Software Foundation's g++ Compiler

The Free Software Foundation, the GNU people, publishes a number of high-quality programs.
(See the glossary entry ''Free Software Foundation" for information on how to get their
software.) Among their offerings is a C++ compiler called g++.

To compile a program using the g++ compiler, use the following command line:

 % g++ -g -Wall -ohello hello.cc

The additional switch -Wall turns on all the warnings.

Borland's Turbo C++ in MS-DOS

Borland International makes a low-cost MS-DOS C++ compiler called Turbo-C++. This
compiler is ideal for learning. The command line for Turbo-C++ is:

 C:> tcc -ml -v -N -P -w -ehello hello.cpp

The -ml tells Turbo-C++ to use the large memory model. (This PC has a large number of
different memory models that can be used when creating programs. This book discusses none
of them. Instead we take the attitude, "Use large and don't worry about it until you become an
expert programmer.")

The -v switch tells Turbo-C++ to put debugging information in the program. Warnings are
turned on by -w; stack checking by -N. The compiler will actually compile both C and C++.
We force a C++ compile using the -P switch. Finally, -ehello tells Turbo-C++ to create a
program named hello, and hello.cpp is the name of the source file. See the Turbo-C++
reference manual for a complete list of options.

Borland C++ in MS-DOS and Windows

In addition to Turbo-C++, Borland International also makes a full-featured, professional
compiler for MS-DOS/Windows called Borland C++. Its command line is:

 C:> bcc -ml -v -N -P -w -ehello hello.cpp

The command-line options are the same for both Turbo-C++ and Borland C++.

Microsoft Visual C++

Microsoft Visual C++ is another C++ compiler for MS-DOS/Windows. It is not as robust or full
featured as its Borland counterpart, but it will compile most of the programs in this book.
(Version 1.5 fails to handle templates and exceptions.)

To compile, use the following command line:

 C:> cl /AL /Zi /W1 hello.cpp

Page 16

The /AL option tells the program to use the large memory model. Debugging is turned on with
the /Zi option and warnings with the /W1 option.

Step 4: Execute the Program

Now, when you run the program by typing, for example:

 hello

at the UNIX or MS-DOS prompt, the message:

 Hello World

will appear on the screen.

Creating a Program Using an Integrated Development Environment

Integrated development environments provide a one-stop shop when it comes to programming.

They take a compiler, editor, and debugger and wrap them into one neat package for the
programmer.

Since development environments tend to change, the particular version you use may require
slightly different keystrokes.

Step 1. Create a Place for Your Program

It is easier to manage things if you create a separate directory for each program you are
working on. In this case you'll create a directory called HELLO to hold your hello program.

In MS-DOS, type:

 C: MKDIR HELLO
 C: CD HELLO

Step 2: Enter, Compile, and Run Your Program

Each IDE is a little different, so we've included separate instructions for each one.

Turbo-C++

1. Start the Turbo-C++ IDE with the command:

 C: TC

2. Use the Options | Compiler | Code Generation command to pull up the Code Generation
dialog box as seen in Figure 2-3. Change the memory model to large.

3. Use the Options | Compiler | Entry/Exit command to turn stack checking on, as shown in
Figure 2-4.

Page 17

Figure 2-3. Code Generation dialog box

Figure 2-4. Entry/Exit Code Generation dialog box

4. Use the Options | Compiler | Messages | Display command to bring up the Compiler
Messages dialog box as seen in Figure 2-5. Select All to display all the warning messages.

5. Use the Options I Save command to save all the options you've used so far.

Page 18

Figure 2-5. Compiler Messages dialog box

6. Use the Open Project File dialog box to select a project file. In this case your project file is
called HELLO.PRJ. The screen should look like Figure 2-6 when you're finished.

Figure 2-6 Open Project File dialog box

7. Press the Insert key to add a file to the project. The file you want to add is HELLO.CPP as
seen in Figure 2-7.

Page 19

Figure 2-7. Add to Project List dialog box

8. Press ESC to get out of the "add file" cycle.

9. Press the up-arrow key to go up one line. The line with hello.cpp should now, be highlighted
as seen in Figure 2-8

.
Figure 2-8 "Hello "project

10. Press Return to edit this file.

Page 20

11. Enter the following code.

 #include <iostream.h>
 int main()
 {
 cout << "Hello World\n";
 return (0);
 }

The results should look like Figure 2-9.

Figure 2-9. Finished project

12. Use the Run I Run command to execute the program.

13. After the program runs, control returns to the IDE. This means that you can't see what your
program output. To see the results of the program you must switch to the user screen using

the command Window I User. Pressing any key will return you to the IDE. Figure 2-10
shows the output of the program.

14. When you are finished you can save your program with the File ISave command.

15. To exit the IDE use the File I Quit command.

Page 21

Figure 2-10. User screen

Borland C++

1. Create a directory called HELLO to hold the files for our hello program. You can create a
directory using the Windows' File Manager Program or by typing the following command at
the MS-DOS prompt:

 mkdir \HELLO

2. From Windows, double-click on the Borland C++ icon to start the IDE The program begins
execution and displays a blank workspace as seen in Figure 2-11.

3. Select the Project I New Project item to create a project for our program. Fill in the "Project
Path and Name:" blank with c:\hello\hello.ide. For the Target Type select EasyWin[.exe].
The Target Model is set to Large. The results are shown in Figure 2-12.

4. Click on the Advanced button to bring up the Advanced Options dialog. Clear the .rc and
.def items as shown in Figure 2-13.

5. Click on OK to return to the New Target dialog.

6. Press Alt-F10 to bring up node sub-menu shown in Figure 2-14.

7. Select Edit Node Attributes to bring up the dialog shown in Figure 2-15. In the Style Sheet
blank, select the item "Debug Info and Diagnostics." Click on OK to return to the main
window.

Page 22

Figure 2-11 Borland C++ initial screen

Figure 2-12. New Target dialog box

Page 23

Figure 2-13 Advanced Options dialog box

Figure 2-14. Target Options sub-menu

Page 24

Figure 2-15 Node Attributes dialog box

8. Go to the Project Options dialog by selecting the Options | Project Options item. Go down to
the Compiler item and click on the "+" to expand the options.

Turn on the Test stack overflow option shown in Figure 2-16. Click on OK to save these
options.

9. Click on OK to return to the main window. Press the down arrow to select the hello[.cpp]
item in the project (see in Figure 2-17).

10. Press Return to start editing the file hello.cpp. Type in the following code:

 #include <iostream.h>
 int main()
 {
 cout << "Hello World\n";
 return (0);
 }

When you have finished, your screen will look like Figure 2-18.

11. Compile and run the program by selecting the Debug | Run menu item. The program will
run and display "Hello World" in a window, as shown in Figure 2-19.

Page 25

Figure 2-16 Project Options dialog box

Figure 2-17. Hello Project

Page 26

Figure 2-18 ''Hello World"program

Figure 2-19 "Hello World " after execution

Page 27

Microsoft Visual C++

1. Create a directory called HELLO to hold the files for our hello program. You can create a
directory using the Windows File Manager Program or by typing the following command at
the MS-DOS prompt:

 mkdir \HELLO

2. From Windows, double-click on the Visual C++ icon to start the IDE. A blank workspace
will be displayed as shown in Figure 2-20.

Figure 2-20 Microsoft Visual C++ initial screen

3. Click on Project | New to bring up the New Project dialog shown in Figure 2-21.

Fill in the Project Name blank with \hello\hello.mak. Change the Project Type to QuickWin
application [.EXE].

4. Visual C++ goes to the Edit dialog to allow you to name the source files in this project (see
Figure 2-22). In this case we have only file hello.cpp. Click on Add to enter the name in the
project and then click on Close to tell Visual C++ that there are no more files in the
program.

5. Select Options | Project Options to bring up the Project Options dialog shown in Figure
2-23.

Click on the Compiler button to change the compiler options.

Page 28

Figure 2-21 Project create screen

Figure 2-22 Project edit dialog box

Page 29

Figure 2-23 Project Options dialog box

6. Go down to the Custom Options item in the Category and change the warning level to 4 as
shown in Figure 2-24.

7. Change to the Memory Model category and change the memory model to large (see Figure
2-25).

8. Close the dialog by clicking on the OK button. This brings you back to the Project Options
dialog. Click on OK to dismiss this dialog as well.

9. Select "File | New" to start a new program file. Type in the following lines:

 #include <iostream.h>
 int main()
 {
 cout << "Hello World\n";
 return (0);
 }

Your results should look like Figure 2-26.

10. Use the File I Save As menu item to save the file under the name hello.cpp.

11. Use the Project | Build command to compile the program. The compiler will output
messages as it builds. When it is finished your screen should look like Figure 2-27.

Page 30

Figure 2-24 Compiler Options dialog box

Figure 2-25 Memory Model options

Page 31

Figure 2-26 Visual C++ with "Hello World" entered

Figure 2-27. Visual C++ build screen

Page 32

12. The program can now be started with the Debug | Go command. The results appear in
Figure 2-28.

Figure 2-28 "Hello World" results

Getting Help in UNIX

Most UNIX systems have an online documentation system called the "man pages." These can be
accessed with the man command. (UNIX uses man as an abbreviation for "manual.") To get
information about a particular subject, use the command:

 man subject

For example, to find out about the classes defined in the iostream package, you would type:

 man iostream

The command also has a keyword search mode:

 man -k keyword

To determine the name of every man page with the word "output" in its title, use the command:

 man -k output

Page 33

Getting Help in an Integrated Development Environment

Integrated development environments such as Turbo-C++, Borland C++, and Microsoft C++
have a Help menu item. This item activates a hypertext-based Help system.

Programming Exercises

Exercise 2-1: On your computer, type in the hello program and execute it.

Exercise 2-2: Take several programming examples from any source, enter them into the
computer, and run them.

Page 35

3
Style

In This Chapter:
 • • Comments
 • • C++ Code
 • • Naming Style
 • • Coding Religion
 • • Indentation and Code

Format
 • • Clarity
 • • Simplicity
 • • Consistency and

Organization
 • • Further Reading
 • • Summary

There is no programming language, no matter how structured, that will
prevent programmers from writing bad programs
—L. Flon

It is the nobiliy, of their style which will make our writers of 1840
unreadable forty years from now
—Stendhal

This chapter discusses how to use good programming style to create a simple. easy-to-read
program. It may seem backward to discuss style before you know how to program, but style is
the most important part of programming. Style is what separates the gems from the junk. It is
what separates the programming artist from the butcher. You must learn good programming
style first, before typing in your first line of code, so everything you write will be of the highest
quality.

Contrary to popular belief, programmers do not spend most of their time writing programs. Far
more time is spent maintaining, upgrading, and debugging existing code than is ever spent on
creating new work. The amount of time spent on maintenance is skyrocketing. From 1980 to
1990 the average number of lines in a typical application went from 23,000 to 1.2 million. The
average system age has gone from 4.75 to 9.4 years.

To make matters worse, 74% of the managers surveyed at the 1990 Annual Meeting and
Conference of the Software Maintenance Association reported that they "have systems in their
department that have to be maintained by specific individuals because no one else understands
them."

Page 36

Most software is built on existing software. I recently completed coding for 12 new programs.
Only one of these was created from scratch; the other 11 are adaptations of existing programs.

Programmers believe that the purpose of a program is only to present the computer with a
compact set of instructions. This is not true. Programs written only for the machine have two
problems:

• They are difficult to correct because sometimes even the author does not understand them.

• Modifications and upgrades are difficult to make because the maintenance programmer
must spend a considerable amount of time figuring out what the program does from its code.

Comments

Ideally, a program serves two purposes: First, it presents the computer with a set of
instructions and, second, it provides the programmer with a clear, easy-to-read description of
what the program does.

Example 2-1 contains a glaring error. It is an error that many programmers still make and one
that causes more trouble than any other problem. The program contains no comments.

A working but uncommented program is a time bomb waiting to explode. Sooner or later
someone will have to modify or upgrade the program, and the lack of comments will make the
job ten times more difficult. A well-commented, simple program is a work of art. Learning
how to comment is as important as learning how to code properly.

C++ has two flavors of comments. The first type starts with /* and ends with */. This type of
comment can span multiple lines as shown:

 /* This is a single-line comment. */
 /*
 * This is a multiline comment.
 */

The other form of comment begins with // and goes to the end of the line:

 // This is another form of comment.
 // The // must begin each line that is to be a comment.

Page 37

The advantage of the /* */ comment style is that you can easily span multiple lines,
whereas with the // style you have to keep putting the // on each line. The disadvantage of
/* */ is that forgetting a */ can really screw up your code.

Which flavor should you use? Whichever one makes your program as clear and as easy to read
as possible. Mostly, it's a matter of taste. In this book we use the /* */ style comments for
big, multiline comments while the // style is reserved for comments that take up only a single
line.

Whatever comment style you decide to use, you must comment your programs. Example 3-1
shows how the ''hello world" program looks after comments are added.

Example 3-1. hello2/hello2.cc

/***
 * hello -- program to print out "Hello World". *
 * Not an especially earth-shattering program. *
 * *
 * Author: Steve Oualline *
 * *
 * Purpose: Demonstration of a simple program *
 * *
 * Usage: *
 * Run the program and the message appears *
 ***/
#include <iostream.h>
main ()
{
 // Tell the world hello
 cout << "Hello World\n";
 return (0);
}

In this program, the beginning comments are in a box of asterisks (*) called a comment box.
This is done to emphasize the more important comments, much like bold characters are used for
the headings in this book. Less important comments are not boxed. For example:

 // Tell the world hello
 cout << "Hello World\n";

To write a program, you must have a clear idea of what you are going to do. One of the best
ways to organize your thoughts is to write them down in a language that is clear and easy to
understand. Once the process has been clearly stated, it can be translated into a computer
program.

Understanding what you are doing is the most important part of programming. I once wrote two
pages of comments describing a complex graphics algorithm. The comments were revised
twice before I even started coding. The actual instructions

Page 38

Poor Person's Typesetting

In typesetting you can use font style and size, bold, and italic to make different parts of your
text stand out. In programming, you are limited to a single, monospaced font. However, people
have come up with ingenious ways to get around the limitations of the typeface.

Some of the various commenting tricks are:

/**
 **
 ******** WARNING: This is an example of a *******
 ******** warning message that grabs the *******
 ******** attention of the programmer. *******
 **
 **

//------------> Another, less important warning<---------

//>>>>>>>>>>>> Major section header <<<<<<<<<<<<<<<<<<

/**
 * We use boxed comments in this book to denote the *
 * beginning of a section or program *
 **/

/*--*
 * This is another way of drawing boxes *
.-------------------------------------—---------------/

/*
 * This is the beginning of a section
 * ^^^^ ^^ ^^^ ^^^^^^^^^ ^^ ^ ^^^^^^^
 *
 * In the paragraph that follows we explain what
 * the section does and how it works.
 */

/*
 * A medium-level comment explaining the next
 * dozen or so lines of code. Even though we don't have
 * the bold typeface we can **emphasize** words.
 */

// A simple comment explaining the next line

took only half a page. Because I had organized my thoughts well (and was lucky), the program
worked the first time.

Page 39

Your program should read like an essay. It should be as clear and easy to understand as
possible. Good programming style comes from experience and practice. The style described in
the following pages is the result of many years of programming experience. It can be used as a
starting point for developing your own style. These are not rules, but only suggestions. The only
rules are: Make your program as clear, concise, and simple as possible.

At the beginning of the program is a comment block that contains information about the
program. Boxing the comments makes them stand out. The list that follows contains some of the
sections that should be included at the beginning of your program. Not all programs will need
all sections, so use only those that apply.

Heading
The first comment should contain the name of the program. Also include a short description
of what it does. You may have the most amazing program, one that slices, dices, and solves
all the world's problems, but it is useless if no one knows what it does.

Author
You've gone to a lot of trouble to create this program. Take credit for it. Also, if someone
else must later modify the program, he or she can come to you for information and help.

Purpose
Why did you write this program? What does it do?

Usage
In this section give a short explanation of how to run the program. In an ideal world, every
program comes with a set of documents describing how to use it. The world is not ideal.
Oualline's law of documentation states: 90% of the time the documentation is lost. Out of the
remaining 10%, 9% of the time the revision of the documentation is different from the
revision of the program and therefore completely useless. The 1% of the time you actually
have documentation and the correct revision of the documentation, the documentation will
be written in Japanese.

To avoid falling prey to Oualline's law of documentation, put the documentation in the
program.

References
Creative copying is a legitimate form of programming (if you don't break the copyright laws
in the process). In the real world, it doesn't matter how you get a working program, as long
as you get it; but, give credit where credit is due. In this section you should reference the
original author of any work you copied.

Page 40

File formats
List the files that your program reads or writes and a short description of their format.

Restrictions
List any limits or restrictions that apply to the program, such as: The data file must be
correctly formatted; the program does not check for input errors.

Revision history
This section contains a list indicating who modified the program and when and what
changes have been made. Many computers have a source control system (UNIX: RCS and
SCCS; MS-DOS/Windows: MKS-RCS, PCVS) that will keep track of this information for you.

Error handling
If the program detects an error, what does it do with the error?

Notes
Include special comments or other information that has not already been covered.

The format of your beginning comments will depend on what is needed for the environment in
which you are programming. For example, if you are a student, the instructor may ask you to
include in the program heading the assignment number, your name, student identification
number, and other information. In industry, a project number or part number might be included.

Comments should explain everything the programmer needs to know about the program, but no
more. It is possible to overcomment a program. (This is rare, but it does happen.) When
deciding on the format for your heading comments, make sure there is a reason for everything
you include.

Inserting Comments—The Easy Way

If you are using the UNIX editor vi, put the following in your .exrc file to make it
easier to construct boxes.

 :abbr #b /**
 :abbr #e **/
These two lines define vi abbreviations #b and #e, so that typing #b<re
turn> at the beginning of a block will cause the string:

 /**
to appear (for beginning a comment box). Typing #e<return> will end a box.
The number of stars was carefully selected so the end of the box is aligned on a
tab stop.

Page 41

C++ Code

The actual code for your program consists of two parts: variables and executable instructions.
Variables are used to hold the data used by your program. Executable instructions tell the
computer what to do with the data. C++ classes are a combination of data and the instructions
that work on the data. They provide a convenient way of packaging both instructions and data.

A variable is a place in the computer's memory for storing a value. C++ identifies that place by
the variable name. Names can be any length and should be chosen so their meaning is clear.
(Actually, a limit does exist, but it is so large that you probably will never encounter it.) Every
variable in C++ must be declared. (Variable declarations are discussed in Chapter 9, Variable
Scope and Functions.) The following declaration tells C++ that you are going to use three
integer (int) variables named p, q, and r:

 int p,q,r;

But what are these variables for? The reader has no idea. They could represent the number of
angels on the head of a pin, or the location and acceleration of a plasma bolt in a game of
Space Invaders. Avoid abbreviations. Exs. abb. are diff. to rd. and hd. to ustnd. (Excess

abbreviations are difficult to read and hard to understand.)

Now consider another declaration:

 int account_number;
 int balance_owed;

Now we know that we are dealing with an accounting program, but we could still use some
more information. For example, is the balance_owed in dollars or cents? It would be much
better if we added a comment after each declaration explaining what we are doing.

 int account_number; // Index for account table
 int balance_owed; // Total owed us (in pennies)

By putting a comment after each declaration we, in effect, create a mini-dictionary where we
define the meaning of each variable name. Since the definition of each variable is in a known
place, it's easy to look up the meaning of a name. (Programming tools, such as editors,
cross-referencers, and grep, can also help you quickly find a variable's definition.)

Units are very important. I was once asked to modify a program that converted plot data files
from one format to another. Many different units of length were used throughout the program
and none of the variable declarations was

Page 42

commented. I tried very hard to figure out what was going on, but it was impossible to
determine what units were being used in the program. Finally, I gave up and put the following
comment in the program:

 /**
 * Note: I have no idea what the input units are, nor *
 * do I have any idea what the output units are, *
 * but I have discovered that if I divide by 3 *
 * the plots look about the right size. *
 **/

One problem many beginning programmers have is that they describe the code, not the variable.
For example:

 int top_limit; // Top limit is an integer [bad comment]

It's obvious from the code that top_limit is an integer. What I want to know is what is
top_limit. Tell me.

 int top_limit; // Number of items we can load before losing data

You should take every opportunity to make sure your program is clear and easy to understand.
Do not be clever. Cleverness makes for unreadable and unmaintainable programs. Programs,
by their nature, are extremely complex. Anything you can to do to cut down on this complexity
will make your programs better. Consider the following code, written by a very clever
programmer.

 while ('\n' != *p++ = *q++);

It is almost impossible for the reader to tell at a glance what this mess does. Properly written

this would be:

while (1) {
 *destination_ptr = *source_ptr;
 ++destination_ptr;
 ++source_ptr;
 if (*(destination_ptr-1) == '\n')
 break; // exit the loop if done
}

Although the second version is longer, it is much clearer and easier to understand. Even a
novice programmer who does not know C++ well can tell that this program has something to
do with moving data from a source to a destination.

The computer doesn't care which version is used. A good compiler will generate the same
machine code for both versions. It is the programmer who benefits from the verbose code.

Naming Style

Names can contain both uppercase and lowercase letters. In this book we use all lowercase
names for variables (e.g., source_ptr, current_index). All uppercase

Page 43

is reserved for constants (e.g., MAX_ITEMS, SCREEN_WIDTH). This convention is the
classic convention followed by most C and C++ programs.

Many newer programs use mixed-case names (e.g., RecordsInFile). Sometimes they use
the capitalization of the first letter to indicate information about the variable. For example,
recordsInFile might be used to denote a local variable while RecordsInFile would
denote a global variable. (See Chapter 9, Variable Scope and Functions, for information about
local and global variables.)

Which naming convention you use is up to you. It is more a matter of religion than of style.
However, using a consistent naming style is extremely important. In this book we have chosen
the first style, lowercase variable names and uppercase constants, and we use it throughout the
book.

Coding Religion

Computer scientists have devised many programming styles. These include structured
programming, top-down programming, and goto-less programming. Each of these styles has its
own following or cult. I use the term "religion" because people are taught to follow the rules
blindly without knowing the reasons behind them. For example, followers of the goto-less cult
will never use a goto statement, even when it is natural to do so.

The rules presented in this book are the result of years of programming experience. I have
discovered that by following these rules, I can create better programs. You do not have to
follow them blindly. If you find a better system, by all means use it. (If it really works, drop me
a line. I'd like to use it, too.)

Indentation and Code Format

To make programs easier to understand, most programmers indent their programs. The general
rule for a C++ program is to indent one level for each new block or conditional. In Example
3-1 there are three levels of logic, each with its own indentation level. The while statement is
outermost. The statements inside the while are at the next level. The statement inside the if
(break) is at the innermost level.

There are two styles of indentation, and a vast religious war is being waged in the
programming community as to which is better. The first is the short form:

 while (! done) {
 cout << "Processing\n";
 next_entry();
 }

Page 44

 if (total <= 0) {
 cout << "You owe nothing\n";
 total = 0;
 } else {
 cout << "You owe " << total << " dollars\n";
 all_totals = all_totals + total;
 }

In this case, most of the curly braces are put on the same line as the statements. The other style
puts the curly braces on lines by themselves:

 while (! done)
 {
 cout << "Processing\n";
 next_entry();
 }

 if (total <= 0)
 {
 cout << "You owe nothing\n";
 total = 0;
 }
 else

 cout << "You owe " << total << " dollars\n";
 all_totals = all_totals + total;
 }

Both formats are commonly used. You should use the format you feel most comfortable with.
This book uses the short form.

The amount of indentation is left to the programmer. Two, four, and eight spaces are common.
Studies have shown that a four-space indent makes the most readable code. You can choose
any indent size as long as you are consistent.

Clarity

A program should read like a technical paper. It should be organized into sections and

paragraphs. Procedures form a natural section boundary. You should organize your code into
paragraphs. It is a good idea to begin a paragraph with a topic sentence comment and separate
it from other paragraphs by a blank line. For example:

 // poor programming practice
 temp = box_xl;
 box_xl = box_x2;
 box_x2 = temp;
 temp = box_yl;
 box_yl = box_y2;
 box_y2 = temp;

Page 45

A better version would be:

 /*
 * Swap the two corners
 */

 /* Swap X coordinate */
 temp = box_x1;
 box_xl = box_x2;
 box_x2 = temp;

 /* Swap Y coordinate */
 temp = boxyl;
 box_yl = boxy2;
 box_y2 = temp;

Simplicity

Your program should be simple. Some general rules of thumb are:

• A single function should not be longer than one or two pages. (See Chapter 9, Variable
Scope and Functions.) If it gets longer, it can probably be split into two simpler functions.
This rule comes about because the human mind can hold only so much in short-term memory.
Three pages is about the most the human mind can wrap itself around in one sitting.

• Avoid complex logic such as multiple nested ifs. The more complex your code, the more
indentation levels you will need. About the time you start running into the right margin, you
should think about splitting your code into multiple procedures and thus decreasing the level
of complexity.

• Did you ever read a sentence, like this one, where the author went on and on, stringing
together sentence after sentence with the word "and," and didn't seem to understand the fact
that several shorter sentences would do the job much better, and didn't it bother you?

C++ statements should not go on forever. Long statements should be avoided. If an equation
or formula looks like it is going to be longer than one or two lines, you probably should split
it into two shorter equations.

• Split large single code files into multiple smaller ones. (See Chapter 23, Modular
Programming, for more information about programming with multiple files.) In general I

like to keep my files smaller than 1,500 lines. That way they aren't too difficult to edit and
print.

• When using classes (see Chapter 13, Simple Classes), put one class per module.

• Finally, the most important rule: Make your program as simple and easy to understand as
possible, even if it means breaking some of the rules. The goal

Page 46

is clarity, and the rules given in this chapter are designed to help you accomplish that goal.
If the rules get in the way, get rid of them. I have seen one program with a single statement
that spanned more than 20 pages. However, because of the specialized nature of the
program, this statement was simple and easy to understand.

Consistency and Organization

Good style is only one element in creating a high-quality program. Consistency is also a factor.
This book is organized with the table of contents at the front and the index at the back. Almost
every book printed has a similar organization. This consistency makes it easy to look up a
word in the index or find a chapter title in the table of contents.

Unfortunately the programming community has developed a variety of coding styles. Each has
its own advantages and disadvantages. The trick to efficient programming in a group is to pick
one style and then use it consistently. That way you can avoid the problems and confusion that
arise when programs written in different styles are combined.

Good style is nice, but consistency is better.

Further Reading

In this chapter we have touched only the basics of style. Later chapters expand

on this base, adding new stylistic elements as you learn new elements of the

language.

Summary

A program should be concise and easy to read. It must serve as a set of computer instructions,
but also as a reference work describing the algorithms and data used inside it. Everything
should be documented with comments. Comments serve two purposes. First, they describe your
program to any maintenance programmer who has to fix it and, second, comments help you
remember what you did.

Class discussion 1: Create a style sheet for class assignments. Discuss what comments should
go into the programs and why.

Class discussion 2: Analyze the style of an existing program. Is the program written in a
manner that is clear and easy to understand? What can be done to improve the style of the
program?

Page 47

Exercise 3-1: Go through all the other programming exercises in this book and write comment
blocks for them. This will serve several purposes. First, it will give you practice commenting.
Second, it will short-circuit the old programmer's excuse, ''But I didn't have time to put in the
comments."

Page 49

4
Basic Declarations and Expressions

In This Chapter:
 •• The Elements of a

Program
 •• Simple Expressions
 •• The cout Output

Class
 •• Basic Program

Structure
 •• Variables and

Storage
 •• Variable

Declarations
 •• Integers
 •• Assignment

Statements
 •• Floating Point

Numbers
 •• Programming

Exercises
 •• Answers to Chapter

Questions

A journey of a thousand miles must begin with a single step
—Lao-Zi

If carpenters made buildings the way programmers make programs, the
first woodpecker to come along would destroy all of civilization
—Anonymous

The Elements of a Program

If you are going to construct a building, you need two things: the bricks and a blueprint that tells
you how to put them together. In computer programming you also need two things: data
(variables) and instructions (code). Variables are the basic building blocks of a program.

Instructions tell the computer what to do with the variables.

Comments are used to describe the variables and instructions. They are notes by the author
documenting the program so it is clear and easy to read. Comments are ignored by the
computer.

In construction, before we can start we must order our materials: "We need 500 large bricks,
80 half-size bricks, and 4 flagstones." Similarly, in C++ you must declare all variables before
you can use them. You must name each one of your "bricks" and tell C++ what type of "brick"
to use.

After the variables are defined you can begin to use them. In construction the basic structure is
a room. By combining many rooms we form a building. In C++ the basic structure is a function.
Functions can be combined to form a program.

Page 50

An apprentice builder does not start out building the Empire State Building. He starts on a
one-room house. In this chapter you will concentrate on constructing simple, one-function
programs.

Basic Program Structure

The basic elements of a program are the data declarations, functions, and comments. Let's see
how these can be organized into a simple C++ program.

The basic structure of a one-function program is:

 /***************************************
 * Heading comments *
 ***************************************/

 data declarations
 main()
 {
 executable statements
 return(0);
 }

The heading comments tell the programmer all about the program. The data declarations
describe the data that the program is going to use.

Our single function is named main. The name main is special, because it is the first function
called. Any other functions are called directly or indirectly from main. The function main
begins with:

 main()
 {

and ends with:

 return(0);
 }

The line return (0); is used to tell the operating system (UNIX or MSDOS/Windows) that

the program exited normally (status=0). A nonzero status indicates an error—the bigger the
return value, the more severe the error. Typically 1 is used for most simple errors, such as a
missing file or bad command-line syntax.

Now let's take a look at the "Hello World" program (Example 3-1).

At the beginning of the program is a comment box enclosed in /* and */. Following this is the
line:

 #include <iostream.h>

Page 51

This statement signals C++ that you are going to use a set of standard classes called the I/O
stream classes. This is a type of data declaration.* Later you use the class cout from this
package. (We define a class more completely in Chapter 13, Simple Classes, but until we
know more we'll treat cout as a "black box" that sends data to the console.)

The main routine contains the instruction:

 cout << "Hello World\n";

which is an executable statement instructing C++ to print the message "Hello World" on the
screen. C++ uses a semicolon to end a statement in much the same way we use a period to end
a sentence. Unlike with line-oriented languages such as BASIC, the end of a line does not end a
statement. The sentences in this book can span several lines—the end of a line is treated as a
space separating words. C++ works the same way. A single statement can span several lines.
Similarly, you can put several sentences on the same line, just as you can put several C++
statements on the same line. However, most of the time your program is more readable if each
statement starts on a separate line.

We are using the standard class cout (console out) to output the message. A standard class is
a generally useful C++ object that has already been defined and put in the standard library. A
library is a collection of classes, functions, and data that have been grouped together for reuse.
The standard library contains classes and functions for input, output, sorting, advanced math,
and file manipulation. See your C++ reference manual for a complete list of library functions
and standard classes.

"Hello World" is one of the simplest C++ programs. It contains no computations, merely
sending a single message to the screen. It is a starting point. Once you have mastered this
simple program, you have done a great deal of things right. The program is not as simple as it
looks. But once you get it working, you can move on to create more complex code.

Simple Expressions

Computers can do more than just print strings. They can also perform calculations.
Expressions are used to specify simple computations. C++ has the five simple operators listed
in Table 4-1.

* Technically, the statement causes a set of data declarations to be taken from an include file Chapter
10, The C++ Preprocessor, discusses include files.

Page 52

Table 4-1. Simple Operators

Operator Meaning

* Multiply

/ Divide

+ Add

- Subtract

% Modulus (remainder after division)

Multiply (*), divide (/), and modulus (%) have precedence over addition (+) and subtraction
(-). Parentheses may be used to group terms. Thus:

 (1 + 2) * 4

yields 12. while:

 1+2*4

yields 9.

The program in Example 4-1 computes the value of the expression (1 + 2) * 4.

Example 4-1 Simple Expression

main()
{
 (1 + 2) * 4;
 return(0);
}

Although we calculate the answer, we don't do anything with it. (This program will generate a
"null effect" warning to indicate that there is a correctly written, but useless, statement in the
program.)

If we were constructing a building, think about how confused a worker would be if we said,
"Take your wheelbarrow and go back and forth between the truck and the building site."

"Do you want me to carry bricks in the wheelbarrow?"

"No. Just go back and forth."

You need to output the results of your calculations.

Page 53

The cout Output Class

The standard class variable cout is used to output data to the console. We'll learn what a
class is later in Chapter 13, Simple Classes. But for now all we have to know is that the
operator <<* tells C++ what to output. So the statement:

 cout << "Hello World\n";

tells C++ to take the string "Hello World\n" and write it to the console. Multiple <<
operators may be used together. For example, both the following lines output the same
message:

 cout << "Hello World\n";
 cout << "Hello " << "World\n";

Expressions can also be output this way, such as:

 cout << "Half of " << 64 << " is " << (64 / 2) << "\n";

When this is executed it will write:

 Half of 64 is 32

on the console. Note that we had to put a space after the "of" in "Half of." There also is a space
on either side of the "is" string. These spaces are needed in the output to separate the numbers
from the text. Suppose we didn't put the spaces in and the code looked like:

 // Problem code
 cout << "Half of" << 64 << "is" << (64 / 2) << "\n";

At first glance this code looks perfectly normal. There are spaces around each of the numbers.
But these spaces are not inside any string, so they will not be output. The result of this code is:

 Half of64is32

Omitting needed spaces is a common first-time programming mistake. Remember, only the text
inside the quotation marks will be output.

Variables and Storage

C++ allows you to store values in variables. Each variable is identified by a variable name.

Additionally, each variable has a variable type. The type tells C++ how the variable is going
to be used and what kind of numbers (real, integer) it can hold.

* Technically << is the left shift operator; however, the cout class has overloaded this operator and
made it the output operator (See Chapter 16, File Input/Output, for a complete discussion of IO
classes and Chapter 18. Operator Overloading, for a definition of overloading.)

Page 54

Names start with a letter or underscore (_) followed by any number of letters, digits, or
underscores. Uppercase is different from lowercase, so the names "sam," "Sam," and "SAM"
specify three different variables. To avoid confusion, it is better to use different names for
variables and not depend on case differences.

Most C++ programmers use all lowercase variable names. Some names, such as int,
while, for, and float, have a special meaning to C++ and are considered reserved
words. They cannot be used for variable names.

The following is an example of some variable names:

 average // average of all grades
 pi // pi to 6 decimal places
 number_of_students // number of students in this class

The following are not variable names:

 3rd_entry // Begins with a number
 all$done // Contains a "$"
 the end // Contains a space
 int // Reserved word

Avoid variable names that are similar. For example the following illustrates a poor choice of
variable names:

 total // total number of items in current entry

 totals // total of all entries

A much better set of names is:

 entry_total // total number of items in current entry

 all_total // total of all entries

Variable Declarations

Before you can use a variable in C++, it must be defined in a declaration statement. A
variable cannot be used unless it is declared.

A variable declaration serves three purposes:

1. It defines the name of the variable.

2. It defines the type of the variable (integer, real, character, etc.).

3. It gives the programmer a description of the variable.

The declaration of a variable answer can be:

 int answer; // the result of our expression

The keyword int tells C++ that this variable contains an integer value. (Integers are defined
below.) The variable name is answer. The semicolon is used to indi-

Page 55

cate the statement end, and the comment is used to define this variable for the programmer.

The general form of a variable declaration is:

 type name; // comment

Type is one of the C++ variable types (int, float, etc.) Name is any valid variable
name. The comment explains what the variable is and what it will be used for. Variable
declarations come just before the main() line at the top of a program. (In Chapter 9, Variable
Scope and Functions, you will see how local variables may be declared elsewhere.)

Integers

One variable type is integer. Integers (also known as whole numbers) have no fractional part or
decimal point. Numbers such as 1, 87, and -222 are integers. The number 8.3 is not an integer
because it contains a decimal point. The general form of an integer declaration is:

 int name; // comment

A calculator with an eight-digit display can only handle numbers between 99,999,999 and
-99,999,999. If you try to add 1 to 99,999,999, you will get an overflow error. Computers
have similar limits. The limits on integers are implementation dependent, meaning they
change from computer to computer.

Calculators use decimal digits (0-9). Computers use binary digits (0-1) called bits. Eight bits
make a byte. The number of bits used to hold an integer varies from machine to machine.
Numbers are converted from binary to decimal for printing.

On most UNIX machines integers are 32 bits (4 bytes), providing a range of 2,147,483,647
(231- 1) to -2,147,483,648 (-231). On the PC in Turbo C++, only 16 bits (2 bytes) are used, so
the range is 32,767 (215- 1) to -32,768 (-215).

Question 4-1: The following will work on a UNIX machine but willfail on a PC

 int zip; // zip code for current address

 zip = 92126;

Why does this fail? What will be the result when run on a PC?

Page 56

Assignment Statements

Variables are given a value through the use of assignment statements. Before a variable can be
used it must be declared. For example:

 int answer; // Result of a simple computation

The variable may then be used in an assignment statement, such as:

 answer = (1 + 2) * 4;

The variable answer on the left side of the equals sign (=) is assigned the value of the
expression (1 + 2) * 4 on the right side. The semicolon ends the statement.

When you declare a variable, C++ allocates storage for the variable and puts an unknown
value inside it. You can think of the declaration as creating a box to hold the data. When it
starts out it is a mystery box containing an unknown quantity. This is illustrated in Figure 4-1A.
The assignment statement computes the value of the expression and drops that value into the
box as shown in Figure 4-1B.

Figure 4-1. Declaration and assignment statements

The general form of the assignment statement is:

 variable = expression;

The equals sign (=) is used for assignment, not equality.

Page 57

In Example 4-2 the variable term is used to store an integer value that is used in two later
expressions. Variables, like expressions, can be output using the output operator <<, so we use
this operator to check the results.

Example 4-2 tterm/tterrm.cc

#include <iostream.h>

int term; // term used in two expressions
main()
{

 term = 3 * 5;
 cout << "Twice << term << " is "<< 2*term << "\n";
 cout << "Three times " << term << " is " << 3*term << "\n";
 return (0);
}

Floating Point Numbers

Real numbers are numbers that have a fractional part. Because of the way they are stored
internally, real numbers are also known as floating point numbers. The numbers 5.5, 8.3, and

-12.6 are all floating point numbers. C++ uses the decimal point to distinguish between floating
point numbers and integers, so a number such as 5.0 is a floating point number while 5 is an
integer. Floating point numbers must contain a decimal point. Numbers such as 3.14159, 0.5,
1.0, and 8.88 are floating point numbers.

Although it is possible to omit digits before the decimal point and specify a number as .5
instead of 0.5, the extra 0 makes it clear that you are using a floating point number. A similar
rule applies to 12. versus 12.0. Floating point zero should be written as 0.0.

Additionally, a floating point number may include an exponent specification of the form e±exp.

For example, 1.2e34 is shorthand for 1.2*1034.

The form of a floating point declaration is:

 float variable; // comment

Again, there is a limit on the range of floating-point numbers the computer can handle. The
range varies widely from computer to computer. Floating point accuracy is discussed further in
Chapter 19, Floating Point.

Floating point numbers may be output using cout. For example:

 cout << "The answer is " << (1.0 / 3.0) << "\n";

Page 58

Floating Point Versus Integer Divide

The division operator is special. There is a vast difference between an integer divide and a
floating-point divide. In an integer divide, the result is truncated (any fractional part is
discarded). For example, the integer divide value of 19/10 is 1.

If either the divisor or the dividend is a floating-point number, a floating point divide is
executed. In this case 19.0/10.0 is 1.9. (19/10.0 and 19.0/10 are also floating-point divides;
however, 19.0/10.0 is preferred for clarity.) There are several examples in Table 4-2.

Table 4-2 Expression Examples

Expression Result Result Type

1 + 2 3 Integer

1.0 + 2 0 3.0 Floating point

19 / 10 1 Integer

19.0 / 10.0 1.9 Floating point

C++ allows the assignment of an integer expression to a floating-point variable. It will
automatically perform the integer-to-floating-point conversion and then make the assignment. A
similar conversion is performed when assigning a floating point number to an integer. Floating
point numbers are truncated when assigned to integer variables.

Example 4-3 float/float1c

int integer; // an integer
float floating; // a floating point number

main()
{
 floating = 1.0 / 2.0; // assign floating 0.5
 integer = 1 / 3; // assign integer 0
 floating = (1 / 2) + (1 / 2); // assign floating 0.0
 floating = 3.0 / 2.0; // assign floating 1.5
 integer = floating; // assign integer 1
 return (0);
}

Notice that the expression 1/2 is an integer expression resulting in an integer divide and an
integer result of 0.

Page 59

Question 4-2: Why does Example 4-4 print ''The value of 1/3 is 0"? What must be done to this
program to fix it?

Example 4-4. float2/float2.cc

#include <iostream.h>

float answer; // the result of the divide

main ()
{
 answer = 1/3;
 cout << "The value of 1/3 is " << answer << "\n";
 return (0);
}

Characters

The type char represents single characters. The form of a character declaration is:

 char variable; //comment

Characters are enclosed in single quotation marks ('). 'A', 'a' and ' ! ' are
character constants. The backslash character (\) is called the escape character. It is used to
signal that a special character follows. For example, the character \t can be used to
represent the single character "tab." \n is the new-line character. It causes the output device to
go to the beginning of the next line, similar to a return key on a typewriter. The character \\ is
the backslash itself. Finally, characters can be specified by \nnn where nnn is the octal code
for the character. Table 4-3 summarizes these special characters. For a full list of ASCII
character codes, see Appendix A.

Table 4-3. Special Characters

Character Name Meaning

Character Name Meaning

\b Backspace Move the cursor to the left one character

\f Form feed Go to top of a new page

\n New line Go to the next line

\r Return Go to the beginning of the current line

\t Tab Advance to the next tab stop (eight-column
boundary)

\' Apostrophe or single
quotation mark

The character '

\" Double quote The character"

\nnn The character nnn The character number nnn (octal)

\NN The character NN The character number NN (hexadecimal)

Page 60

NOTE

While characters are enclosed in single quotes ('), a
different data type, the string, is enclosed in double
quotes ("). A good way to remember the difference
between these two types of quotes is that single
characters are enclosed in single quotes Strings can have
any number of characters (including double quote
characters), and they are enclosed in double quotes.

Example 4-5 reverses three characters.

Example 4-5 print3/print3 cc

#include <iostream.h>

char char1; // first character
char char2; // second character
char char3; // third character

main()
{
 charl = 'A';
 char2 = 'B';
 char3 = 'C';
 cout << charl << char2 << char3 << " reversed is "<<
 char3 << char2 << charl << "\n";
 return (0);
}

When executed, this program prints:

ABC reversed is CBA

Boolean

The C++ Draft Standard defines a boolean type, bool, that can have the value true or false.
Most compilers do not yet support this new type, so we will not discuss it here. Instead, it can
be found in Chapter 28, C++'s Dustier Corners, under the section "Vampire Features."

Programming Exercises

Exercise 4-1: Write a program to print your name, Social Security number, and date of birth.

Exercise 4-2: Write a program to print a block E using asterisks (*), where the E is 7
characters high and 5 characters wide.

Page 61

Exercise 4-3: Write a program to compute the area and circumference of a rectangle 3 inches
wide by 5 inches long. What changes must be made to the program so it works for a rectangle
6.8 inches wide by 2.3 inches long?

Exercise 4-4: Write a program to print "HELLO" in big block letters where each letter is 7
characters high and 5 characters wide.

Answers to Chapter Questions

Answer 4-1: The largest number that can be stored in an int on a UNIX machine is
2,147,483,647. When using Turbo-C++ the limit is 32,767. The zip code 92126 is larger than
32,767, so it is mangled and the result is 26,590.

This problem can be fixed by using a long int instead of just an int. The various types of
integers are discussed in Chapter 5, Arrays. Qualifiers, and Reading Numbers.

Answer 4-2: The problem concerns the division: 1/3. The number 1 and the number 3 are both
integers, so this is an integer divide. Fractions are truncated in an integer divide. The
expression should be written as:

 answer = 1.0 / 3.0

Page 63

5
Arrays, Qualifiers, and Reading Numbers

In This Chapter:
 •• Arrays
 •• Strings
 •• Reading Data
 •• Initializing

Variables
 •• Multidimensional

Arrays
 •• Types of Integers
 •• Types of Floats
 •• Declarations
 •• Qualifiers
 •• Hexadecimal and
 •• Octal Constants
 •• Operators for
 •• Performing

Shortcuts
 •• Programming

Exercises

That mysterious independent variable of political calculations, Public
Opinion.
—Thomas Henery Huxley

Arrays

So far in constructing our building we have named each brick (variable). That is fine for a
small number of bricks, but what happens when we want to construct something larger? We
would like to point to a stack of bricks and say, "That's for the left wall. That's brick 1, brick 2,
brick 3. . . ."

Arrays allow us to do something similar with variables. An array is a set of consecutive
memory locations used to store data. Each item in the array is called an element. The number
of elements in an array is called the dimension of the array. A typical array declaration is:

 // List of data to be sorted and averaged
 int data_list[3];

This declares data_list to be an array of the three elements data_list[0],
data_list [1], and data_list[2], which are separate variables. To reference an
element of an array, you use a number called the index (the number inside the square brackets
[]). C++ is a funny language and likes to start counting at 0, so these three elements are
numbered 0-2.

Page 64

NOTE

Common sense tells you that when

you declare data_list to be three
elements long, data_list[3]
would be valid. Common sense is
wrong and data_list[3] is
illegal.

Example 5-1 computes the total and average of five numbers.

Example 5-1. fivefive cc

#include <iostream.h>

float data[5]; // data to average and total
float total; // the total of the data items
float average; // average of the items

main ()
{
 data[0] = 34.0;
 data[1] = 27.0;
 data[2] = 46.5;
 data[3] = 82.0;
 data[4] = 22.0;

 total = data[0] + data[1] + data[2] + data[3] + data[4];
 average = total / 5.0;
 cout << "Total "<< total << " Average " << average << '\n';
 return (0);
}

This program outputs:

 Total 211.5 Average 42.3

Strings

Strings are arrays of characters. The special character ' \0' (NUL) is used to indicate the end of
a string.

Example:

 char name[4];

 main ()
 {
 name[0] = 'S';
 name[1] = 'a';
 name[2] = 'm';
 name[3] = '\0';
 return (0);
 }

Page 65

This creates a character array four elements long. Note that we had to allocate one character
for the end-of-string marker.

String constants consist of text enclosed in double quotes ("). You may have already noticed
that we've used string constants extensively for output with the cout standard class. C++ does
not allow one array to be assigned to another, so you can't write an assignment of the form:

 name = "Sam"; // Illegal

Instead you must use the standard library function strcpy to copy the string constant into the
variable. (strcpy copies the whole string including the end-of string character.) To initialize
the variable name to "Sam" you would write:

 #include <string.h>

 char name[4];

 main()
 {
 strcpy(name, "Sam"); // Legal
 return (0);
 }

NOTE

The line #include <string.h> is needed to
inform C++ that you are using the string function
library.

C++ uses variable-length strings. For example, the declaration:

 #include <string.h>

 char string[50];

 main()
 {
 strcpy(string, "Sam");

creates an array (string) that can contain up to 50 characters. The size of the array is 50, but
the length of the string is 3. Any string up to 49 characters long can be stored in string. (One
character is reserved for the NULL that indicates the end of the string.)

There are several standard routines that work on string variables. These are listed in Table
5-1.

Table 5-1 String Functions

Function Description

strcpy(string1, string2) Copies string2 into string1

strcat(string1, string2) Concatenates string2 onto the end of string1

(Table 5-1 continued on next page)

Page 66

Table 5-1 String Functions (Continued from previous page)

Function Description

length = strlen(string) Gets the length of a string

strcmp(stringl, string2) 0 if string1 equals string2; otherwise, nonzero

Example 5-2 illustrates how strcpy is used.

Example 5-2 str/sam cc

#include <iostream.h>
#include <string.h>

char name[30]; // First name of someone

main()
{
 strcpy(name, "Sam");
 cout << "The name is " << name << '\n';
 return (0);
}

Example 5-3 takes a first name and a last name and combines the two strings. The program
works by initializing the variable first to the first name (Steve). The last name (Oualline) is
put in the variable last. To construct the full name, the first name is copied into
full_name. Then strcat is used to add a space. We call strcat again to tack on the last
name.

The dimension of the string variables is 100 because we know that no one we are going to
encounter has a name more than 99 characters long. (If we get a name more than 99 characters
long, our program will screw up and split the name in two.)

Example 5-3 name2/man2 cc

#include <string.h>
#include <iostream.h>

char first[100]; // first name
char last[100]; // last name
char full_name[100]; // full version of first and last name

main ()
{
 strcpy(first, "Steve"); // Initialize first name
 strcpy(last, "Oualline"); // Initialize last name

 strcpy(full_name, first); // full = "Steve"
 // Note: strcat not strcpy
 strcat(full_name, " "); // full = "Steve"
 strcat(full_name, last); // full = "Steve Oualline"

Page 67

Example 5-3. name2/man2.cc (Continued)

 cout << "The full name is " << full_name << '\n';
 return (0);
}

The output of this program is:

 The full name is Steve Oualline

Reading Data

So far you've learned how to compute expressions and output the results. You need to have
your programs read numbers as well. The output class variable cout uses the operator << to
write numbers. The input class variable cin uses the operator >> to read them. For example,
the code:

 cin >> price >> numbero_on_hand;

reads two numbers: price and number_on_hand. The input to this program should be two
numbers, separated by white space. For example, if you type:

 32 5

then price gets the value 32 and number_on_hand gets 5.

NOTE

This does not give you very precise control over
your input. C++ does a reasonable job for simple
input. If your program expects a number and you
type <enter> instead, the program will skip the
<enter> (it's white space) and wait for you to
type a number. Sometimes this may lead you to think
your program's stuck.

In Example 5-4, we use cin to get a number from the user and then we double it:

Example 5-4 double/double.cc

#include <iostream.h>
char line[100]; // input line from console
int value; // a value to double

main ()
{
 cout << "Enter a value: ";
 cin >> value;
 cout << "Twice " << value << " is " << value * 2 << '\n';
 return (0);
}

Page 68

This program asks the user for a single number and doubles it. Notice that there is no \n at the
end of Enter a value:. This is because we do not want the computer to print a newline
after the prompt. For example, a sample run of the program might look like:

 Enter a value: 12
 Twice 12 is 24

If we replaced Enter a value: with Enter a value: \n the result would be:

 Enter a value:
 12
 Twice 12 is 24

Question 5-1: Example 5-5 is designed to compute the area of a triangle, given its width
and height. For some strange reason, the compiler refuses to believe that we declared the
variable width. The declaration is right there on line two, just after the definition of
height. Why isn't the compiler seeing it?

Example 5-5 comment/comment.cc

#include <iostream.h>

int height; /* the height of the triangle
int width; /* the width of the triangle */
int area; /* area of the triangle (computed) */

main()
{
 cout << "Enter width height? ";
 cin >> width >> height;
 area = (width * height) / 2;
 cout << "The area is " << area << '\n';
 return (0);
}

The general form of a cin statement is:

 cin >> variable;

This works for all types of simple variables such as int, float, and char.

Reading strings is a little more difficult. To read a string, use the statement:

 cin.getline(string, sizeof(string));

For example:

 char name[100]; // The name of a person

 cin.getline(name, sizeof(name));

We discuss the getline and sizeof functions in Chapter 16, File Input/Output.

Page 69

When reading a string, the cin class considers anything up to the end-of-line part of the string.

Example 5-6 reads a line from the keyboard and reports the line's length.

Example 5-6 len/len cc

#include <string.h>
#include <iostream.h>

char line[100]; // A line of data

main()
{
 cout << "Enter a line:";
 cin.getline(line, sizeof(line));

 cout << "The length of the line is: " << strlen(line) << '\n';
 return (0);

}

When we run this program we get:

 Enter a line:test
 The length of the line is: 4

Initializing Variables

C++ allows variables to be initialized in the declaration statement. For example. the following
statement declares the integer counter and initializes it to 0.

 int counter(0); // number cases counted so far

The older C style syntax is also supported:

 int counter = 0; // number cases counted so far

Arrays can also be initialized in a similar manner. The element list must be enclosed in curly
braces ({}). For example:

 // Product numbers for the parts we are making
 int product_codes[3] = {10, 972, 45);

This is equivalent to:

 product_codes[0] = 10;
 product_codes[1] = 972;
 product_codes[2] = 45;

The number of elements in the curly braces ({}) does not have to match the array size. If too
many numbers are present, a warning will be issued. If there are not enough numbers, the extra
elements will be initialized to 0.

Page 70

If no dimension is given, C++ will determine the dimension from the number of elements in the
initialization list. For example, we could have initialized our variable product_codes with
the statement:

 // Product numbers for the parts we are making
 int product_codes[] = {10, 972, 45};

Strings can be initialized in a similar manner. To initialize the variable name to the string
"Sam" we use the statement:

 char name[] = {'S', 'a', 'm', '\0'};

C++ has a special shorthand for initializing strings, by using double quotes ('') to simplify the
initialization. The previous example could have been written:

 char name[] = "Sam";

The dimension of name is 4, because C++ allocates a place for the '\0' character that ends the
string.

C++ uses variable-length strings. For example, the declaration:

 char string[50] = "Sam";

creates an array (string) that can contain up to 50 characters. The size of the array is 50, and
the length of the string is 3. Any string up to 49 characters long can be stored in string. (One
character is reserved for the NUL that indicates the end of the string.)

NOTE

Our statement initialized only 4 of the 50 values
in string. The other 46 elements are not
initialized and may contain random data.

Multidimensional Arrays

Arrays can have more than one dimension. The declaration for a two-dimensional array is:

 type variable[size1] [size2]; // comment

Example:

 // a typical matrix
 int matrix[2][4];

Notice that C++ does not follow the notation used in other languages of matrix [10,12].

To access an element of the matrix we use the notation:

 matrix[l][2] = 10;

Page 71

C++ allows you to use as many dimensions as needed (only limited by the amount of memory
available). Additional dimensions can be tacked on.

 four_dimensions[10][12][9][5];

Initializing multidimensional arrays is similar to initializing single-dimension arrays. A set
of curly braces {} encloses each element. The declaration:

 // a typical matrix
 int matrix[2][4];

can be thought of as a declaration of an array of dimension 2 whose elements are arrays of
dimension 4. This array is initialized as follows:

 // a typical matrix
 int matrix[2][4] =
 {
 {1, 2, 3, 4},
 {10, 20, 30, 40}
 };

This is shorthand for:

 matrix[0][0] = 1;
 matrix[0][1] = 2;
 matrix[0][2] = 3;
 matrix[0][3] = 4;

 matrix[1][0] = 10;
 matrix[1][1] = 20;
 matrix[1][2] = 30;
 matrix[1][3] = 40;

Question 5-2: Why does the following program print incorrect answers?

Example 5-7 array/array.cc

#include <iostream.h>

int array[3][5] = { // Two dimensional array
 { 0, 1, 2, 3, 4 },
 {10, 11, 12, 13, 14 },
 {20, 21, 22, 23, 24 }
};

main()
{
 cout << "Last element is " << array[2,4] << '\n';
 return (0);
}

When run on a Sun 3/50 this program generates:

 Last element is 0x201e8

Your answers may vary.

Page 72

Types of Integers

C++ is considered a medium-level language because it allows you to get very close to the
actual hardware of the machine. Some languages, such as BASIC, go to great lengths to
completely isolate the user from the details of how the processor works. This consistency

comes at a great loss of efficiency. C++ lets you give detailed information about how the
hardware is to be used.

For example, most machines let you use different-length numbers. Simple BASIC allows the
programmer to use only one number type. This simplifies the programming, but BASIC
programs are extremely inefficient. C++ allows the programmer to specify many different kinds
of integers, so the programmer can make best use of the hardware.

The type specifier int tells C++ to use the most efficient size (for the machine you are using) for
the integer. This can be 2 to 4 bytes depending on the machine. Sometimes you need extra digits
to store numbers larger than are allowed in a normal int. The declaration:

 long int answer; // the answer of our calculations

is used to allocate a long integer. The long quantifier informs C++ that you wish to allocate
extra storage for the integer. If you are going to use small numbers and wish to reduce storage,
use the quantifier short.

 short int year; // Year including the 19xx part

C++ guarantees that the storage for short <= int <= long. In actual practice, short almost
always allocates 2 bytes; long, 4 bytes; and int, 2 or 4 bytes. (See Appendix B for numeric
ranges.)

Long integer constants end with the character "L." For example:

 long int var = 1234L; // Set up a long variable

Actually you can use either an uppercase or a lowercase "L." Uppercase is preferred since
lowercase easily gets confused with the digit "1."

 long int funny = 121; // Is this 12<long> or one hundred twenty-one?

The type short int uses 2 bytes, or 16 bits. Fifteen bits are used normally for the number
and 1 bit for the sign. This gives it a range of -32,768 (-215) to 32,767 (215 - 1). An unsigned
short int uses all 16 bits for the number, giving it the range of 0 to 65,535 (216 - 1). All
int declarations default to signed, so that the declaration:

 signed long int answer; // final result

Page 73

is the same as:

 long int answer // final result

Finally there is the very short integer, the type char. Character variables take up 1 byte. They
can also be used for numbers in the range of-128 to 127 or 0 to 255. Unlike integers, they do
not default to signed; the default is compiler dependent.*

Question: Is the following character variable signed or unsigned?

 char foo;

Answers:

a. It's signed.

b. It's unsigned.

c. It's compiler dependent.

d. If you always specify signed or unsigned you don't have to worry about problems like
this.

Reading and writing very short integers is a little tricky. If you try to use a char variable in an
output statement, it will be written, as a character. You need to trick C++ into believing that
the char variable is an integer. This can be accomplished with the int operator. Example
5-8 shows how to write out a very short integer as a number.

Example 5-8 two2/tuo2 cc

#include <iostream.h>

signed char ch; // Very short integer
 // Range is -128 to 127

int main()
{
 ch = 37;
 cout << "The number is " << int(ch) << '\n';
 return (0);
}

We start by declaring a character variable ch. This variable is assigned the value 37. This is
actually an integer, not a character, but C++ doesn't care. On the next line we write out the
value of the variable. If we tried to write ch directly, C++ would treat it as a character. The
code int(ch) tells C++, "Treat this character as an integer."

* Turbo-C++ even has a command-line switch to make the default for type char either signed or
unsigned

Page 74

Reading a very short integer is not possible. You must first read it as a short int and then
assign it to a very short integer.

Summary of Integer Types

long int declarations allow the programmer to explicitly specify extra precision where it is
needed (at the expense of memory). short int numbers save space but have a more limited
range. The most compact integers have type char. They also have the most limited range.

unsigned numbers provide a way of doubling the range at the expense of eliminating
negative numbers. The kind of number you use will depend on your program and storage
requirements. The range of the various types of integers is listed in Appendix B.

Types of Floats

The float type also comes in various flavors. float denotes normal precision (usually 4
bytes). double indicates double precision (usually 8 bytes). Double precision gives the
programmer twice the range and precision of single-precision (float) variables.

The quantifier long double denotes extended precision. On some systems this is the same
as double; on others, it offers additional precision. All types of floating-point numbers are
always signed.

On most machines, single-precision floating-point instructions execute faster (but less
accurately) than double precision. Double precision gains accuracy at the expense of time and
storage. In most cases float is adequate; however, if accuracy is a problem, switch to
double (see Chapter 19, Floating Point).

Constant and Reference Declarations

Sometimes you want to use a value that does not change, such as ππ . The keyword const
indicates a variable that never changes. To declare a value for pi we use the statement:

 const float PI = 3.1415926; // The classic circle constant

NOTE

By convention variable names use lowercase only while constants use
uppercase only. However, there is nothing in the language that requires this,
and several programming systems use a different convention.

Page 75

Constants must be initialized at declaration time and can never be changed. For example, if we
tried to reset the value of PI to 3.0 we would generate an error message:

 PI = 3.0; // Illegal

Integer constants can be used as a size parameter when declaring an array:

 const int TOTAL_MAX = 50; // Max. number of elements in total list
 float total_list[TOTAL_MAX]; // Total values for each category

NOTE

C++ allows you to use integer expressions when declaring an array. For
example, you can say total_list[10] or total_list[7+3].
However, some compilers, such as Borland-C++ Version 3.1, won't allow
integer constants in this type of expression. For example:

 const int first_part = 3;
 const int second_part = 7;

 float total[3+7]; // Works even in Borland C++ Version
3.1
 float total2[first_part + 7]; // Fails in Borland C++ version 3.1
 float total3[firstpart + secondpart]; // Also fails

Another special variable type is the reference type. A typical reference declaration is:

 int count; // Number of items so far
 int &actual_count = count; // Another name for count

The special character "&" is used to tell C++ that actual_count is a reference. The
declaration causes the names count and actual_count to refer to the same variable. For
example, the following two statements are equivalent:

 count = 5; // "Actual_count" changes too
 actual_count = 5; // "Count" changes too

In other words, a simple variable declaration declares a box to put data in. A reference
variable slaps another name on the box, as illustrated in Figure 5-1.

Figure 5-1. Reference variables

Page 76

This form of the reference variable is not very useful. In fact, in actual programming it is
almost never used. In Chapter 9, Variable Scope and Functions, you'll see how another form
of the reference variable can be very useful.

Qualifiers

As you've seen, C++ allows you to specify a number of qualifiers for variable

declarations. Qualifiers may be thought of as adjectives that describe the type that

follows. Table 5-2 summarizes the various qualifiers.

Table 5-2 Qualifiers and Simple Types

Special Class Size Sign Type
volatile register long signed int

<blank> static short unsigned float

extern double <blank> char

auto <blank> <blank>

<blank>

Special

The volatile keyword is used for specialized programming such as I/O drivers and shared
memory applications. It is an advanced modifier whose use is far beyond the scope of this
book.

volatile
Indicates a special variable whose value may change at any time

<blank>
Normal variable

Class

The class of a variable is discussed in detail in Chapter 9, Variable Scope and Functions. A
brief description of the various classes follows:

register
This indicates a frequently used variable that should be kept in a machine register. See
Chapter 17, Debugging and Optimization.

static
The meaning of this word depends on the context. This keyword is described in Chapter 9,
Variable Scope and Functions, and Chapter 23, Modular Programming.

Page 77

extern
The variable is defined in another file. See Chapter 23 for more information.

auto
A variable allocated from the stack. This keyword is hardly ever used.

<blank>
Indicates that the default class (auto) is selected.

Size

The size qualifier allows you to select the most efficient size for the variable.

long
Indicates a larger than normal integer. (Some nonstandard compilers use long double to
indicate a very large floating-point variable.)

short
A smaller than normal integer.

double
A double-size floating-point number.

<blank>
Indicates a normal size number.

Sign

Numbers can be signed or unsigned. This qualifier applies only to char and int types.
Floating-point numbers are always signed. The default is signed for int and undefined for

characters.

Type

This specifies the type of the variable. Simple types include:

int
Integer

float
Floating-point number

char
Single characters, but can also be used for very short integers

Page 78

Hexadecimal and Octal Constants

Integer numbers are specified as a string of digits, such as 1234, 88, -123, and so on. These are
decimal (base 10) numbers: 174 or 17410. Computers deal with binary (base 2) numbers:
101011102. The octal (base 8) system easily converts to and from binary. Each group of three
digits (23 = 8) can be transformed into a single octal digit. Thus 101011102 can be written as
10 101 1102 and changed to the octal 2568. Hexadecimal (base 16) numbers have a similar
conversion, but 4 bits at a time are used. For example, 100101002 is 1000 0100, or 8416.

The C++ language has conventions for representing octal and hexadecimal values. Leading
zeros are used to signal an octal constant. For example, 0123 is 123 (octal) or 83 (decimal).
Starting a number with "Ox" indicates a hexadecimal (base 16) constant. So 0x15 is 21
(decimal). Table 5-3 shows several numbers in all three bases.

Table 5-3 Integer Examples

Base 10 Base 8 Base 16

6 06 0x6

9 011 0x9

15 017 0xF

Question 5-3: Why does the following program fail to print the correct zip code? What does
it print instead?

 long int zip; // Zip code

main()
{
 zip = 02137L; // Use the zip code for Cambridge MA

 cout << "New York's zip code is: " << zip << '\n';
 return(0);
}

Operators for Performing Shortcuts

C++ not only provides you with a rich set of declarations, but also gives you a large number of
special-purpose operators. Frequently a programmer wants to increment (add 1 to) a variable.
Using a normal assignment statement, this would look like:

total_entries = total_entries + 1;

Page 79

C++ provides you a shorthand for performing this common task. The ++ operator is used for
incrementing.

 ++total_entries;

A similar operator, --, can be used for decrementing (subtracting 1 from) a variable.

 --number_left;
 // Is the same as
 number_left = number_left - 1;

But suppose you want to add 2 instead of 1. Then you can use the following notation:

 total_entries += 2;

This is equivalent to:

 total_entries = total_entries + 2;

Each of the simple operators shown in Table 5-4 can be used in this manner.

Table 5-4 Shorthand Operators

Operator Shorthand Equivalent Statement

+= x += 2; x = x + 2;

-= x -= 2; x = x - 2;

*= x *= 2; x = x * 2;

/= x /= 2; x = x / 2;

%= x %= 2; x = x % 2;

Side Effects

Unfortunately, C++ allows the programmer to use side effects. A side effect is an operation that
is performed in addition to the main operation executed by the statement. For example, the
following is legal C++ code:

 size = 5;
 result = ++size;

The first statement assigns size the value of 5. The second statement:

1. Increments size (side effect)

2. Assigns result the value of size (main operation)

But in what order? There are four possible answers:

1. result is assigned the value of size (5), and then size is incremented.

result is 5 and size is 6.

Page 80

2. size is incremented, and then result is assigned the value of size (6).

result is 6 and size is 6.

3. The answer is compiler dependent and varies from computer to computer.

4. If you don't write code like this, you don't have to worry about these sorts of questions.

The correct answer is 2: The increment occurs before the assignment. However, 4 is a much
better answer. The main effects of C++ are confusing enough without having to worry about
side effects.

NOTE

Some programmers highly value compact code. This is a holdover
from the early days of computing when storage cost a significant
amount of money. It is my view that the art of programming has
evolved to the point where clarity is much more valuable than
compactness. (Great novels, which a lot of people enjoy reading, are
not written in shorthand.)

C++ actually provides two forms of the ++ operator. One is variable ++ and the other is
++variable. The first:

 number = 5;
 result = number++;

evaluates the expression and then increments the number, so result is 5. The second:

 number = 5;
 result = ++number;

increments first and then evaluates the expression. In this case result is 6. However, using
++ or -- in this way can lead to some surprising code:

 o = --o - o--;

The problem with this is that it looks like someone is writing Morse code. The programmer
doesn't read this statement, he decodes it. If you never use ++ or --as part of any other

statement, but always put them on a line by themselves, the difference between the two forms of
these operators is not noticeable.

NOTE

The prefix form ++variable is preferred over the suffix form
variable ++ because it allows the compiler to generate slightly
simpler code.

Page 81

More complex side effects can confuse even the C++ compiler. Consider the following code
fragment:

 value = 1;
 result = (value++ * 5) + (value++ * 3);

This expression tells C++ to perform the steps:

1. Multiply value by 5 and add 1 to value.

2. Multiply value by 3 and add 1 to value.

3. Add the results of the two multiples together.

Steps 1 and 2 are of equal priority, unlike the previous example, so the compiler can execute
them in any order it wants to. Suppose it decides to execute step 1 first, as shown in Figure
5-2.

Figure 5-2. Expression evaluation, method 1

But it may execute step 2 first, as shown in Figure 5-3.

By using the first method, we get a result of 11; using the second method the result is 13. The
result of this expression is ambiguous. By using the operator ++ in the middle of a larger
expression, we created a problem. (This is not the only problem that ++ and -- can cause. We
will get into more trouble in Chapter 10, The C++ Preprocessor.)

To avoid trouble and keep the program simple, always put ++ and -- on a line by themselves.

Page 82

Figure 5-3 Expression evaluation, method 2

Programming Exercises

Exercise 5-1: Write a program that converts Celsius to Fahrenheit.

F = 9/5 C+32

Exercise 5-2: Write a program to calculate the volume of a sphere, 4/3πr3.

Exercise 5-3: Write a program to print out the perimeter of a rectangle given its height and
width.

perimeter = 2 (width+height)

Exercise 5-4: Write a program that converts kilometers per hour to miles per hour.

miles = (kilometers -0.6213712)

Exercise 5-5: Write a program that takes hours and minutes as input and outputs the total
number of minutes (1 hour 30 minutes = 90 minutes).

Exercise 5-6: Write a program that takes an integer as the number of minutes and outputs the
total hours and minutes (90 minutes = 1 hour 30 minutes).

Answers to Chapter Questions

Answer 5-1: The programmer accidentally omitted the end-comment symbol (*/) after the
comment for height. The comment continues onto the next line and

Page 83

engulfs the width variable declaration. Example 5-9 shows the program with the comments
underlined.

Example 5-9. tempconv c

#include <iostream.h>

int height; /* The height of the triangle
int width; /* The width of the triangle*/
int area; /* Area of the triangle (computed) */

main()
{
 cout << "Enter width and height? ";
 cin >> width >> height;
 area = (width * height) / 2;
 cout << "The area is " << area << '\n';
 return (0);
}

Answer 5-2: The problem is with the way we specified the element of the array: array[2,4].
This should have been written: array[2] [4].

The reason that the specification array[2,4] does not generate a syntax error is that it is
legal (but strange) C++. There is a comma operator in C++ (See C++'s Darker Corners) so the
expression 2,4 evaluates to 4. So array[2,4] is the same as array[4]. C++ treats this
as a pointer (See Simple pointers) and written shows up as a memory address.

Answer 5-3: The problem is that the zip code 02137 begins with a zero. That tells C++ that
02137 is an octal constant. When we print it, we print in decimal. Because 021378 is 111910
the program prints:

 New York's zip code is: 1119

Page 85

6
Decision and Control Statements

In This Chapter:
 •• if Statement
 •• else Statement
 •• How Not to Use

strcmp
 •• Looping Statements
 •• while Statement
 •• Break Statement
 •• continue Statement
 •• The Assignment

Anywhere Side
Effect

 •• Programming
 •• Exercises
 •• Answers to Chapter

Questions

Once a decision was made, I did not worry about it afteruard
—Harry Truman

Calculations and expressions are only a small part of computer programming. Decision and
control statements also are needed, to specify the order in which statements are to be executed.

So far you have constructed linear programs, which are programs that execute in a straight
line, one statement after another. In this chapter you will see how to change the control flow of
a program with branching statements and looping statements. Branching statements cause one
section of code to be executed or not, depending on a conditional clause. Looping statements
are used to repeat a section of code a number of times or until some condition occurs.

if Statement

The if statement allows you to put some decision making into your programs. The general
form of the if statement is:

 if (condition)
 statement;

If the expression is true (nonzero) the statement will be executed. If the expression is zero, the
statement will not be executed. For example, suppose you are writing a billing program. At the
end, if the customer owes nothing or if he has credit (owes a negative amount) you want to print
a message. In C++ this is written:

 if (total_owed <= 0)
 cout << "You owe nothing.\n";

Page 86

The operator <= is a relational operator that represents less than or equal to. This statement
reads ''if the total_owed is less than or equal to zero, print the message." The complete list
of relational operators is found in Table 6-1.

Table 6-1. Relational Operators

Operator Meaning

<= Less than or equal to

< Less than

> Greater than

>= Greater than or equal to

== Equal

!= Not equal

Multiple relational expressions may be grouped together with logical operators. For example,
the statement:

 if ((oper_char == 'Q') || (oper_char == 'q'))
 cout << "Quit\n";

uses the logical OR operator (||) to cause the if statement to print "Quit" if oper_char is
either a lowercase "q" or an uppercase "Q." Table 6-2 lists the logical operators.

Table 6-2 Logical Operators

Operator Usage Meaning

Logical OR (||) (expr1) || (expr2) True if expr1 or expr2 is true

Logical AND (&&) (expr1) && (expr2) True if exprl and expr2 are true

Logical NOT (!) !(expr) Returns false if expr is true or
returns true if expr is false

Multiple statements after the if may be grouped by putting them inside curly braces ({}). For
example:

 if (total_owed <= 0) {
 ++zero_count;
 cout << "You owe nothing.\n";
 }

For readability, the statements enclosed in curly braces are usually indented. This allows the
programmer to quickly tell which statements are to be conditionally executed. As you will see
later, mistakes in indentation can result in programs that are misleading and hard to read.

Page 87

else Statement

An alternative form of the if statement is:

 if (condition)
 statement;
 else
 statement;

If the condition is true, the first statement is executed. If it is false, the second statement is
executed. In our accounting example, we wrote out a message only if nothing was owed. In real
life we probably want to tell the customer how much he owes if there is a balance due.

 if (total_owed <= 0)
 cout << "You owe nothing.\n";
 else
 cout << "You owe " << total_owed << dollars\n";

Note to PASCAL programmers: Unlike PASCAL, C++ requires you to put a semicolon at the

end of the statement before the else.

Now consider this program fragment:

 if (count < 10) // If #1
 if ((count % 4) == 2) // If #2
 cout << "Condition:White\n";
 else // (Indentation is wrong)
 cout << "Condition:Tan\n";

There are two if statements and one else. To which if does the else belong? Pick one:

1. It belongs to if #1.

2. It belongs to if #2.

3. You don't have to worry about this situation if you never write code like this.

The correct answer is 3. According to the C++ syntax rules, the else goes with the nearest
if, so 2 is syntactically correct. But writing code like this violates the KISS principle (Keep It
Simple, Stupid). It is best to write your code as clearly and simply as possible. This code
fragment should be written as:

if (count < 10) { // If #1
 if ((count % 4) == 2) // If #2
 cout << "Condition:White\n";
 else
 cout << "Condition:Tan\n";
}

Page 88

From our original example, it was not clear which if statement had the else clause; however,
adding an extra set of braces improves readability, understanding, and clarity.

How Not to Use strcmp

The function strcmp compares two strings and returns zero if they are equal and nonzero if
they are different. To check whether two strings are equal, we use the code:

 // Check for equal
 if (strcmp(stringl, string2) == 0)
 cout << "Strings equal\n";
 else
 cout << "Strings not equal\n";

Some programmers omit the comment and the == 0 clause, leading to the following, confusing
code:

 if (strcmp(stringl, string2))
 cout << "......";

At first glance, this program obviously compares two strings and executes the cout statement
if they are equal. Unfortunately, the obvious is wrong. If the strings are equal strcmp returns
zero, and the cout is not executed. Because of this backwards behavior of strcmp, you
should be very careful in your use of strcmp and always comment its use.

Looping Statements

Computers not only do calculations, but also will do them over and over and over. To get a
computer to repeat its work, you need a loop statement. Looping statements have many uses.
For example, loops are used to count the number of words in a document or to count the number
of accounts that have past due balances.

while Statement

The while statement is used when the program needs to perform repetitive tasks. The general
form of a while statement is:

 while (condition)
 statement;

The program will repeatedly execute the statement inside the while until the condition
becomes false (0). (If the condition is initially false, the statement will not be executed.)

Page 89

For example, Example 6-1 computes all the Fibonacci numbers that are less than 100. The
Fibonacci sequence is:

 1 1 2 3 5 8 . . .

The terms are computed from the equations:

 1
 1
 2=1+1
 3=2+1
 5=3+2
 etc.

In general terms this is:

 fn = fn- + fn-2

This is a mathematical equation using math-style variable names (fn). Mathematicians use this
very terse style of naming variables. In programming, terse is dangerous, so we translate these
names into something verbose for C++.

fn translates to nextnumber

fn-1 translates to current_number

fn-2 translates to old_number

So in C++ code, the equation is expressed as:

 next_number = current_number + old_number;

We want to loop until our current term is 100 or larger. The while loop:

 while (current_number < 100)

will repeat our computation and printing until we reach this limit.

In our while loop we compute the value of current_number and print it Next we need to
advance one term.

This completes the body of the loop. The first two terms of the Fibonacci sequence are 1 and 1.
We initialize our first two terms to these values.

Figure 6-1 shows what happens to the variables during the execution of the program. At the
beginning current_number and old_number are 1. We print the value of the current
term. Then the variable next_number is computed (value 2). Next we advance one term by
putting next_number into current_number and current_number into
old_number. This is repeated until we compute the last term and the while loop exits.

Page 90

Example 6-1 shows this written as C++ code.

Example 6-1 fib/fib cc

#include <iostream.h>
int old_number; // previous Fibonacci number
int current_number; // current Fibonacci number
int next_number; // next number in the series

main()
{
 // start things out
 old_number = 1;
 current_number = 1;

 cout << "l\n"; // Print first number

 while (current_number < 100) {

 cout << current_number << '\n';
 next_number = current_number + old_number;

 old_number = current_number;
 current_number = next_number;
 }
 return (0);
}

Figure 6-1 Fibonacci execution

Page 91

Break Statement

We have used a while statement to compute Fibonacci numbers less than 100. The loop exits
when the condition at the beginning becomes false. Loops also can be exited at any point
through the use of a break statement.

Suppose you want to add a series of numbers and you don't know how many numbers are to be
added together. You need some way of letting the program know it has reached the end of the
list. In Program 6-2 you use the number zero (0) to signal the end of the list.

Note that the while statement begins with:

 while (1) {

The program will loop forever because the while will exit only when the expression 1 is
zero. The only way to exit this loop is through a break statement.

When we see the end-of-list indicator (zero), we use the statement:

 if (item == 0)
 break;

to exit the loop.

Example 6-2 total/total.cc

#include <iostream.h>
int total; // Running total of all numbers so far
int item; // next item to add to the list

main()
{
 total = 0;
 while (1)
 cout << "Enter # to add \n";

 cout << " or 0 to stop:";
 cin >> item;

 if (item == 0)
 break;

 total += item;
 cout << "Total: " << total << '\n';
 }
 cout << "Final total " << total << '\n';
 return (0);
}

Page 92

continue Statement

The continue statement is very similar to the break statement, except that instead of
terminating the loop, it starts executing the body of the loop over from the top. For example, if
you modify the previous program to total only numbers larger than 0, you get Example 6-3.

Example 6-3. total2/total2 cc

#include <iostream.h>
int total; // Running total of all numbers so far
int item; // next item to add to the list
int minus_items; // number of negative items

main ()
{
 total = 0;
 minus_items = 0;
 while (1) {
 cout << "Enter # to add\n";
 cout << " or 0 to stop:";
 cin >> item;

 if (item == 0)
 break;

 if (item < 0) {
 ++minus_items;
 continue;
 }
 total += item;
 cout << "Total: " << total << '\n';
 }

 cout << "Final total " << total << '\n';
 cout << "with << minus_items << " negative items omitted\n";
 return (0);
}

The Assignment Anywhere Side Effect

C++ allows the use of assignment statements almost anyplace. For example, you can put

assignment statements inside another assignment statement:

 // don't program like this
 average = total_value / (number_of_entries = last - first);

Page 93

This is the equivalent of saying:

 // program like this
 number_of_entries = last - first;

 average = total_value / numberofentries;

The first version buries the assignment of number_of_entries inside the expression.
Programs should be clear and simple and should not hide anything. The most important rule of
programming is KEEP IT SIMPLE.

C++ also allows you to put assignment statements in the while conditional. For example:

 // do not program like this
 while ((current_number = last_number + old_number) < 100)
 cout << "Term " << current_number << '\n';

Avoid this type of programming. Notice how much clearer the logic is in the following
version:

 // program like this
 while (1) {
 current_number = last_number + old_number;

 if (current_number >= 100)
 break;

 cout << "Term " << current_number << '\n';
 }

Question 6-1: For some strange reason, the program in Example 6-4 thinks that everyone
owes a balance of O dollars. Why?

Example 6-4. balance/balance cc

#include <iostream.h>
int balance_owed; // amount owed

main ()
{
 cout << "Enter number of dollars owed:";
 cin >> balance_owed;

 if (balance_owed = 0)
 cout << "You owe nothing.\n";
 else
 cout << "You owe " << balance_owed << " dollars.\n";

 return (0);
}

Page 94

Sample output:

 Enter number of dollars owed: 12
 You owe 0 dollars.

Programming Exercises

Exercise 6-1: Write a program to find the square of the distance between two points. Find the
distance only if you want to do the independent research needed to perform a square root in
C++.

Exercise 6-2: A professor generates letter grades using Table 6-3.

Table 6-3 Grade Values

% Correct Grade

0-60 F

61-70 D

71-80 C

81-90 B

91-100 A

Given a numeric grade, print the letter.

Exercise 6-3: Modify the previous program to print out a + or - after the letter grade based on
the last digit of the score. The modifiers are listed in Table 6-4.

Table 6-4 Grade-Modification Values

Last digit Modifier

1-3 -

4-7 <blank>

8-0 +

For example, 81=B-, 94=A, and 68=D+. Note: An F is only an F. There is no F+ or F-.

NOTE

Programmers frequently have to modify code that someone else
wrote. A good exercise is to take someone else's Exercise 6-2 and
modify it.

Exercise 6-4: Given an amount (less than $1.00), compute the number of quarters, dimes,
nickels, and pennies needed.

Exercise 6-5: A leap year is any year divisible by 4 unless it is divisible by 100, but not 400.
Write a program to tell whether a year is a leap year.

Page 95

Exercise 6-6: Write a program that, given the number of hours an employee worked and his
hourly wage, computes his weekly pay. Count any hours over 40 as overtime at
time-and-a-half.

Answers to Chapter Questions

Answer 6-1: This program illustrates the most common C++ error and one of the most
frustrating. The problem is that C++ allows assignment statements inside of if conditionals. The
statement:

 if (balance_owed = 0)

uses a single equal sign instead of the double equal. C++ will assign balance_owed the
value 0 and then test the result (which is zero). If the result were nonzero (true), the if clause
would be executed. Since the result is zero (false). the else clause is executed and the
program prints the wrong answer.

The statement

 if (balance_owed = 0)

is equivalent to

 balance_owed = 0;
 if (balanced_owed != 0)

The statement should be written:

 if (balance_owed == 0)

This is the most common error that beginning programmers make. It is also one of the most
difficult and frustrating to find.

I once taught a course in C programming. One day about a month after the course had ended I
saw one of my former students on the street. He greeted me and said, "Steve, I have to tell you
the truth. During the class I thought you were going a bit overboard on this = vs. == bug, until
now. You see, I just wrote the first C program for my job, and guess what mistake I made."

One trick many programmers use is to put the constant first in any == statement. For example:

 if (0 == balanced_owed)

In this way, if the programmer makes a mistake and puts in = instead of ==, the result is:

 if (0 = balancedowed)

which causes a compiler error. (You can't assign balance_owed to 0.)

Page 97

7
The Programming Process

In This Chapter:
 •• Setting Up
 •• The Specification
 •• Code Design
 •• The Prototype
 •• The Makefile
 •• Testing
 •• Debugging
 •• Maintenance
 •• Revisions
 •• Electronic

Archaeology
 •• Mark Up the

Program
 •• Programming

Exercises

It's just a simple matter of programming.
—Any Boss Who Has Never Written a Program

Programming is more than just writing code. Software has a life cycle. It is born, grows up,
becomes mature, and finally dies, only to be replaced by a newer, younger product.
Understanding this cycle is important because as a programmer you will spend only a small
amount of time actually writing new code. Most programming time is spent modifying and
debugging existing code. Software does not exist in a vacuum; it must be documented,
maintained, enhanced, and sold. In this section we take a look at a small programming project
using one programmer. Larger projects that involve many people are discussed in Chapter
23, Modular Programming. Although the final code is fewer than a hundred lines, the
principles used in its construction can be applied to programs with thousands of lines of code.
Figure 7-1 illustrates the software life cycle.

The major steps in making a program are:

• Requirements. Programs start when someone gets an idea and assigns you to implement it.
The requirement document describes, in very general terms, what is wanted.

• Specification. A description of what the program does. In the beginning, a Preliminary
Specification is used to describe what the program is going to do. Later, as the program
becomes more refined, so does the specification. Finally, when the program is finished, the
specification serves as a complete description of what the program does.

Page 98

Figure 7-1. Software life cycle

• Code design. The programmer does an overall design of the program. The design should
include major algorithms, class definitions, module specifications, file formats, and data
structures.

• One thing cannot be over-stressed; ''Think before you act." Studies have shown that a good
design can result in a program that is 1/10 of the size of a poorly designed one. This is
especially true when using C++, where design-

Page 99

ing good objects is critical to writing a good program. (You will find out what objects are
in Chapter 13, Simple Classes.) Note: "Think before you act" is good advice not only for
coding, but also for life in general.

 •• Coding. The next step is writing the program. This involves first writing a prototype and
then filling it in to create the full program.

 •• Testing. The programmer should design a test plan and use it to test the program. It is a
good idea, when possible, to have someone else test the program.

 •• Debugging. Unfortunately, very few programs work the first time. They must be corrected
and tested again.

 •• Release. The program is packaged, documented, and sent out into the world to be used.

 •• Maintenance. Programs are never perfect. Bugs will be found and will need correction.

 •• Revising and updating. After a program has been working for a while, the users will want
changes, such as more features or more intelligent algorithms. At this point a new
specification is created and the process starts again.

Setting Up

The operating system allows you to group files in directories. Just as file folders serve as a
way of keeping papers together in a filing cabinet, directories serve as a way of keeping files
together. In this chapter you will be creating a simple calculator program. All the files for this
program will be stored in a directory named calc. To create a directory in UNIX, execute the
following commands:

 % cd -
 % mkdir calc

In MS-DOS, type:

 C:\> cd \
 C:\> mkdir calc

To tell the operating system which directory you want to use, in UNIX type the command:

 % cd ~/calc

In MS-DOS, type:

 C:\> cd \calc
 C: \CALC>

Page 100

More information on how to organize directories can be found in your operating system
documentation.

The Specification

For this chapter we are going to assume that you have been given the assignment to "write a
program that acts like a four-function calculator." Typically, the specification you are given is
vague and incomplete. It is up to you to refine it into something that exactly defines the program
you are going to produce.

The first step is to write a document called The Preliminary Users' Specification, which
describes what your program is going to do and how to use it. This document does not describe
the internal structure of the program or the algorithm you plan to use. A sample specification
for the four-function calculator is:

 Calc
 A four-function calculator
 Preliminary Specification

 Dec. 10, 1994 Steve Oualline

 Warning: This is a preliminary specification. Any resemblance to any
 software living or dead is purely coincidental.

 Calc is a program that allows the user to turn his $10,000 computer
 into a $1.98 four-function calculator. The program adds, subtracts,
 multiplies, and divides simple integers.

 When the program is run, it zeros the result register and displays its
 contents. The user can then type in an operator and number. The result
 is updated and displayed. The following operators are valid:

Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

Example (user input is in boldface)

 calc
 Result: 0
 Enter operator and number: + 123
 Result: 123
 Enter operator and number: - 23
 Result: 100

Page 101

 Enter operator and number: / 25
 Result: 4
 Enter operator and number: * 4
 Result: 16

The preliminary specification serves two purposes. First, you should give it to your boss (or
customer) to make sure that what he thought he said and what you thought he said agree.
Second, you can circulate it among your colleagues to see whether they have any suggestions or
corrections.

This preliminary specification was circulated and received the comments: 1) "How are you

going to get out of the program?" and 2) "What happens when you try to divide by 0?"

So a new operator is added:

 q - quit

and we add another paragraph:

 Dividing by 0 results in an error message and the result register is
 left unchanged.

IV + III = VII

A college instructor once gave his students an assignment to "write a
four-function calculator." One of his students noticed that this was a pretty
loose specification and decided to have a little fun. The professor didn't say
what sort of numbers had to be used, so the student created a program that
worked only with Roman numerals (IV + III = VII). The program came with a
complete user manual—written in Latin.

Code Design

After the preliminary specification has been approved, you can start designing code. In the
code-design phase, you plan your work. In large programming projects involving many people,
the code would be broken up into modules for each programmer. At this stage, file formats are
planned, data structures are designed, and major algorithms are decided upon.

This simple calculator uses no files and requires no fancy data structures. What's left for this
phase is to design the major algorithm. Outlined in pseudo-code, a shorthand halfway between
English and real code, it is:

 Loop
 Read an operator and number
 Do the calculation

Page 102

 Display the result
 End-Loop

The Prototype

Once the code design is completed, you can begin writing the program. But rather than try to
write the entire program at once and then debug it, you will use a method called fast
prototyping. This consists of writing the smallest portion of the specification you can
implement that will still do something. In our case, you will cut the four functions down to a
one-function calculator. Once you get this small part working, you can build the rest of the
functions onto this stable foundation. Also, the prototype gives the boss something to look at
and play around with so he has a good idea of the direction the project is taking. Good
communication is the key to good programming, and the more you can show someone, the
better. The code for the first version of the four-function calculator is found in Example 7-1.

Example 7-1 calc/calc cc

#include <iostream.h>

int result; // the result of the calculations
char oper_char; // the user-specified operator
int value; // value specified after the operator

int main()
{
 result = 0; // initialize the result

 // Loop forever (or till we hit the break statement)
 while (1) {
 cout << "Result: " << result << '\n';

 cout << "Enter operator and number: ";
 cin >> oper_char;
 cin >> value;

 if (oper_char = '+')
 result += value;
 } else {
 cout << "Unknown operator " << oper_char << '\n';
 }
 }
 return (0);
}

The program begins by initializing the variable result to zero. The main body of the
program is a loop starting with:

 while (1) {

Page 103

This will loop until a break statement is reached. The code:

 cout << "Enter operator and number: ";
 cin >> oper_char >> value;

asks the user for an operator and number. These are parsed and stored in the variables
oper_char and value. (The full set of I/O operations such as << and >> are described in
Chapter 16, File Input/Output.) Finally, you start checking the operators. If the operator is a
plus (+), you perform an addition using the line:

 if (oper_char = '+') {
 result += value;

So far you only recognize the plus operator. As soon as this works, you will add more
operators by adding more if statements.

Finally, if an illegal operator is entered, the line:

 } else {
 cout << "Unknown operator " << oper_char << '\n';

 }

writes an error message telling the user he made a mistake.

The Makefile

Once the source has been entered, it needs to be compiled and linked. Up to now we have been
running the compiler manually. This is somewhat tedious and prone to error. Also, larger
programs consist of many modules and are extremely difficult to compile by hand. Fortunately,
both UNIX and Turbo-C++ have a utility called make that handles the details of compilation.

For now, just use this example as a template and substitute the name of your program in place
of calc. The make program is discussed in detail in Chapter 23, Modular Programming.
Basically, make looks at the file called Makefile for a description of how to compile your
program and runs the compiler for you.

For a UNIX system using the generic CC compiler, the Makefile should be:

 [File: calcl/makefile.unx]

Makefile for many UNIX compilers using the
"standard" command name CC

CC=CC
CFLAGS=-g
all: calc

calc: calc.cc

Page 104

 $(CC) $(CFLAGS) -o calc calc.cc

clean:
 rm calc

If you are using the Free Software Foundation's g++ compiler, the Makefile is:

[File: calcl/makefile.gnu]

Makefile for the Free Software Foundations g++ compiler

CC=g++
CFLAGS=-g -Wall
all: calc

calc: calc.cc
 $(CC) $(CFLAGS) -o calc calc.cc

clean:
 rm calc

For Turbo-C++, the Makefile should be:

[File: calcl/makefile.tcc]
#

Makefile for Borland's Turbo-C++ compiler
#
CC=tcc
#
Flags
-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings
-ml -- Large model
#
CFLAGS=-N -v -w -ml
all: calc.exe

calc.exe: calc.cpp
 $(CC) $(CFLAGS) -ecalc calc.cpp

clean:
 erase calc.exe

For Borland C++, the Makefile is the same except the compiler is named bcc.

Finally, for Microsoft Visual C++, the Makefile is:

 [File: calcl/makefile.msc]

Makefile for Microsoft Visual C++

CC=cl

Flags
AL -- Compile for large model

Page 105

Zi -- Enable debugging
W1 -- Turn on warnings
#
CFLAGS=/AL /Zi /W1
all: calc.exe

calc.exe: calc.cpp
 $(CC) $(CFLAGS) calc.cpp

clean:
 erase calc.exe

NOTE

Microsoft Visual C++ does supply a make program
as part of its package; however, the make command
has been renamed to nmake.

To compile the program, just execute the command make. (Under Microsoft Visual C++ use
the command nmake.) make determines what compilation commands are needed and execute
them.

make uses the modification dates of the files to determine whether or not a compilation is

necessary. Compilation creates an object file. The modification date of the object file is later
than the modification date of its source. If the source is edited, its modification date is updated,
making the object file out of date. make checks these dates and, if the source was modified
after the object, make recompiles the object.

Testing

Once the program is compiled without errors, you can move on to the testing phase. Now is the
time to start writing a test plan. This document is simply a list of the steps you perform to make
sure the program works. It is written for two reasons.

• If a bug is found, you want to be able to reproduce it.

• If you ever change the program, you will want to retest it to make sure new code did not
break any of the sections of the program that were previously working.

The test plan starts out as:

 Try the following operations

 + 123 Result should be 123
 + 52 Result should be 175
 x 37 Error message should be output

Page 106

Running the program you get:

 Result: 0
 Enter operator and number: + 123
 Result: 123
 Enter operator and number: + 52
 Result: 175
 Enter operator and number: x 37
 Result: 212

Something is clearly wrong. The entry "x 37" should have generated an error message but
didn't. There is a bug in the program, so you begin the debugging phase. One advantage to
making a small working prototype is that you can isolate errors early.

Debugging

First you inspect the program to see if you can detect the error. In such a small program it is not
difficult to spot the mistake. However, let's assume that instead of a 21-line program, you have
a much larger one containing 5,000 lines. Such a program would make inspection more
difficult, so you need to proceed to the next step.

Most systems have C++ debugging programs, but each debugger is different. Some systems
have no debugger. In that case you must resort to a diagnostic print statement. (More advanced
debugging techniques are discussed in Chapter 17, Debugging and Optimization.) The
technique is simple: Put a cout where you're sure the data is good (just to make sure it really
is good). Then put a cout where the data is bad. Run the program and keep putting in
cout's until you isolate the area in the program that contains the mistake. The program, with

diagnostic cout lines added, looks like:

 cout << "Enter operator and number: ";
 cin >> value;
 cin >> oper_char;

 cout << "## after cin" << operator << '\n';

 if (oper_char = '+') {
 cout << "## after if " << operator << '\n';
 result += value;

NOTE

The ## at the beginning of each cout line flags the
line as a debug line. This makes it easy to tell the
temporary debug output from the real program output.
Also, when you finally find the bug the ## makes it
easy to find and remove the debug lines with your
editor.

Page 107

Running the program again results in:

 Result: 0
 Enter operator and number: + 123
 Result: 123
 Enter operator and number: + 52
 ## after cin +
 ## after if +
 Result: 175
 Enter operator and number: x 37
 ## after cin x
 ## after if +
 Result: 212

From this you see that something is going wrong with the if statement. Somehow the variable
operator is an x going in and a + coming out. Closer inspection reveals that you have the old
mistake of using = instead of ==. After you fix this bug, the program runs correctly. Building on
this working foundation, you add in the code for the other operators, -, *, and /, to create
Example 7-2.

Example 7-2 calc3/calc3.c

#include <iostream.h>
int result; // the result of the calculations
char oper_char; // the user-specified operator
int value; // value specified after the operator
main ()
{
 result = 0; // initialize the result

 // loop forever (or until break reached)
 while (1) {
 cout << "Result: " << result << '\n';

 cout << "Enter operator and number: ";

 cin >> oper_char;

 if ((oper_char == 'q') || (oper_char == 'Q'))
 break;

 cin >> value;
 if (oper_char == '+')
 result += value;
 } else if (oper_char == '-') {
 result -= value;
 } else if (oper_char == '*')
 result *= value;
 } else if (oper_char == '/')
 if (value == 0)
 cout << "Error: Divide by zero\n";
 cout << " operation ignored\n";
 } else
 result /= value;
 } else {
 cout << "Unknown operator " << oper_char << '\n';

Page 108

Example 7-2. calc3/calc3.c (Continued)

 }
 }
 return (0);
}

You expand the test plan to include the new operators and try it again.

 + 123 Result should be 123
 + 52 Result should be 175
 x 37 Error message should be output
 - 175 Result should be zero
 + 10 Result should be 10
 / 5 Result should be 2
 / 0 Divide by zero error
 * 8 Result should be 16
 q Program should exit

Testing the program, you find much to your surprise that it works. The word ''Preliminary" is
removed from the specification and the program, test plan, and specification are released.

Maintenance

Good programmers put their programs through a long and rigorous testing process before
releasing it to the outside world. Then the first user tries the program and almost immediately
finds a bug. This starts the maintenance phase. Bugs are fixed, the program is tested (to make
sure the fixes didn't break anything), and the program is released again.

Revisions

Although the program is officially finished, you are not finished with it. After it is in use for a
few months, someone will come to us and ask, "Can you add a modulus operator?" So you
revise the specifications, add the change to the program, update the test plan, test the program,
and release it again.

As time passes, more people will come to you with additional requests for changes. Soon the
program has trig functions, linear regressions, statistics, binary arithmetic, and financial
calculations. The design is based on the idea of one-character operators. Soon you find
yourself running out of characters to use. At this point the program is doing work far beyond
what it was initially designed to do. Sooner or later you reach the point where the program
needs to be scrapped and a new one written from scratch. At this point you write a new
Preliminary Specification and start the process over again.

Page 109

Electronic Archaeology

Unfortunately, most programmers don't start a project at the design step. Instead they are
immediately thrust into the maintenance or revision stage. This means the programmer is faced
with the worst possible job: understanding and modifying someone else's code.

Contrary to popular belief, most C++ programs are not written by disorganized orangutans
using Zen programming techniques and poorly commented in Esperanto. They just look that
way. Electronic archeology is the art of digging through old code to discover amazing things
(like how and why the code works).

Your computer can aid greatly in your search to discover the true meaning of someone else's
code. Many tools are available for examining and formatting code. (Be careful with your
selection of tools, however. Many C tools have yet to be upgraded for C++. See earlier
sections on revisions.) Some of these tools include:

 •• Cross-references. These programs have names like xref, cxref, and cross. System
V UNIX has the utility cscope. They print out a list of variables and where the variables
are used.

 •• Program indenters. Programs such as cb and indent indent a program "correctly"
(correct indentation is something defined by the tool maker).

 •• Pretty printers. A pretty printer such as vgrind or cprint typesets source code for
printing on a laser printer.

 •• Call graphs. On System V UNIX the program cflow analyzes the structure of the program.
On other systems there is a public domain utility, calls, that produces call graphs,
showing who calls whom and who is called by whom.

 •• Class browsers. A class browser allows you to display the class hierarchy so you can tell
what components went into building the class as well as its structure. You'll learn what a
class is in Chapter 13, Simple Classes.

Which tools should you use? Whichever ones work for you. Different programmers work in

different ways. Some techniques for examining code are listed below. Choose the ones that
work for you and use them.

Mark Up the Program

Take a printout of the program and make notes all over it. Use red or blue ink so you can tell
the difference between the printout and the notes. Use a highlighter to emphasize important
sections. These notes are useful; put them in the program as comments, and then make a new
printout and start the process over again.

Page 110

Use the Debugger

The debugger is a great tool for understanding how something works. Most debuggers allow
you to step through the program one line at a time, examining variables and discovering how
things really work. Once you find out what the code does, make notes and put them in as
comments.

Use the Text Editor as a Browser

One of the best tools for going through someone else's code is your text editor. Suppose you
want to find out what the variable sc is used for. Use the search command to find the first
place sc is used. Search again and find the second. Continue searching until you know what the
variable does.

Suppose you find out that sc is used as a sequence counter. Since you're already in the editor,
you can easily do a global search-and-replace to change the variable sc to
sequence_counter. (Disaster warning: Make sure sequence_counter is not already
defined as a variable before you make the change. Also make sure you do a word replacement
or you'll find you replaced sc in places you didn't intend.) Comment the declaration and you're
on your way to creating an understandable program.

Add Comments

Don't be afraid to put any information you have, no matter how little, into the comments. Some
of the comments I've used include:

int state; // Controls some sort of state machine
int rmxy; // Something to do with color correction?

Finally, there is a catch-all comment:

int idn; // ???

which means, "I have no idea what this variable does." Even though the purpose is unknown, it
is now marked as something that needs more work.

As you go through someone else's code adding comments and improving style, the structure
will become clearer to you. By inserting notes (comments), you make the code better and easier
to understand for future programmers.

Suppose you are confronted with the following program written by someone from the "The
Terser the Better" school of programming. Your assignment is to figure out what this program
does. First you pencil in some comments as shown in Figure 7-2.

Page 111

Figure 7-2. A terse program

This mystery program requires some work. After going through it and applying the principles
described in this section, you get the well-commented, easy-to-understand version shown in
Example 7-3.

Example 7-3 guess/good.cc

/**
 * guess -- a simple guessing game *
 * *
 * Usage: *
 * guess *
 * *
 * A random number is chosen between 1 and 100. *
 * The player is given a set of bounds and *
 * must choose a number between them. *
 * If the player chooses the correct number, he wins*
 * Otherwise, the bounds are adjusted to reflect *
 * the players guess and the game continues *
 * *
 * Restrictions: *
 * The random number is generated by the statment *
 * rand() % 100. Because rand() returns a number *
 * 0 <= rand() <= maxint this slightly favors *

Page 112

Example 7-3 guess/good cc (Continued)

 * the lower numbers. *
 **/
#include <iostream.h>
#include <stdlib.h>
int number_to_guess; // Random number to be guessed
int low_limit; // Current lower limit of player's range
int high_limit; // Current upper limit of player's range
int guess_count; // Number of times player guessed
int player_number; // Number gotten from the player
char line[80]; // Input buffer for a single line
main()
{
 while (1)
 /*
 * Not a pure random number; see restrictions
 */
 number_to_guess = rand() % 100 + 1;

 // Initialize variables for loop
 low_limit = 0;
 high_limit = 100;
 guess_count = 0;

 while (1) {
 // Tell user what the bounds are and get his guess
 cout << "Bounds " << low_limit << " - " << high_limit << '\n';
 cout << "Value[" << guess_count << "]? ";

 ++guess_count;

 cin >> player_number;

 // Did he guess right?
 if (player_number == number_to_guess)
 break;

 // Adjust bounds for next guess
 if (player_number < number_to_guess)
 low_limit = player_number;
 else
 high_limit = player_number;

 {
 cout << "Bingo\n";
 {
 return (0);
}

Page 113

Programming Exercises

For each assignment, follow the software life cycle from specification through release.

Exercise 7-1: Write a program to convert English units to metric (e.g., miles to kilometers,
gallons to liters, etc.). Include a specification and a code design.

Exercise 7-2: Write a program to perform date arithmetic, such as how many days there are
between 6/1/90 and 8/3/92. Include a specification and a code design.

Exercise 7-3: A serial transmission line can transmit 960 characters a second. Write a
program that will calculate how long it will take to send a file, given the file's size. Try it on a
400MB (419,430,400 byte) file. Use appropriate units. (A 400MB file takes days.)

Exercise 7-4: Write a program to add an 8% sales tax to a given amount and round the result to
the nearest penny. Exercise 7-5: Write a program to tell whether a number is prime.

Exercise 7-6: Write a program that takes a series of numbers and counts the number of positive
and negative values.

Page 115

II Simple Programming

Page 117

8
More Control Statements

In This Chapter:
 •• for Statement
 •• switch Statement
 •• switch, break, and

continue
 •• Programming

Exercises
 •• Answers to Chapter

Questions

Grammar, which knows how to control even kings
—Molière

for Statement

The for statement allows you to execute a block of code a specified number of times. The
general form of the for statement is:

 for (initial-statement; condition; iteration-statement)
 body-statement;

this is equivalent to:

 initial-statement;
 while (condition) {
 body-statement;
 iteration-statement;
 }

For example, Example 8-1 uses a while loop to add five numbers.

Example 8-1 total6/total6w cc

#include <iostream.h>

int total; // Total of all the numbers
int current; // Current value from the user
int counter; // While loop counter

main() {
 total = 0;

 counter = 0;
 while (counter < 5)

Page 118

Example 8-1. tota16/total6w.cc (Continued)

 cout << "Number? ";

 cin >> current;
 total += current;

 ++counter;
 }
 cout << "The grand total is " << total << '\n';
 return (0);
}

The same program can be rewritten using a for statement as seen in Example 8-2.

Example 8-2 total6/total6 cc

#include <iostream.h>

int total; // Total of all the numbers
int current; // Current value from the user
int counter; // For loop counter

main() {
 total = 0;
 for (counter = 0; counter < 5; ++counter) {
 cout << "Number? ";

 cin >> current;
 total += current;
 }
 cout << "The grand total is " << total << '\n';
 return (0);
}

Note that counter goes from 0 to 4. Normally you count five items as 1, 2, 3, 4, 5. You will
get along much better in C++ if you change your thinking to zero-based counting and count five
items as 0, 1, 2, 3, 4. (One-based counting is one of the main causes of array overflow errors.
See Chapter 5, Arrays, Qualifiers, and Reading Numbers.)

Careful examination of the two flavors of this program reveals the similarities between the two
versions, as shown in Figure 8-1.

Many older programming languages do not allow you to change the control variable (in this
case counter) inside the loop. C++ is not so picky. You can change the control variable
anytime you wish—you can jump into and out of the loop and generally do things that would
make a PASCAL or FORTRAN programmer cringe. (Even though C++ gives you the freedom
to do such insane things, that doesn't mean you should do them.)

Page 119

Figure 8-1. Similarities between while and for

Question 8-1: Example 8-3 contains an error.

Example 8-3. cent/cent.cc

#include <iostream.h>
/*
 * This program produces a Celsius to Fahrenheit conversion
 * chart for the numbers 0 to 100.
 *
 * Restrictions:
 * This program deals with integers only, so the
 * calculations may not be exact.

 */

// The current Celsius temperature we are working with
int celsius;
main() {
 for (celsius = 0; celsius <= 100; ++celsius);
 cout << "Celsius: " << celsius <<
 " Fahrenheit: " << ((celsius * 9) / 5 + 32) << '\n';
 return (0);
}

When run, this program prints out:

 Celsius: 101 Fahrenheit: 213

and nothing more. Why?

Page 120

Question 8-2: Example 8-4 reads a list of five numbers and counts the number of threes and
sevens in the data. Why does it give us the wrong answers?

Example 8-4 seven/seven.cc.

include <iostream.h>

int seven_count; // Number of sevens in the data
int data[5]; // The data to count 3 and 7 in
int three_count; // Number of threes in the data
int index; // Index into the data

main() {
 seven_count = 0;
 three_count = 0;

 cout << "Enter 5 numbers\n";
 cin >> data[1] >> data[2] >> data[3] >>
 data[4] >> data[5];

 for (index = 1; index <= 5; ++index)
 if (data[index] == 3)
 ++three_count;
 if (data[index] == 7)
 ++seven_count;
 }
 cout << "Threes " << three_count << " Sevens " << seven_count << '\n';
 return (0);
}

When we run this program with the data 3 73 0 2, the results are:

Threes 4 Sevens 1

 (Your results may vary.)

switch Statement

The switch statement is similar to a chain of if-else statements. The general form of a
switch statement is:

 switch (expression)
 case constantl:
 statement

 break;

 case constant2:
 statement

 // Fall through

 default:

Page 121

 statement

 break;

 case constant3:
 statement

 break;
 }

The switch statement evaluates the value of an expression and branches to one of the case
labels. Duplicate labels are not allowed, so only one case will be selected. The expression
must evaluate to a integer, character, or enumeration.

case labels can be in any order and must be constants. The default label can be put
anywhere in the switch.

When C++ sees a switch statement, it evaluates the expression and then looks for a matching
case label. If none is found, the default label is used. If no default is found, the
statement does nothing.

A break statement inside a switch tells the computer to continue the execution after the
switch. If the break is not there, execution continues with the next statement.

NOTE

The switch statement is very similar to the PASCAL case
statement. The main differences are that while PASCAL allows only
one statement after the label, C++ allows many. C++ keeps
executing until it hits a break statement. In PASCAL you can't "fall
through" from one case to another. In C++ you can.

The calculator program in Chapter 7, The Programming Process, contains a series of
if-else statements.

 if (operator == '+) {

 result += value;
 } else if (operator == '-') {
 result -= value;
 } else if (operator == '*')
 result *= value;
 } else if (operator == '/')
 if (value == 0)
 cout << "Error: Divide by zero\n";
 cout <<" operation ignored\n";
 } else
 result /= value;
 } else {
 cout << Unknown operator " << operator << '\n';
 }

Page 122

This section of code can easily be rewritten as a switch statement. In this switch, we use a
different case for each operation. The default clause takes care of all the illegal operators.

Rewriting the program using a switch statement makes it not only simpler, but also easier to
read as seen in Example 8-5.

Example 8-5 calc-sw/calc3.cc

#include <iostream.h>
int result; // The result of the calculations
char oper_char; // The user-specified operator
int value; // Value specified after the operator

main ()
{
 result = 0; // Initialize the result

 // Loop forever (or until break reached)
 while (1) {
 cout << "Result: " << result << '\n';
 cout << "Enter operator and number: ";
 cin >> oper_char >> value;

 if ((oper_char == 'q') || (oper_char == 'Q'))
 break;

 switch (oper_char)
 case '+':
 result += value;
 break;
 case '-':
 result -= value;
 break;
 case '*':
 result *= value;
 break;
 case '/':
 if (value == 0)
 cout << "Error: Divide by zero\n";
 cout << " operation ignored\n";

 } else
 result /= value;
 break;
 default:
 cout << "Unknown operator " << oper_char << '\n';
 break;
 }
 }
 return (0);
}

Page 123

A break statement is not required at the end of a case. If the break is not there, execution
will continue with the next statement.

For example:

 control = 0;

 // A not so good example of programming
 switch (control)
 case 0:
 cout << "Reset\n";
 case 1:
 cout << "Initializing\n";
 break;
 case 2:
 cout "Working\n";
 }

In this case, when control == 0, the program prints:

 Reset
 Initializing

Case 0 does not end with a break statement. After printing "Reset" the program falls
through to the next statement (case 1) and prints "Initializing."

But there is a problem with this syntax. You can't be sure that the program is supposed to fall
through from case 0 to case 1, or if the programmer forgot to put in a break statement. To
clear up this confusion, a case section should always end with a break statement or the
comment "//fall through."

 // A better example of programming
 switch (control) {
 case 0:
 cout << "Reset\n";
 // Fall through
 case 1:
 cout << "Initializing\n";
 break;
 case 2:
 cout << "Working\n";
 }

Because case 2 is last, it doesn't absolutely need a break statement. A break would cause

the program to skip to the end of the switch, but we're already there.

But suppose we modify the program slightly and add another case to the switch:

 // We have a little problem
 switch (control)
 case 0:
 cout << "Reset\n";

Page 124

 // Fall through
 case 1:
 cout << "Initializing\n";
 break;
 case 2:
 cout << "Working\n";
 case 3:
 cout << "Closing down\n";
 }

Now when control == 2 the program prints:

Working
Closing down

This is an unpleasant surprise. The problem is caused by the fact that case 2 is no longer the
last case. We fall through. (Unintentionally, or otherwise we would have included a //
Fall through comment.) A break is now necessary. If you always put in a break statement,
you don't have to worry about whether or not it is really needed.

 // Almost there
 switch (control) {
 case 0:
 cout << "Reset\n";
 // Fall through
 case 1:
 cout << "Initializing\n";
 break;
 case 2:
 cout << "Working\n";
 break;
 }

Finally, we ask the question: What happens when control == 5? In this case, since there
is no matching case or a default clause, the entire switch statement is skipped.

In this example, the programmer did not include a default statement because control will
never be anything but 0, 1, or 2. However, variables can get assigned strange values, so we
need a little more defensive programming.

 // The final version
 switch (control) {
 case 0:
 cout << "Reset\n";
 // Fall through
 case 1:

 cout << "Initializing\n";
 break;
 case 2:
 cout << "Working\n";
 break;

Page 125

 default:
 cout << "Internal error, control value" << control <<
 " impossible\n";
 break;
}

Although a default is not required, it should be put in every switch. Even though the
default may be just:

 default:
 // Do nothing
 break;

it should be included. This indicates that you want to ignore out-of-range data.

switch, break, and continue

The break statement has two uses. Used inside a switch it causes the program to exit the
switch statement. Inside of a for or while loop, it causes a loop exit. The continue
statement is only valid inside a loop and causes the program to go to the top of the loop.

To illustrate how these statements work, we've produced a new version of the calculator
program. The new program prints the result only after valid data is input and has a Help
command.

The Help command is special. We don't want to print the result after the Help command, so
instead of ending the Help case with a break we end it with a continue. The continue
forces execution to go to the top of the loop.

When an unknown operator is entered, we print an error message. As with the Help case, we
use a continue statement to skip printing the result.

Finally, there is one special command: quit. This command is handled outside the switch. It
is handled by the break at the top of the loop. Since the break is outside the switch, it
belongs to the while loop and causes the program to exit the while.

The control flow for this program can be seen in Figure 8-2.

Page 126

Figure 8-2 switch/continue

Page 127

Programming Exercises

Exercise 8-1: Print a checkerboard (8-by-8 grid). Each square should be 5-by-3 characters
wide. A 2-by-2 example follows:

+-----+-----+
+-----+-----+	
+-----+-----+

Exercise 8-2: The total resistance of n resistors in parallel is:

Suppose we have a network of two resistors with the values 400 ΩΩ and 200 ΩΩ . Then our
equation would be:

Substituting in the value of the resistors we get:

So the total resistance of our two-resistor network is 133.3 ΩΩ .

Write a program to compute the total resistance for any number of parallel resistors.

Exercise 8-3: Write a program to average n numbers.

Exercise 8-4: Write a program to print out the multiplication table.

Exercise 8-5: Write a program that reads a character and prints out whether or not it is a
vowel or a consonant.

Page 128

Exercise 8-6: Write a program that converts numbers to words. Example: 895 results in ''eight
nine five."

Exercise 8-7: The number 85 is said "eighty-five" not "eight five." Modify the previous
program to handle the numbers 0-100 so all numbers come out as we really say them. Example:
13 ⇒⇒ "thirteen," 100 ⇒⇒ "one hundred."

Answers to Chapter Questions

Answer 8-1: The problem lies with the semicolon (;) at the end of the for statement. The
body of the for statement is between the closing parentheses and the semicolon. In this case it
is nothing. Even though the cout statement is indented, it is not part of the for statement. The
indentation is misleading. The C++ compiler does not look at indentation. The program does
nothing until the expression

 centigrade <= 100

becomes false (centigrade == 101). Then the cout is executed.

Answer 8-2: The problem is that we read the number into data[1] through data[5]. In
C++ the range of legal array indices is 0 to <array size>-1 or in this case 0 to 4. data[5] is
illegal. When we use it strange things happen; in this case the variable three_count is
changed. The solution is to use only data[0] to data[4].

Page 129

9
Variable Scope and Functions

In This Chapter:

 •• Scope and Storage
Class

 •• Functions
 •• Summary of

Parameter Types
 •• Structured

Programming
Basics

 •• Recursion
 •• Programming

Exercises
 •• Answers to Chapter

Questions

But in the gross and scope of my opinion This bodes some strange
eruption to our state.
—Shakesreare
Hamlet, Act I, Scene I

So far you have been using only global variables. These are variables that can be set or used
almost anywhere in the program. In this chapter you learn about other kinds of variables and
how to use them. This chapter also tells you how to divide your code into functions. Many
aspects of functions are detailed, including function overloading, using functions to build
structured programs, and the use of recursive function calls.

Scope and Storage Class

All variables have two attributes, scope and storage class. The scope of a variable is
the area of the program where the variable is valid. A global variable is valid from the point it
is declared to the end of the program. A local variable's scope is limited to the block where it
is declared and cannot be accessed (set or read) outside that block. A block is a section of
code enclosed in curly braces ({}). Figure 9-1 illustrates the difference between local and
global variables.

It is possible to declare a local variable with the same name as a global variable.
Normally, the scope of the variable count (first declaration in Figure 9-2) would be the
whole program. The declaration of a second, local count takes precedence over the global
declaration inside the small block where the local count is declared. In this block, the global
count is hidden. You can also nest local declarations and hide local variables. These "very
local" variables have an even smaller and more local scope than the "normal local" variables.
(The clarity

Page 130

Figure 9-1. Local and global variables

of the previous sentence gives you some idea why using nesting to hide local variables does
not make your program easy to understand.) Figure 9-2 illustrates a hidden variable.

Figure 9-2 Hidden variables

The variable count is declared both as a local variable and as a global variable. Normally
the scope of count (global) would be the entire program, but when a variable is declared
inside a block, that instance of the variable becomes the

Page 131

active one for the length of the block. The global count has been hidden by the local count
for the scope of this block. The shaded area in the figure shows where the scope of count
(global) is hidden.

It is not good programming practice to hide variables. The problem is that when you have the
statement:

 count = 1;

it is difficult to tell which count you are referring to. Is it the global count, the one
declared at the top of main, or the one in the middle of the while loop? It is better to give
these variables different names, such as total_count, current_ count, and
item_count.

The storage class of a variable may be either permanent or temporary. Global variables are
always permanent. They are created and initialized before the program starts and remain until it
terminates. Temporary variables are allocated from a section of memory called the stack at
the beginning of the block. If you try to allocate too many temporary variables you will get a
stack overflow error. The space used by the temporary variables is returned to the
stack at the end of the block. Each time the block is entered, the temporary variables are
initialized.

The size of the stack depends on the system and compiler you are using. On many UNIX
systems, the program is automatically allocated the largest possible stack. On other systems, a
default stack size is allocated that can be changed by a compiler switch. In Turbo-C++ the
stack space must be fewer than 64,000 bytes. This may seem like a lot of space, but several
large arrays can eat it up quickly. You should consider making all large arrays permanent.

Local variables are temporary unless they are declared static.

NOTE

static has an entirely different meaning when used with global
variables. (It indicates that a variable is local to the current file.)
See Chapter 23, Modular Programming. For a complete discussion
of the many meanings of the word "static," see Table 14-1.

Example 9-1 illustrates the difference between permanent and temporary variables. We have
chosen obvious variable names; temporary is a temporary variable while permanent is
permanent. C++ initializes temporary each time it is created (at the beginning of the for
statement block), while permanent gets initialized only once, at program start-up time.

In the loop both variables are incremented. However, at the top of the loop temporary is
initialized to 1.

Page 132

Example 9-1 perm/perm.cc

#include <iostream.h>

main() {
 int counter; // Loop counter

 for (counter = 0; counter < 3; ++counter) {
 int temporary = 1;
 static int permanent = 1;

 cout << "Temporary" << temporary <<
 " Permanent "<< permanent << '\n';
 ++temporary;
 ++permanent;
 }
 return (0);
}
The output of this program is:
Temporary 1 Permanent 1
Temporary 1 Permanent 2
Temporary 1 Permanent 3

NOTE

Temporary variables are sometimes referred to as automatic
variables because the space for them is allocated automatically.
The qualifier auto can be used to denote a temporary variable;
however, in practice auto is almost never used.

Table 9-1 describes the different ways a variable can be declared.

Table 9-1 Declaration Modifiers

Declared Scope Storage Class Initialized

Outside all blocks Global Permanent Once

static outside all blocks Global Permanent Once

Inside a block Local Temporary Each time block is entered

static inside a block Local Permanent Once

NOTE

The keyword static is the most overloaded C++ operator. It
means a lot of different things depending on how it is used. For a
complete list see Table 14-1.

Page 133

Functions

Functions allow you to group commonly used code into a compact unit that can be used

repeatedly. You have already encountered one function, main. It is a special function called
at the beginning of the program. All other functions are directly or indirectly called from
main.

Suppose you want to write a program to compute the area of three triangles. You could write
out the formula three times, or you could create a function to do the work and then use that
function three times. Each function should begin with a comment block containing the
following:

Name
Name of the function

Description
Description of what the function does

Parameters
Description of each parameter to the function

Returns
Description of the return value of the function

Additional sections may be added such as file formats, references, or notes. Refer to Chapter 3,
Style, for other suggestions.

The function to compute the area of a triangle begins with:

 /***
 * Triangle -- compute area of a triangle *
 * *
 * Parameters *
 * width -- width of the triangle *
 * height -- height of the triangle *
 * *
 * Returns *
 * area of the triangle *
 ***/

The function proper begins with the lines:

 float triangle(float width, float height)

float is the function type. This defines the type of data returned by the function. width and
height are the parameters to the function. Parameters are variables local to the function that
are used to pass information into the function.

Page 134

NOTE

The function type is not required by C++. If no function type is
declared, the type defaults to int. However, if you omit the function
type, it is not clear whether you want to have the function default to
int or you just forgot the function type. To avoid this confusion,
always declare the function type and do not use the default.

The function computes the area with the statement:

 area = width * height / 2.0;

What's left is to give the result to the caller. This is done with the return statement:

 return (area)

The full triangle function can be seen in Example 9-2.

Example 9-2. tri/tri-sub.cc

/***
 * Triangle -- compute area of a triangle *
 * *
 * Parameters *
 * width -- width of the triangle *
 * height -- height of the triangle *
 * *
 * Returns *
 * area of the triangle *
 ***/

float triangle(float width, float height)
{
 float area; // Area of the triangle

 area = width * height / 2.0;
 return (area);
}

The line:

 size = triangle(1.3, 8.3);

is a call to the function triangle. When C++ sees this function call it performs the following
operations:

 Triangle's variable width = 1.3
 Triangle's height = 8.3

 Begin execution of the first line of the function triangle.

Page 135

The technical name for this type of parameter passing is "call by value." The assignment only
occurs when the function is called, so data flows through the parameters only one way: in.

The return statement is how you get data out of the function. In the triangle example, the
function assigns the local variable area the value 5.4 and then executes the statement
return (area), so the return value of this function is 5.4. This value is assigned to size.

Example 9-3 computes the area of three triangles.

Example 9-3 tri/tri cc

#include <iostream.h>

main ()
{
 // Function to compute area of triangle
 float triangle(float width, float height);

 cout << "Triangle #1 " << triangle(l.3, 8.3) << '\n';
 cout << "Triangle #2 " << triangle(4.8, 9.8) << '\n';
 cout << "Triangle #3 "<< triangle(1.2, 2.0) << '\n';
 return (0);
}
/***
 * Triangle -- compute area of a triangle *
 * *
 * Parameters *
 * width -- width of the triangle *
 * height -- height of the triangle *
 * *
 * Returns *
 * area of the triangle *
 ***/
float triangle(float width, float height)
{
 float area; // Area of the triangle

 area = width * height / 2.0;
 return (area);
}

Functions must be declared just like variables. The declaration tells the C++ compiler about
the function's return value and parameters. There are two ways of declaring a function. The
first is to write the entire function before it's used. The other is to define what's called a
function prototype, which gives the compiler just enough information to call the function. A
function prototype looks like the first

Page 136

line of the function, only the function has no body. For example, the prototype for the
triangle function is:

 float triangle(float width, float height);

Note the semicolon at the end of the line. This is used to tell C++ that this is a prototype and
not a real function.

C++ allows you to leave out the parameter names when declaring a prototype. This function
could just as easily have been written:

 float triangle(float, float);

However, this technique is not commonly used. The reason is that it's very easy to create a
prototype by simply using the editor to copy the first line of a function and put that line where

you want the prototype. (Many times this will be in a header file as described in Chapter 23,
Modular Programming.) Also, putting the names in the prototype gives anyone reading the
program additional useful information.

Functions that have no parameters are declared with a parameter list of void. For example:

 int get_value(void);

The void construct is a holdover from the old C days when an empty parameter list "()"
signaled an old K&R-style C function prototype. Actually, C++ will accept both an empty list
and a void declaration, but the void form is preferred. By putting in the void you are saying,
"Yes, I know that this function takes no parameters."

The keyword void is also used to indicate a function that does not return a value (similar to
the FORTRAN SUBROUTINE or PASCAL Procedure). For example, this function just
prints a result, it does not return a value.

 void print_answer(int answer)
 }
 if (answer < 0)
 cout << "Answer corrupt\n";
 return;
 }
 cout << "The answer is << answer '\n';
 }

const Parameters and Return Values

If a parameter is declared const then that parameter cannot be changed inside the function.
Ordinary parameters can be changed inside functions, but the changes will not be passed back
to the calling program.

Page 137

For example, in the triangle function, we never change width or height. These could
easily be declared const. Since the return value is also something that cannot be changed, it
can be declared const as well. The const declarations serve to notify the programmer that
the parameters do not change inside the functions. If you do attempt to change a const
parameter, the compiler generates an error. The improved triangle function with the
const declarations can be seen in Example 9-4.

Example 9-4. tri/tri-sub2.cc

const float triangle(const float width, const float height)
{
 float area; // Area of the triangle

 area = width * height / 2.0;
 return (area);
}

As it stands now, the const declaration for the return value is merely a decoration. In the next
section you'll see to how to return references and make the const return declaration useful.

Reference Parameters and Return Values

Remember that in Chapter 4, Basic Declarations and Expressions, we discussed reference
variables. A reference variable is a way of declaring an additional name for a variable. For
global and local variables, reference variables are not very useful. However, when used as
parameters they take on an entirely new meaning.

Suppose you want to write a subroutine to increment a counter. If you write it like Example
9-5, it won't work.

Example 9-5. value/value cc

#include <iostream.h>
// This function won't work
void inc_counter(int counter)
{
 ++counter;
}

main()
{
 int a_count = 0; // Random counter

 inc_counter(a_count);
 cout << a_count << '\n';
 return (0);
}

Page 138

Why doesn't it work? Because C++ defaults to call by value. This means that values go in, but
they don't come out.

What happens if you convert the parameter counter to a reference? References are just
another way of giving the same variable two names. When inc_counter is called,
counter becomes a reference to a_count. That means that anything done to counter
results in changes to a_count. Example 9-6, using a reference parameter, works properly.

Example 9-6. value/ref cc

#include <iostream.h>
// Works
void inc_counter(int &counter)
{
 ++counter;
}

main ()
{
 int a_count = 0; // Random counter

 inc_counter(a_count);
 cout << a_count << '\n';
 return (0);
 }

Examining this program we find that it looks a lot like Example 9-5 except for the ''&" in front
of counter. This "&" tells C++ that counter is a reference and not a normal call-by-value
parameter.

Reference declarations can also be used for return values. For example, Example 9-7 finds the
biggest element in an array. {

Example 9- 7. value/big cc

const int ARRAY_SIZE = 5 // Size of the array
int itemarray[ARRAY_SIZE] = {1, 2, 5000, 3, 4}; // An array

int &biggest(void)
{
 int index; // Current index
 int biggest; // Index of the biggest element

 // Assume the first is the biggest
 biggest = 0;
 for (index = 1; index < ARRAY_SIZE; ++index)
 if (item_array[biggest] < item_array[index])
 biggest = index;
 }
 return (item_array[biggest]);
}

Page 139

If you wanted to print the biggest element of an array, all you would have to do is:

 int item_array[5] = {1, 2, 5000, 3, 4}; // An array

 cout << "The biggest element is "<<
 biggest(item_array, 5) << '\n';

Let's examine this in more detail. First of all, consider what happens when you create a
reference variable:

 int &big_reference = item_array[2]; // A reference to element #2

The reference variable big_reference is another name for item_array[2]. You can
now use this reference to print a value:

 cout << big_reference << '\n'; // Print out element #2

But since this is a reference, you can use it on the left side as well:

 big_reference = 0; // Zero the largest value of the array

The function biggest returns a reference. When used on item_array it returns a reference to
item_array[2]. Remember that in the following code, biggest (item_array, 5) is
item_array[2]. The following three code sections all perform equivalent operations. The
actual variable, item_array[2], does not change; however, the way we refer to it does.

 // Using the actual data
 cout << item_array[2] << '\n';

 item_array[2] = 0;

 // Using a simple reference
 int big_reference = &item_array[2];
 cout << big_reference << '\n';
 big_reference = 0;

 // Using a function that returns a reference
 cout << biggest() << '\n';
 biggest(itemarray, 5) = 0;

Because the version of biggest returns a reference, it can be used on the left side of an
assignment operation (=). But suppose you don't want that to happen. You can accomplish this
by returning a const reference.

 const int &biggest(int array[], int n_elements);

This tells C++ that even though you return a reference, the result cannot be changed. Thus, code
like

 biggest(itemarray, 5) = 0; // Now it generates an
error

is illegal.

Page 140

Dangling References

You should be careful when using "return by reference." If you're not careful, you can wind up
with a reference to a variable that no longer exists. Example 9-8 illustrates this problem.

Example 9-8 ref/ref cc

1 #include <iostream.h>
2
3 const int &min(const int &il, const int &i2)
4 {
5 if (i1 < i2)
6 return (i1);
7 return (i2);
8 }
9
10 main()
11 {
12 int &i = min(1 + 2, 3 + 4);
13
14 return (0);
15 }

Line 3 starts the definition of the function min. It returns a reference to the smaller of two
integers.

In line 12 we call this function. Before the function min is called C++ creates a temporary
integer to hold the value of the expression 1 + 2. A reference to this temporary is passed to
the min function as the parameter i1. C++ creates another temporary for the i2 parameter.

The function min is then called and returns a reference to i1. But what does i1 refer to? It
refers to a temporary that C++ created in main. At the end of the statement C++ can destroy all
the temporaries.

Let's look at the call to min (line 12) in more detail. Here's a pseudocode version of line 12,
including the details that C++ normally hides from the programmer:

create integer tmp1, assign it the value 1 + 2
create integer tmp2, assign it the value 3 + 4
bind parameter i1 so it refers to tmpl
bind parameter i2 so it refers to tmp2
call the function "min"
bind main's variable i so it refers to
 the return value (il-a reference to tmpl)
// At this point i is a reference to tmpl
destroy tmpl
destroy tmp2

// At this point i still refers to tmpl
// It doesn't exist, but i refers to it

Page 141

At the end of line 12 we have a bad situation: i refers to a temporary variable that has been
destroyed. In other words, i points to something that does not exist. This is called a dangling
reference and should be avoided.

Array Parameters

So for you've dealt only with simple parameters. C++ treats arrays a little differently. First of
all, you don't have to put a size in the prototype declaration. For example:

 int sum(int array[]);

C++ uses a parameter-passing scheme called "call by address" to pass arrays. Another way of
thinking of this is that C++ automatically turns all array parameters into reference parameters.
This allows any size arrays to be passed. The function sum we just declared may accept integer
arrays of length 3, 43, 5,000, or any length.

However, if you want to put in a size you can. C++ allows this although it ignores whatever
number you put there. But by putting in the size you alert the people reading your program that
this function takes only fixed-size arrays.

 int sum(int array[3]);

For multidimensional arrays you are required to put in the size for each dimension except the
last one. That's because C++ uses these dimensions to compute the location of each element in
the array.

 int sum_matrix(int matrixl[10][10]); // Legal
 int sum_matrix(int matrixl[10][]); // Legal
 int sum_matrix(int matrixl[][]); // Illegal

Question 9-1: The function in Example 9-9 should compute the length of a string.* Instead

it insists that all strings are of length zero. Why?

Example 9-9. length/length.cc

/***
 * length -- compute the length of a string *
 * *
 * Parameters *
 * string -- the string whose length we want *
 * *
 * Returns *
 * the length of the string *
 ***/
int length(char string[])
{

* This function (when working properly) performs the same function as the library function strlen

Page 142

Example 9-9. length/length.cc (Continued)

 int index; // Index into the string

 /*
 * Loop until we reach the end-of-string character
 */
 for (index = 0; string[index] != '\0'; ++index)
 /* do nothing */
 return (index);
}

Function Overloading

Let's define a simple function to return the square of an integer:

 int square(int value) {
 return (value * value);
 }

We also want to square floating point numbers:

 float square(float value) {
 return (value * value);
 }

Now we have two functions with the same name. Isn't that illegal? In older languages such as C
and PASCAL that would be true. In C++ it's not. C++ allows function overloading, which
means you can define multiple functions with the same names. Thus you can define a square
function for all types of things: int, float, short int, double, and even char if
we could figure out what it means to square a character.

To keep your code consistent, all functions that use the same name should perform the same
basic function. For example you could define the following two square functions:

 // Square an integer

 int square(int value);

 // Draw a square on the screen
 void square(int top, int bottom, int left, int right);

This is perfectly legal C++ code, but it is confusing to anyone who has to read the code.

There is one limitation to function overloading: C++ must be able to tell the functions apart.
For example, the following is illegal:

 int get_number(void);
 float get_number(void); // Illegal

Page 143

The problem is that C++ uses the parameter list to tell the functions apart. But the parameter
list of the two get_number routines is the same: (void). The result is that C++ can't tell
these two routines apart and flags the second declaration as an error.

Default Parameters

Suppose you want to define a function to draw a rectangle on the screen. This function also
needs to be able to scale the rectangle as needed. The function definition is:

 void draw(const rectangle &rectangle, double scale)

After using this function for a while, you discover that 90% of the time you don't use the ability
of draw to scale. In other words, 90% of the time the scale factor is 1.0.

C++ allows you to specify a default value for scale. The statement:

 void draw(const rectangle &rectangle, double scale = 1.0)

tells C++, "If scale is not specified, make it 1.0." Thus the following are equivalent:

 draw(big_rectangle, 1.0); // Explicity specify scale
 draw(big_rectangle); // Let it default to 1.0

There are some style problems with default parameters. Study the following code:

 draw(big_rectangle);

Can you tell whether the programmer intended for the scale to be 1.0 or just forgot to put it in?
Although sometimes useful, the default parameter trick should be used sparingly.

Unused Parameters

If you define a parameter and fail to use it, most good compilers will generate a warning. For
example:

 void exit_button(Widget &button)
 cout << "Shutting down\n";
 exit (0);
 }

generates the message:

 Warning: line 1. Unused parameter "button"

But what about the times you really don't want to use a parameter? Is there a way to get C++ to
shut up and not bother you? There is. The trick is to leave out the name of the parameter.

Page 144

 // No warning, but style needs work
 void exit_button(Widget &) {
 cout << "Shutting down\n";
 exit (0);
 }

This is nice for C++, but not so nice for the programmer who has to read your code. We can
see that exit_button takes a Widget & parameter, but what is the parameter? A solution
to this problem is to reissue the parameter name as a comment.

 // Better
 void exit_button(Widget & /*button*/)
 cout << "Shutting down\n";
 exit (0);
 }

Some people consider this style ugly and confusing. They're right that it's not that easy to read.
There ought to be a better way; I just wish I could think of one.

One question you might be asking by now is, "Why would I ever write code like this? Why not
just leave the parameter out?"

It turns out that many programming systems make use of callback functions. For example, you
can tell the X Window System, "When the 'EXIT' button is pushed call the function
exit_button." Your callback function may handle many buttons, so it's important to know
which button is pushed. So X supplies button as a parameter to the function.

What happens if you know that only button can cause X to call exit_button? Well, X is
still going to give it to you, you're just going to ignore it. That's why some functions have
unused parameters.

inline Functions

Looking back at the square function for integers, we see that it is a very short function (one
line). Whenever C++ calls a function there is some overhead generated. This includes putting
the parameters on the stack, entering and leaving the function, and a stack fix-up after the
function returns.

For example, the code:

 int square(int value) {
 return (value * value);
 }
 main() {
 //
 x = square(x);

Page 145

generates the following assembly code on a 68000 machine (paraphrased).

 label "int square(int value)"
 link a6,#0 // Set up local variables

 // The next two lines do the work
 movel a6@(8),dl // dl = value
 mulsl a6@(8),dl // dl = value * dl

 movel dl,dO // Put return value in dO
 unlk a6 // Restore stack
 rts // Return(dO)

 label "main"
 // ...
 // x = square(x)
 //
 movel a6@(-4),sp@- // Put the number x on the stack
 jbsr "void square(int value)"
 // Call the function

 addqw #4,sp // Restore the stack
 movel d0,a6@(-4) // Store return value in X

 // ...

As you can see from this code, there are eight lines of overhead for two lines of work. C++
allows you to cut out that overhead through the use of the inline function. The inline
keyword tells C++ that the function is very small. This means that it's simpler and easier for the
C++ compiler to put the entire body of the function in the code stream instead of generating a
call to the function.

 inline int square(int value)
 return (value * value);
 }

Changing the square function:

 label "main"

 // ...
 // x = square(x)
 //
 movel dl,a6@(-4) // dl = x
 movel a6@(-4),d0 // d0 = x
 mulsl d0,d0 // d0 = (x * x)

 movel d0,a6@(-4) // Store result

Expanding the function inline has eliminated the eight lines of overhead and results in much
faster execution.

The inline modifier provides C++ a valuable hint it can use when generating code.
Inline tells the compiler that the code is extremely small and simple. Like

Page 146

register, the inline modifier is a hint. If the C++ compiler can't generate a function
inline, it will create it as an ordinary function.

Summary of Parameter Types

Table 9-2 lists the various parameter types.

Table 9-2 Parameter Types

Type Declaration

Call by value function(int var)

Value is passed into the function and can be changed inside
the function, but the changes are not passed to the caller.

Constant call by value function(const int var)

Value is passed into the function and cannot be changed.

Reference function(int &var)

Reference is passed to the function. Any changes made to the
parameter are reflected in the caller.

Constant reference function(const int &var)

Value cannot be changed in the function. This form of a
parameter is more efficient than "constant call by value" for
complex data types. (See Chapter 12, Advanced Types.)

Array function(int array[])

Value is passed in and may be modified. C++ automatically
turns arrays into reference parameters.

Call by address function(int *var)

Passes a pointer to an item. Pointers are covered in Chapter
15, Simple Pointers.

Structured Programming Basics

Computer scientists spend a great deal of time and effort studying how to program. The result is
that they come up with the absolutely, positively, best programming methodology—a new one
each month. Some of these systems include flow charts, top-down programming, bottom-up
programming, structured programming, and object-oriented programming.

Now that you have learned about functions, we can talk about using structured programming
techniques to design programs. This is a way of dividing up or structuring a program into
small, well-defined functions. It makes the program easy to write and easy to understand. I

don't claim that this system is the absolute best way to program. It happens to be the system that
works best for me. If another system works better for you, use it.

Page 147

Structured programming concentrates on a program's code. Later you'll see how to merge code
and data to form classes and begin to perform object-oriented programming.

The first step in programming is to decide what you are going to do. This has already been
described in Chapter 7, The Programming Process. Next, decide how you are going to
structure your data.

Finally, the coding phase begins. When writing a paper, you start with an outline, with each
section in the paper described by a single sentence. The details are filled in later. Writing a
program is similar. You start with an outline, but this outline is your main function. The
details can be hidden within other functions. For example, the program in Example 9-10 solves
all of the world's problems.

Example 9-10. A global solution

main()
{
 void init(void);
 void solve_problems(void);
 void finish_up(void);

 init();
 solveproblems();
 finish_up();
}

Of course, some of the details remain to be filled in.

Start by writing the main function. It should be less than two pages long. If it grows longer,
consider splitting it up into two smaller, simpler functions. The size of the function should be
limited to three pages because that is about the maximum amount of information a human being
can store in short-term memory at one time. After the main function is complete, you can start
on the other functions. This type of structured programming is called top-down programming.
You start at the top (main) and work your way down.

Another type of coding is called bottom-up programming. This involves writing the
lowest-level function first, testing it, and then building on that working set. I tend to use some
bottom-up techniques when I'm working with a new standard function that I haven't used before.
I write a small function to make sure I really know how the function works and continue from
there. This is the approach used in Chapter 7 to construct the calculator program.

In actual practice, both techniques are useful. This results in a mostly top-down, partially
bottom-up technique. Computer scientists have a term for this methodology: chaos. The one
rule you should follow in programming is, "Use what works best."

Page 148

Recursion

Recursion occurs when a function calls itself directly or indirectly. Some programming
functions lend themselves naturally to recursive algorithms, such as the factorial.

A recursive function must follow two basic rules:

1. It must have an ending point.

2. It must make the problem simpler.

A definition of factorial is:

 fact(0) = 1
 fact(n) = n * fact(n-l)

In C++ this is:

int fact(int number)
{
 if (number == 0)
 return (1);
 /* else */
 return (number * fact(number-1));
 }

This satisfies the two rules. First, it has a definite ending point (when number == 0).
Second, it simplifies the problem because fact(number-1) is simpler than
fact(number).

Factorial is legal only for number >= 0. But what happens if we try to compute
fact(-3)? The program aborts with a stack overflow or similar message. fact(-3) calls
fact(-4) calls fact(-5) and so on. There is no ending point. This is called an infinite
recursion error.

Many things we do iteratively can be done recursively, such as summing the elements of an
array. You can define a function to add elements m through n of an array as follows:

If you have only one element, then the sum is simple.

Otherwise, it is the sum of the first element and the sum of the rest.

In C++ this is:

int sum(int first, int last, int array[])
{
 if (first == last)
 return (array[first]);
 /* else */
 return (array[first] + sum(first + 1, last, array));
}

Page 149

For example:

Sum(1 8 3 2) =
 1 + Sum(8 3 2) =
 8 + Sum(3 2) =
 3 + Sum(2) =
 2
 3 + 2 = 5
 3+2=5
 8 + 5 = 13
 1 + 13 = 14
Answer = 14

Programming Exercises

Exercise 9-1: Write a procedure that counts the number of words in a string. (Your
documentation should describe exactly how you define a word.) Write a program to test your
new procedure.

Exercise 9-2: Write a function "begins (string1, string2)" that returns true if
string1 begins string2. Write a program to test the function.

Exercise 9-3: Write a function count (number, array, length) that will count the
number of times number appears in array. The array has length elements. The function
should be recursive. Write a test program to go with the function.

Exercise 9-4: Write a function that will take a character string and return a primitive hash code
by adding up the value of each character in the string.

Exercise 9-5: Write a function that returns the maximum value of an array of numbers.

Exercise 9-6: Write a function that scans a string for the character ''-" and replaces it with
"_".

Answers to Chapter Questions

Answer 9-1: The programmer went to a lot of trouble to explain that the for loop did nothing
(except increment the index). However, there is no semicolon at the end of the for. C++ keeps
reading until it sees a statement (in this case return(index)) and puts that in the for loop.
Example9-11 contains a correctly written version of the program.

Example 9-11. length/rlen.cc

int length(char string[])
{
 int index; // index into the string

 /*

Page 150

Example 9-11 length/rlen cc (Continued)

 * Loop until we reach the end of string character
 */

 for (index = 0; string[index] != '\0'; ++index)
 /* do nothing */ ;
 return (index);
}

Page 151

10
The C++ Preprocessor

In This Chapter:

 •• #define Statement
 •• Conditional

Compilation
 •• #include Files
 •• Parameterized

Macros
 •• Advanced Features
 •• Summary
 •• Programming

Exercises
 •• Answers to

Chapter Questions

The speech of man is like embroidered tapestries. since like them this
has to be extended in order to display its patterns, but when it is rolled
up it conceals and distorts them
—Themistocles

The first C compilers had no constants or inline functions. When C was still being developed,
it soon became apparent that C needed a facility for handling named constants, macros, and
include files. The solution was to create a preprocessor that is run on the programs before they
are passed to the C compiler. The preprocessor is nothing more than a specialized text editor.
Its syntax is completely different from C's and it has no understanding of C constructs. It is
merely a dumb text editor.

The preprocessor was very useful and soon it was merged into the main C compiler. The C++
compiler kept this pre-processor. On some systems, like UNIX, it is still a separate program,
automatically executed by the compiler wrapper cc. Some of the newer compilers, like
Turbo-C++, have the pre-processor built in.

#define Statement

The #define statement can be used to define a constant. For example, the following two
lines perform similar functions:

 #define SIZE 20 // The array size is 20

 const int SIZE = 20; // The array size is 20

Actually the line #define SIZE 20 acts as a command to the preprocessor to globally
change SIZE to 20. This takes the drudgery and guesswork out of making changes.

Page 152

All preprocessor commands begin with a hash mark (#) in column 1. C++ is free format.
Language elements can be placed anywhere on a line, and the end-of-line is treated just like a
space. The preprocessor is not free format. It depends on the hash mark (#) being in the first
column. As you will see, the preprocessor knows nothing about C++ and can be (and is) used
to edit things other than C++ programs.

WARNING

The preprocessor is not part of the C++ compiler. It uses an entirely
different syntax and requires an entirely different mind-set to use it
well. Most problems you will see occur when the preprocessor is
treated like C++.

Preprocessor directives terminate at the end of the line. In C++ a semicolon (;) ends a
statement. The preprocessor directives do not end in a semicolon, and putting one in can lead
to unexpected results. A preprocessor directive can be continued by putting a backslash (\) at
the end of the line. The simplest use of the preprocessor is to define a replacement macro. For
example, the command:

 #define FOO bar

causes the preprocessor to replace the word "FOO" with the word "bar" everywhere "FOO"
occurs. It is common programming practice to use all uppercase letters for macro names. This
makes it very easy to tell the difference between a variable (all lowercase) and a macro (all
uppercase).

The general form of a simple define statement is:

 #define Name Substitute-Text

Name can be any valid C++ identifier. Substitute-Text can be anything as long as it fits on a
single line. The Substitute-Text can include spaces, operators, and other characters.

It is possible to use the following definition:

 #define FOR_ALL for (i = 0; i < ARRAY_SIZE; ++i)

and use it like:

 /*
 * Clear the array
 */
 FOR_ALL {
 data[i] = 0;
 }

It is considered bad programming practice to define macros in this manner. They tend to
obscure the basic control flow of the program. In this example, if the

Page 153

programmer wants to know what the loop does, he must search the beginning of the program for
the definition of FOR_ALL.

It is even worse to define macros that do large-scale replacement of basic C++ programming
constructs. For example, you can define the following:

 #define BEGIN {
 #define END }

 . . .

 if (index == 0)
 BEGIN
 cout << "Starting\n";
 END

The problem is that you are no longer programming in C++, but in a half-C++ half-PASCAL
mongrel.

The preprocessor can cause unexpected problems because it does not check for correct C++
syntax. For example, Example 10-1 generates an error on line 11.

Example 10-1 big/big.cc

1 #define BIG_NUMBER 10 ** 10
2
3 main()
4 {
5 // Index for our calculations
6 int index;
7
8 index = 0;
9
10 // Syntax error on next line
11 while (index < BIG_NUMBER) {
12 index = index * 8;
13 }
14 return (0);
15 }

The problem is in the #define statement on line 1, but the error message points to line 11.
The definition in line 1 causes the pre-processor to expand line 11 to look like:

 while (index < 10 ** 10)

Because * * is an illegal operator, this generates a syntax error.

Page 154

Question 10-1: The following program generates the answer 47 instead of the expected
answer 144. Why? (Hint below.)

Example 10-2. first/first cc

#include <iostream.h>

#define FIRST_PART 7
#define LAST_PART 5
#define ALL_PARTS FIRST_PART + LAST_PART

main()
 cout << "The square of all the parts is " <<
 ALL_PARTS * ALL_PARTS << '\n';
 return (0);
}

Hint:

 CC -E prog.cc

sends the output of the preprocessor to the standard output.

In MS-DOS/Windows, the command:

 cpp prog.cpp

creates a file called prog i containing the output of the preprocessor.

Running the program For Example 10-1 through thepreprocessor gives you.

Example 10-3 first/first-ed.out

1 "first.cc"
1 "/usr/local/lib/g++-include/iostream.h" 1 3

// About 900 lines of #include stuff omitted

inline ios& oct(ios& i)
{ i.setf(ios::oct, ios::dec|ios::hex|ios::oct); return i; }

1 "first.cc" 2

main() {
 cout << "The square of all the parts is " <<
 7 + 5 * 7 + 5 << '\n';
 return (0);
}

Page 155

NOTE

The output of the C++ preprocessor contains a lot of information,
most of which can easily be ignored. In this case, you need to scan
the output till you reach the cout line. Examining this line will give
you an idea of what caused the error.

Question 10-2: Example 10-4 generates a warning that counter is used before it is set.
This is a surprise because the for loop should set it. You also get a very strange warning,
"null effect, "for line 11.

Example 10-4. max/max.cc

 1 // Warning, spacing is VERY important
 2
 3 #include <iostream.h>
 4
 5 #define MAX 10
 6
 7 main()
 8 {
 9 int counter;
10
11 for (counter = MAX; counter > 0;
12 --counter)
13 cout << "Hi there\n";
14
15 return (0);
16 }

Hint: Take a look at the preprocessor output.

Question 10-3: Example 10-3 computes the wrong valuefor size. Why?

Example 10-5. size/size cc

#include <iostream.h>

#define SIZE 10;
#define FUDGE SIZE -2;
main ()
{
 int size; // Size to really use

 size = FUDGE;
 cout << "Size is " << size << '\n';
 return (0);
}

Page 156

Question 10-4: The following program is supposed to print the message "Fatal Error:
Abort" and exit when it receives bad data. But when it gets good data, it exits. Why?

Example 10-6 dis/die.cc

 1 #include <iostream.h>
 2 #include <stdlib.h> /* ANSI Standard only */
 3
 4 #define DIE \
 5 cerr << "Fatal Error: Abort\n"; exit(8);
 6
 7 main() {
 8 // A random value for testing
 9 int value;
10
11 value = 1;

12 if (value < 0)
13 DIE;
14
15 cerr << "We did not die\n";
16 return (0);
17 }

#define versus const

The const keyword is relatively new. Before const, #define was the only way to
define constants, so most older code uses #define directives. However, the use of const is
preferred over #define for several reasons. First of all, C++ checks the syntax of const
statements immediately. The #define directive is not checked until the macro is used. Also,
const uses C++ syntax, while #define has a syntax all its own. Finally, const follows
normal C++ scope rules, whereas constants defined by a #define directive continue on
forever.

In most cases a const statement is preferred over #define. Here are two ways of defining
the same constant.

 #define MAX 10 // Define a value using the pre-processor
 // (This can easily cause problems)

 const int MAX = 10; // Define a C++ constant integer
 // (Safer)

The #define directive is limited to defining simple constants. The const statement can
define almost any type of C++ constant including things such as structure classes. For example:

 struct box (
 int width, height; // Dimensions of the box in pixels
 };

Page 157

 // Size of a pink box to be used for input
 const box pinkbox(1.0, 4.5);

The #define directive is, however, essential for things such as conditional compilation and
other specialized uses.

Conditional Compilation

One problem programmers have is writing code that can work on many different machines. In
theory, C++ code is portable; in actual practice many machines have little quirks that must be
accounted for. For example, this book covers UNIX, MSDOS, and Windows compilers.
Although they are almost the same, there are some differences, as you will see in Chapter 25,
Portability Problems.

The preprocessor allows you great flexibility in changing the way code is generated through the
use of conditional compilation. Suppose you want to put debugging code in the program while
you are working on it and then remove the debugging code in the production version. You could

do this by including the code in an #ifdef-#endif section.

 #ifdef DEBUG
 cout << "In compute_hash, value " << value << " hash << hash <<
 "\n";
 #endif /* DEBUG */

NOTE

You do not have to put the /* DEBUG */ after the #endif, but it
is very useful as a comment.

If the beginning of the program contains the directive:

 #define DEBUG /* Turn debugging on */

the cout is included. If the program contains the directive:

 #undef DEBUG /* Turn debugging off */

the cout is omitted.

Strictly speaking the #undef DEBUG is unnecessary. If there is no #define DEBUG
statement, then DEBUG is undefined. The #undef DEBUG statement is used to indicate
explicitly to anyone reading the code that DEBUG is used for conditional compilation and is
now turned off.

The directive #ifndef will cause the code to be compiled if the symbol is not defined.

Page 158

#else reverses the sense of the conditional. For example:

 #ifdef DEBUG
 cout << "Test version. Debugging is on\n";
 #else /* DEBUG */
 cout << "Production version\n";
 #endif /* DEBUG */

A programmer may wish to temporarily remove a section of code. A common method of doing
this is to comment out the code by enclosing it in /* */. This can cause problems, as shown
by the following example:

 /***** Comment out this section
 section_report();
 /* Handle the end-of-section stuff */
 dumptable();
 **** End of commented out section */

This generates a syntax error for the fifth line. Why?

A better method is to use the #ifdef construct to remove the code.

 #ifdef UNDEF
 section_report();
 /* Handle the end-of-section stuff */
 dump_table();

 #endif /* UNDEF */

(Of course the code will be included if anyone defines the symbol UNDEF; however, anyone
who does should be shot.)

The compiler switch -Dsymbol allows symbols to be defined on the command line. For
example, the command:

 CC -DDEBUG -g -o prog prog.cc

compiles the program prog.c and includes all the code in #ifdef DEBUG/#endif /*
DEBUG */ pairs even though there is no #define DEBUG in the program. The Turbo-C++
equivalent is:

 tcc -DDEBUG -g -N -eprog.exe prog.c

The general form of the option is -Dsymbol or -Dsymbol=value. For example, the following
sets MAX to 10:

 CC -DMAX=10 -o prog prog.c

Most C++ compilers automatically define some system-dependent symbols. For example,
Turbo-C++ defines the symbol _TURBOC_ and MS-DOS defines_ MSDOS_. The ANSI
standard compiler C defines the symbol _STDC_. C++ compilers define the symbol
_cplusplus. Most UNIX compilers define a name for the system (e.g., Sun, VAX, celerity,
etc.); however, they are rarely documented. The symbol unix is always defined for all UNIX
machines

Page 159

NOTE

Command-line options specify the initial value of a symbol only.
Any #define and #undef directives in the program can change
the symbol's value. For example, the directive:

 #undef DEBUG

results in DEBUG being undefined whether or not you use
-DDEBUG.

#include Files

The #include directive allows the program to use source code from another file.

For example, you have been using the directive:

 #include <iostream.h>

in your programs. This tells the preprocessor to take the file iostream.h and insert it in the
current program. Files that are included in other programs are called headerfiles. (Most
#include directives come at the head of the program.) The angle brackets indicate that the
file is a standard header file. In UNIX, these files are usually located in /usr/include. In
MS-DOS/Windows, they are located in the Turbo-C++ directory (installation dependent).

Standard include files are used for defining data structures and macros used by library routines.
For example, cout is a standard class that (as you know by now) prints data on the standard
output. The ostream class definition used by cout and its related routines is defined in
iostream.h.

Sometimes you may want to write your own set of include files. Local include files are
particularly useful for storing constants and data structures when a program spans several files.
They are especially useful for information sharing when a team of programmers is working on
a single project. (See Chapter 23, Modular Programming.)

Local include files may be specified by using double quotation marks (") around the filename.

 #include "defs.h"

The filename ("defs.h") can be any valid filename. This can be a simple file, "defs.h"; a
relative path, called "../../data.h"; or an absolute path, called
"/root/include/const.h". (In MS-DOS/Windows you should use backslash (\)
instead of slash (/) as a directory separator.)

Page 160

Include files may be nested. This can cause problems. Suppose you define several useful
constants in the file const.h. If the files data.h and io.h both include const.h and you put the
following in your program:

 #include "data.h"
 #include "io.h"

you generate errors because the preprocessor sets the definitions in const.h twice. Defining a
constant twice is not a fatal error; however, defining a data structure or union twice is an error
and must be avoided.

One way around this problem is to have const.h check to see whether it has already been
included and not define any symbols that have already been defined.

Look at the following code:

 #ifndef _CONST_H_INCLUDED_

 /* Define constants */

 #define _CONST_H_INCLUDED_
 #endif /* _CONST_H_INCLUDED_ */

When const.h is included, it defines the symbol _CONST_H_INCLUDED_. If that symbol is
already defined (because the file was included earlier), the #ifdef conditional hides all the
other defines so they don't cause trouble.

NOTE

It is possible to put code in a header file. This is considered poor
programming practice. By convention, code goes in .cc files and
definitions, declarations, macros, and inline functions go in the .h

files.

Parameterized Macros

So far we have discussed only simple #defines or macros. Macros can take parameters.
The following macro computes the square of a number:

 #define SQR(x) ((x) * (x)) /* Square a number */

When used, the macro replaces x by the text of its argument. SQR(5) expands to ((5) * (5)). It
is a good rule always to put parentheses around the parameters of a macro. Example 10-7
illustrates the problems that can occur if this rule is not followed:

Example 10-7. sqr/sqr.cc

#include <iostream.h>
#define SQR(x) (x * x)

main()

Page 161

Example 10-7. sqr/sqr.cc (Continued)

{
 int counter; // Councer for loop

 for (counter = 0; counter < 5; ++counter) {
 cout << "x " << counter + 1 <<
 " x squared " << SQR(counter + 1) << '\n';
 {
 return (0);
}

Question 10-5: What does the above program output? (Try running it on your machine.)
Why did it output what it did? (Try checking the output of the preprocessor.)

The keep-it-simple system of programming prevents us from using the increment (++)
and decrement (--) operators except on a line by themselves. When used in an expression,
they are considered side effects, and this can lead to unexpected results as illustrated in
Example 10-8.

Example 10-8. sqr-i/sqr-i.cc

#include <iostream.h>
#define SQR(x) ((x) * (x))

main ()
{
 int counter; /* Counter for loop */

 counter = 0;
 while (counter < 5)
 cout << "x << counter + 1 <<
 " x squared" << SQR(++counter) << '\n';
 return (0);

}

Why does this not produce the expected output? How much does the counter go up each time.

In the program shown in Example 10-8 the SQR(++counter) is expanded to
((++counter) * (++counter)) in this case. The result is that counter goes up by 2
each time through the loop. The actual result of this expression is system dependent.

Question 10-6: The following program tells us we have an undefined variable, but our only
variable name is counter. Why?

Example 10-9 rec/rec.cc

#include <iostream.h>
#define RECIPROCAL (number) (1.0 / (number))

Page 162

Example 10-9. rec/rec.cc (Continued)

main()
}
 float counter;

 for (counter = 0.0; counter < 10.0;
 counter += 1.0)

 cout << "1/" << counter << " = "<<
 RECIPROCAL(counter) << "\n";
 }
 return (0);
}

The # Operator

The # operator is used inside a parameterized macro to turn an argument into a string. For
example:

 #define STR(data) #data
 STR(hello)

generates

 "hello"

For a more extensive example of how to use this operator see Chapter 26, Putting It All
Together.

Parameterized Macros Versus Inline Functions

In most cases it is better to use an inline function instead of a parameterized macro, to avoid
most of the traps caused by parameterized macros. But there are cases where a parameterized
macro may be better than an inline function. For example, the SQR macro works for both
float and int data types. We'd have to write two inline functions to perform the same
functions.

 #define SQR(x) ((x) * (x)) // A parameterized macro
 // Works, but is dangerous

 // Inline function to do the same thing
 inline int sqr(const int x) {
 return (x * x);
 }

Advanced Features

This book does not cover the complete list of C++ preprocessor directives. Among the more
advanced features are an advanced form of the #if directive for

Page 163

conditional compilations and the #pragma directive for inserting compiler-dependent
commands into a file. See your C++ reference manual for more information on these features.

Summary

The C++ preprocessor is a very useful part of the C++ language. It has a completely different
look and feel from C++. However, it must be treated apart from the main C++ compiler.

Problems in macro definitions often do not show up where the macro is defined, but result in
errors much further down in the program. By following a few simple rules, you can decrease
the chances of having problems.

1. Put parentheses around everything. In particular they should enclose #define constants
and macro parameters.

2. When defining a macro with more than one statement, enclose the code in {}.

3. The preprocessor is not C++. Don't use = or ;.

 #define X = 5 // Illegal
 #define X 5; // Illegal
 #define X = 5; // Very illegal

 #define X 5 // Correct

Finally, be glad. If you got this far, be glad that the worst is over.

Programming Exercises

Exercise 10-1: The C++ standard contains a boolean type (bool) that defines the values true
and false. The problem is most compilers haven't implemented this type yet. Create a boolean
type by using #define to define values for BOOLEAN, TRUE, and FALSE.

Exercise 10-2: Write a macro that returns true if its parameter is divisible by 10 and false
otherwise.

Exercise 10-3: Write a macro is_digit that returns true if its argument is a decimal digit.
Write a second macro is_hex that returns true if its argument is a hex digit (0-9 A-F a-f). The

second macro should reference the first.

Exercise 10-4: Write a preprocessor macro that swaps two integers. (If you're a real hacker,
write one that does not use a temporary variable declared outside the macro.)

Page 164

Answers to Chapter Questions

Answer 10-1: After the program has been run through the preprocessor, the cout statement is
expanded to look like:

 cout << "The square of all the parts is " << 7 + 5 * 7 + 5 << '\n';

The equation 7 + 5 * 7 + 5 evaluates to 47. It is a good rule to put parentheses () around all
expressions in macros. If you change the definition of ALL_PARTS to:

 #define ALL_PARTS (FIRST_PART + LAST_PART)

the program executes correctly.

Answer 10-2: The preprocessor is a very simple-minded program. When it defines a macro,
everything past the identifier is part of the macro. In this case, the definition of MAX is literally
"=10". When the for statement is expanded, the result is:

 for (counter==10; counter > 0; --counter)

C++ allows you to compute a result and throw it away. For this statement, the program checks
to see whether counter is 10 and discards the answer. Removing the = from the definition will
correct the problem.

Answer 10-3: As with the previous problem, the preprocessor does not respect C++ syntax
conventions. In this case the programmer used a semicolon to end the statement, but the
preprocessor included it as part of the definition for size. The assignment statement for
size, expanded, is:

 size = 10; -2;;

The two semicolons at the end do not hurt anything, but the one in the middle is a killer. This
line tells C++ to do two things: 1) assign 10 to size and 2) compute the value -2 and throw it
away (this results in the null effect warning). Removing the semicolons will fix the problem.

Answer 10-4: The output of the preprocessor looks like:

 void exit();

 main() {
 int value;

 value = 1;
 if (value < 0)
 cout << "Fatal Error: Abort\n"; exit(8);

 cout << "We did not die\n";
 return (0);

 }

Page 165

The problem is that two statements follow the if line. Normally they would be put on two
lines. If we properly indent this program we get:

Example 10-10 die3/die.cc

#include <iostream.h>
#include <stdlib.h>

main() {
 int value; // A random value for testing

 value = 1;
 if (value < 0)
 cout << "Fatal Error: Abort\n";

 exit(8);

 cout << "We did not die\n";
 return (0);
}

From this it is obvious why we always exit. The fact that there were two statements after the
if was hidden by using a single preprocessor macro. The cure for this problem is to put curly
braces around all multistatement macros.

 #define DIE \
 {cout << "Fatal Error: Abort\n"; exit(8);}

Answer 10-5: The problem is that the preprocessor does not understand C++ syntax. The
macro call:

 SQR(counter+l)

expands to:

 (counter+l * counter+l)

The result is not the same as ((counter+l) * (counter +1)). To avoid this
problem, use inline functions instead of parameterized macros.

 inline int SQR(int x) { return (x*x);}

If you must use parameterized macros, enclose each use of the parameter in parentheses.

 #define SQR(x) ((x) * (x))

Answer 10-6: The only difference between a parameterized macro and one without parameters
is the parentheses immediately following the macro name. In this case, a space follows the
definition of RECIPROCAL, so it is not a parameterized macro. Instead it is a simple text
replacement macro that replaces RECIPROCAL with:

 (number) (1.0 / number)

Removing the space between RECIPROCAL and (number) corrects the problem.

Page 167

11
Bit Operations

In This Chapter:

• Bit Operators
 •• The AND Operator
 •• Bitwise OR
 •• The Bitwise

Exclusive OR
 •• The Ones
 •• Complement
 •• Operator
 •• The Left and Right

Shift Operators
 •• Setting, Clearing,

and Testing Bits
 •• Bitmapped

Graphics
 •• Exercises
 •• Answers to

Questions

To be or not to be, that is the question.
—Shakespeare on Boolean Algebra

This chapter discusses bit-oriented operations. A bit is the smallest unit of information.
Normally it is represented by the values 1 and 0. (Other representations include on/off,
true/false, and yes/no.) Bit manipulations are used to control the machine at the lowest level.
They allow the programmer to get ''under the hood" of the machine. Many higher-level
programs will never need bit operations. Lowlevel coding such as writing device drivers or
pixel-level graphic programming requires bit operations. If you plan to program only at a
higher level, this chapter may be safely skipped.

Eight bits together form a byte, represented by the C++ data type char. A byte might contain
the following bits: 01100100.

This can also be written as the hexadecimal number 0x64. (C++ uses the prefix "Ox" to
indicate a hexadecimal (base 16) number.) Hexadecimal is convenient for representing binary
data because each hexadecimal digit represents 4 binary bits. Table 11-1 gives the
hexadecimal (hex) to binary conversion:

Table 11-1. Hex and Binary

Hex Binary Hex Binary

0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 0011 B 1011

Page 168

Table 11-1. Hex and Binary (Continued)

Hex Binary Hex Binary

4 0100 C 1100

5 0101 D 1101

6 0110 E 1110

7 0111 F 1111

So the hexadecimal number 0xAF represents the binary number 10101111.

Bit Operators

Bit, or bitwise, operators allow the programmer to work on individual bits. For example, a
short integer holds 16 bits (on most machines). The bit operators treat each of these as an
independent bit. By contrast, an add operator treats the 16 bits as a single 16-bit number.

Bit operators allow you to set, clear, test, and perform other operations on bits. The bit
operators are listed in Table 11-2.

Table 11-2 Bit Operators

Operator Meaning

& Bitwise AND

I Bitwise OR

^ Bitwise exclusive OR

- Complement

<< Shift left

>> Shift right

These operators work on any integer or character-data type.

The AND Operator (&)

The AND operator compares two bits. If they both are 1, the result is 1. The results of the AND

operator are defined in Table 11-3.

Table 11-3 AND Operator

Bit1 Bit2 Bit1 & Bit2

O 0 0

0 1 0

1 0 0

1 1 1

Page 169

When two eight-bit variables (char variables) are "ANDed" together, the AND operator works
on each bit independently. The following program segment illustrates this operation:

int c1, c2;

cl = 0x45;
c2 = 0x71;
cout << "Result of " << hex << cl << " & " << c2 << " = "<<
 (cl & c2) << dec << '\n';

The output of this program is:

Result of 45 & 71 = 41

This is because:
cl = 0x45 binary

01000101

& c2= 0x71 binary
01110001

= 0x41 binary
01000001

The bitwise AND (&) is similar to the logical AND (&&). In the logical AND if both operands are
true (nonzero), the result is true (1). In bitwise AND (&), if the corresponding bits of both
operands are true (1s), then the corresponding bits of the results are true (1s). So the bitwise

AND (&) works on each bit independently while the logical AND (&&) works on the operands as
a whole.

However, & and && are different operators, as Example 11-1 illustrates:

Example 11-1 and/and.cc

#include <iostream.h>

main()
{
 int i1, i2; // Two random integers

 il = 4;
 i2 = 2; // Set values

 // Nice way of writing the conditional
 if ((il != 0) && (i2 != 0))
 cout << "Both are not zero #1\n";

 // Shorthand way of doing the same thing
 // Correct C++ code, but rotten style
 if (il && i2)
 cout << "Both are not zero #2\n";

 // Incorrect use of bitwise AND resulting in an error
 if (il & i2)
 cout << "Both are not zero #3\n";

Page 170

Example 11-1 and/and cc (Continued)

 return (0);
}

Question: Why does test #3 fail to print Both are not zero #3?

Answer: The operator & is a bitwise AND. The result of the bitwise AND is zero.

il=4 00000100

i2=2 00000010

& 00000000

The result of the bitwise AND is 0, and the conditional is false. If the programmer had used the
first form:

 if ((i1 != 0) && (i2 != 0))

and made the mistake of using & instead of &&:

 if ((i1 != 0) & (i2 != 0))

the program would still have executed correctly.

 (i1 != 0) is true (result = 1)
 (i2 != 0) is true (result = 1)

1 bitwise AND 1 is 1, so the expression is true.

NOTE

Soon after discovering the bug illustrated by this program I told my
office mate, "I now understand the difference between AND and
AND AND), and he understood me. How we understand language
has always fascinated me, and the fact that I could utter such a
sentence and have someone understand it without trouble amazed
me.

You can use the bitwise AND operator to test whether a number is even or odd. In base 2, the
last digit of all even numbers is zero and the last digit of all odd numbers is one. The following
function uses the bitwise AND to pick off this last digit. If it is zero (an even number), the
result of the function is true.

inline int even(const int value)
{
 return ((value & 1) == 0);
}

Page 171

Bitwise OR (|)

The inclusive OR operator (also known as just the OR operator) compares its two operands. If
one or the other bit is a 1, the result is 1. Table 11-4 lists the truth table for the OR operator.

Table 11-4. Bitwise OR

Bit1 Bit2 Bit I Bit2

0 0 0

0 1 1

1 0 1

11 1

On a byte this would be:
il=0x47 01000111

i2=0x53 01010011

| 57 01010111

The Bitwise Exclusive OR (^)

The exclusive OR (also known as XOR) operator results in a 1 when either of its two
operands is a 1, but not both. The truth table for the exclusive OR operator is listed in Table
11-5.

Table 11-5 Exclusive OR

Bit1 Bit2 Bit1 ^ Bit2

0 0 0

0 1 1

1 0 1

1 1 0

On a byte this would be:
il=0x47 01000111

i2=0x53 01010011

^ 14 00010100

The Ones Complement Operator (NOT) (~)

The NOT operator (also called the invert operator or bit flip) is a unary operator that returns
the inverse of its operand, as shown in Table 11-6.

Table 11-6 NOT
Operator

Bit ~Bit

0 1

1 0

Page 172

On a byte this is:
c= 0x45 01000101

~c= 0xBA 10111010

The Left and Right Shift Operators (<<, >>)

The left shift operator moves the data left a specified number of bits. Any bits that are shifted
out the left side disappear. New bits coming in from the right are zeros. The right shift does the
same thing in the other direction. For example:

c=0xlC 00011100
c << 1 c=0x38 00111000
c >> 2 c=0x07 00000 11

Shifting left by one (x << 1) is the same as multiplying by 2 (x * 2). Shifting left by two (x
<< 2) is the same as multiplying by 4 (x * 4, or x * 22). You can see a pattern
forming here. Shifting left by n places is the same as multiplying by 2n. Why shift instead of
multiply? Shifting is faster than multiplication, so

 i = j << 3; // Multiply j by 8 (2**3)

is faster than:

 i = j * 8;

Or it would be faster if compilers weren't smart enough to turn "multiply by power of two" into
"shift."

Many clever programmers use this trick to speed up their programs at the cost of clarity. Don't
you do it. The compiler is smart enough to perform the speedup automatically. This means that
putting in a shift gains you nothing at the expense of clarity.

The left shift operator multiplies; the right shift divides. So:

 q = i >> 2;

is the same as:

 q = i / 4;

Again, this clever trick should not be used in modern code.

Right Shift Details

Right shifts are particularly tricky. When a variable is shifted to the right, C++ needs to fill the
space on the left side with something. For signed variables, C++

Page 173

uses the value of the sign bit. For unsigned variables, C++ uses zero. Table 11-7 illustrates
some typical right shifts.

Table 11-7 Right Shift Examples

Signed
Character

Signed Character Unsigned
Character

Expression 9 >> 2 -8 >> 2 248 >> 2

Binary value >> 2 0000 10102 >> 2 1111 10002 >> 2 1111 10002 >> 2

Binary value >> 2 0000 10102 >> 2 1111 10002 >> 2 1111 10002 >> 2

Result ??00 00102 ??11 11102 >> 2 ??11 11102 >> 2

Fill Sign bit (0) Sign bit (1) Zero

Final result (binary) 0000 00102 1111 11102 0011 11102

Final result (short int) 2 -2 62

Setting, Clearing, and Testing Bits

A character contains eight bits. Each of these can be treated as a separate flag. Bit operations
can be used to pack eight single-bit values in a single byte. For example, suppose you are
writing a low-level communications program. You are going to store the characters in an 8K
buffer for later use. With each character you will also store a set of status flags. The flags are
listed in Table 11-8.

Table 11-8 Communications Status Values

Name Description

ERROR True if any error is set

FRAMING_ERROR A framing error occurred for this character

PARITY_ERROR Character had the wrong parity

CARRIER_LOST The carrier signal went down

CHANNELDOWN Power was lost on the communication device

You could store each flag in its own character variable. That would mean that for each
character buffered, you would need five bytes of status storage. For a large buffer, that adds up.
By instead assigning each status flag its own bit within an eight-bit status character, you cut
storage requirements down to 1/5 of the original need.

You can assign the flags the bit numbers listed in Table 11-9.

Table 11-9. Bit Assignments

Bit Name

0 ERROR

1 FRAMING_ERROR

2 PARITY_ERROR

Page 174

Table 11-9 Bit Assignments
(Continued)

Bit Name

3 CARRIER_LOST

4 CHANNEL_DOWN

Bits are numbered 76543210 by convention. The constants for each bit are defined in Table
11-10.

Table 11-10 Bit Values

Bit Binary Value Hex Constant

7 10000000 0x80

6 01000000 0x40

5 000100000 0x20

4 00010000 0x10

3 00001000 0x08

2 000000100 0x04

1 00000010 0x02

0 00000001 0x01

The definitions could be:

 // True if any error is set
 const int ERROR = 0x01;

 // A framing error occurred for this character
 const int FRAMING_ERROR = 0x02;

 // Character had the wrong parity
 const int PARITY_ERROR = 0x04;

 // The carrier signal went down
 const int CARRIER_LOST = 0x08;

 // Power was lost on the communication device
 const int CHANNEL_DOWN = 0x10;

This method of defining bits is somewhat confusing. Can you tell (without looking at the table)
which bit number is represented by the constant 0x10? Table 11-11 shows how you can use
the left shift operator (<<) to define bits.

Table 11- 11. The Left Shift Operator and Bit Definition

C++ Representation Base 2 Equivalent Result (Base 2) Bit Number

1 << 0 000000012 << 0 000000012 Bit 0

1 << 1 000000012 << 1 000000102 Bit 1

1 << 2 000000012 << 2 000001002 Bit 2

Page 175

Table 11-11 The Left Shift Operator and Bit Definition (Continued)

C++ Representation Base 2 Equivalent Result (Base 2) Bit Number

1 << 3 000000012 << 3 000010002 Bit 3

1 << 4 000000012 << 4 000100002 Bit 4

1 << 5 000000012 << 5 001000002 Bit 5

1 << 6 000000012 << 6 010000002 Bit 6

1 << 7 000000012 << 7 100000002 Bit 7

Although it is hard to tell what bit is represented by 0x10, it's easy to tell what bit is meant
by 1 << 4.

The flags can be defined as:

 // True if any error is set
 const int ERROR = (1 << 0);

 // A framing error occurred for this character
 const int FRAMING_ERROR = (1 << 1);

 // Character had the wrong parity
 const int PARITY_ERROR = (1 << 2);

 // The carrier signal went down
 const int CARRIER_LOST = (1 << 3);

 // Power was lost on the communication device
 const int CHANNEL_DOWN = (1 << 4);

Now that you have defined the bits, you can manipulate them. To set a bit, use the | operator.
For example:

 char flags = 0; // Start all flags at 0

 flags |= CHANNEL_DOWN; // Channel just died

To test a bit, use the & operator to "mask out" the bits.

 if ((flags & ERROR) != 0)
 cerr << "Error flag is set\n";
 else
 cerr << "No error detected\n";

Clearing a bit is a little harder. Suppose you want to clear the bit PARITY_ERROR. In binary
this bit is 00000100. You want to create a mask that has all bits set except for the bit you
want to clear (11111011). This is done with the NOT operator (~). The mask is then ANDed
with the number to clear the bit.

 PARITY_ERROR 00000100
 ~PARITY_ERROR 11111011

Page 176

flags 00000101

flags & ~PARITY_ERROR 00000001

In C++ this is:

 flags &= ~PARITY_ERROR; // Who cares about parity

Question 11-1: In the following program, the HIGH_SPEED flag works, but the
DIRECT_CONNECT flag does not. Why?

 #include <iostream.h>

 const int HIGH_SPEED = (1<<7); /* modem is running fast */
 // we are using a hardwired connection
 const int DIRECT_CONNECT = (1<<8);

 char flags = 0; // start with nothing

 main()
 {
 flags |= HIGH_SPEED; // we are running fast
 flags |= DIRECT_CONNECT; // because we are wired together

 if ((flags & HIGH_SPEED) != 0)
 cout <<"High speed set\n";

 if ((flags & DIRECT_CONNECT) != 0)
 cout <<"Direct connect set\n";
 return (0);
 }

Bitmapped Graphics

More and more computers now have graphics. For the PC, there are graphics devices like EGA
and VGA cards. For UNIX, there is the X windowing system.

In bitmapped graphics, each pixel on the screen is represented by a single bit in memory. For
example, Figure 11-1 shows a 14-by-14 bitmap as it appears on the screen and enlarged so you
can see the bits.

Suppose we have a small graphic device—a 16-by-16 pixel monochrome display. We want to
set the bit at 4, 7. The bitmap for this device is shown as an array of bits in Figure 11-2.

But we have a problem. There is no data type for an array of bits in C++. The closest we can
come is an array of bytes. Our 16-by-16 array of bits now becomes a 2-by-16 array of bytes, as
shown in Figure 11-3.

To set the pixel at bit number 4,7 we need to set the fourth bit of byte 0,7. To set this bit we
would use the statement: bit_array[0] [7] |= (0x80 >> (4));

Page 177

Figure 11-1. Bitmap, actual size and enlarged

Figure 11-2. Array of bits

Page 178

Figure 11-3 Array of bytes

The constant 0x80 is the leftmost bit.

We can generalize this process to produce a macro that turns on the bit (pixel) located at (x, y).
We need to compute two values: the coordinate of the byte and the number of the bit within the
byte.

Our bit address is (x, y). Bytes are groups of eight bits, so that means that our byte address is
(x/8, y).

The bit within the byte is not so simple. We want to generate a mask consisting of the single bit

we want to set. For the leftmost bit this should be 1000 00002, or 0x80. This occurs when
(x%8) == 0. The next bit is 0100 00002, or (0x80 >> 1), and occurs when (x%8) == 1. So to
generate our bit mask we use the expression (0x80 >> (x%8)).

Now that we have the byte location and the bit mask, all we have to do is set the bit. The
following function sets a given bit in a bitmapped graphics array named graphics.

 void inline set_bit(const int x,const int y)
 {
 graphics[(x)/8][y] |= (0x80 >> ((x)%8))
 }

Page 179

Example 11-2 draws a diagonal line across the graphics array and then prints the array on the
terminal.

Example 11-2. graph/graph.cc

#include <iostream.h>

const int X_SIZE = 40; // Size of array in the X direction
const int Y_SIZE = 60; // Size of array in the Y direction
/*
 * We use X_SIZE/8 since we pack 8 bits per byte
 */
char graphics[X_SIZE / 8][Y_SIZE]; // The graphics data

/**
 * set_bit -- set a bit in the graphics array *
 * *
 * Parameters *
 * x,y -- location of the bit *
 **/
inline void set_bit(const int x,const int y)
{
 graphics[(x)/8][y] |= (0x80 >>((x)%8));
}

main()
{
 int loc; // Current location we are setting
 void print_graphics(void); // Print the data

 for (loc = 0; loc < X_SIZE; ++loc)
 set_bit(loc, loc);

 print_graphics();
 return (0);
}
/***
 * print_graphics -- print the graphics bit array *
 * as a set of X and .'s *
 ***/
void print_graphics(void)
{

 int x; // Current x byte
 int y; // Current y location
 int bit; // Bit we are testing in the current byte

 for (y = 0; y < Y_SIZE; ++y) {

 // Loop for each byte in the array
 for (x = 0; x < X_SIZE / 8; ++x) {

 // Handle each bit
 for (bit = 0x80; bit > 0; bit = (bit >> 1))
 if ((graphics[x][y] & bit) != 0)

Page 180

Example 11-2 graph/graph cc (Continued)

 cout << 'X';
 else
 cout << '.';
 }
 }
 cout << '\n';
 }
}

The program defines a bitmapped graphics array:

 char graphics[X_SIZE / 8][YSIZE]; // The graphics data

The constant X_SIZE/8 is used since we have X_SIZE bits across, which translates to
X_SIZE/8 bytes.

The main for loop:

 for (loc = 0; loc < X_SIZE; ++loc)
 set_bit(loc, loc);

draws a diagonal line across the graphics array.

Since we do not have a bitmapped graphics device we will simulate it with the subroutine
print_graphics.

The loop:

 for (y = 0; y < Y_SIZE; ++y) {

prints each row. The loop:

 for (x = 0; x < X_SIZE / 8; ++x) {

goes through every byte in the row. There are eight bits in each byte handled by the loop:

 for (bit = 0x80; bit > 0; bit = (bit >> 1))

which uses an unusual loop counter. This loop causes the variable bit to start with bit 7 (the

leftmost bit). For each iteration of the loop, the bit is moved to the right one bit by bit =
(bit >> 1). When we run out of bits, the loop exits.

The loop counter cycles through.

Finally, at the heart of the loops is the code:

Binary Hex

0000 0000 1000 0000 0x80

0000 0000 0100 0000 0x40

Page 181

Binary Hex

0000 0000 0010 0000 0x20

0000 0000 0001 0000 0x10

0000 0000 0000 1000 0x08

0000 0000 0000 0100 0x04

0000 0000 0000 0010 0x02

0000 0000 0000 0001 0x01

 if ((graphics[x][y] & bit) != 0)
 cout <<"X";
 else
 cout << ".";

This tests an individual bit and writes ''X" if the bit is set or "." if the bit is not set.

Question 11-2: In Example 11-3 the first loop works, but the second fails. Why?

Example 11-3 loop/loop.cc

#include <iostream.h>
main ()
{
 short int i;

 // Works
 for (i = 0x80; i !=0; i = (i >> 1)) {
 cout << "i is " << hex << i << dec << '\n';
 }

 signed char ch;

 // Fails
 for (ch = 0x80; ch!=0; ch = (ch >> 1))

 cout << "ch is " << hex << int(ch) << dec << '\n';
 }
 return (0);
}

Programming Exercises

Exercise 11-1: Write a set of inline functions, clear_bit and test_bit, to go with
the set_bit operation defined in Example 11-2. Write a main program to test these
functions.

Exercise 11-2: Write a program to draw a 10-by-10 bitmapped square.

Page 182

Exercise 11-3: Change Example 11-1 so it draws a white line across a black background.

Exercise 11-4: Write a program that counts the number of bits set in an integer. For example,
the number 5 (decimal), which is 0000000000000101 (binary), has two bits set.

Exercise 11-5: Write a program that takes a 32-bit integer (long int) and splits it into eight
4-bit values. (Be careful of the sign bit.)

Exercise 11-6: Write a program that will take all the bits in a number and shift them to the left
end. For example, 01010110 (binary) would become 11110000 (binary).

Answers to Chapter Questions

Answer 11-1: DIRECT_CONNECT is defined to be bit number 8 by the expression (1 << 8);
however, the eight bits in a character variable are numbered 76543210. There is no bit number
8. A solution to this problem is to make flags a short integer with 16 bits.

Answer 11-2: The problem is that ch is a character (8 bits). The value 0x80 represented in 8
bits is 1000 00002. The first bit, the sign bit, is set. When a right shift is done on this variable,
the sign bit is used for fill, so 1000 00002 >> 1 is 1100 00002.

The variable i works even though it is signed because it is 16 bits long. So 0x80 in 16 bits is
0000 0000 1000 00002. Notice that the bit we've got set is nowhere near the sign bit.

The solution to the problem is to declare ch as an unsigned variable.

Page 183

III
Advanced Types and Classes

Page 185

12
Advanced Types

In This Chapter:

 •• Structures
 •• Unions
 •• typedef
 •• enum Type
 •• Bit Fields or Packed

Structures
 •• Arrays of Structures
 •• Programming

Exercises

Total grandeur of a total edifice. Chosen by an inquisitor ofstructures
—Wallace Stevens

C++ provides a rich set of data types. Through the use of structures, unions, enum, and class
types, the programmer can extend the language with new types.

Structures

Suppose you are writing an inventory program for a warehouse. The warehouse is filled with
bins each containing a bunch of parts. All the parts in a bin are identical, so you don't have to
worry about mixed bins or partials.

For each bin you need to know:

• The name of the part it holds (character string 30 long).

• The quantity on hand (integer).

• The price (integer cents).

In previous chapters you have used arrays for storing a group of similar data types, but in this
example you have a mixed bag: two integers and a string.

Instead of an array, you will use a new data type called a structure. In an array, all the
elements are of the same type and are numbered. In a structure, each element, or field, is named
and has its own data type.

Page 186

The general form of a structure definition is:

 struct structure-name {
 field-type field-name // Comment

 field-type field-name // Comment

 } variable-name;

For example, you want to define a bin to hold printer cables. The structure definition is:

 struct bin {
 char name[30]; // Name of the part
 int quantity; // How many are in the bin
 int cost; // The cost of a single part (in cents)
 } printer_cable_box; // Where we put the print cables

This definition actually tells C++ two things. The first is what a struct bin looks like. This
statement defines a new data type that can be used in declaring other variables. This statement
also declares the variable printer_cable_box. Since the structure of a bin has been
defined, you can use it to declare additional variables:

struct bin terminal_cable_box; // Place to put terminal cables

The structure-name part of the definition may be omitted.

 struct {
 char name[30]; // Name of the part
 int quantity; // How many are in the bin
 int cost; // The cost of a single part (in cents)
 } printer_cable_box; // Where we put the print cables

The variable printer_cable_box is still to be defined, but no data type is created. The
data type for this variable is an anonymous structure.

The variable-name part also may be omitted. This would define a structure type but no
variables.

 struct bin {
 char name[30]; // Name of the part
 int quantity; // How many are in the bin
 int cost; // The cost of a single part (in cents)
 };

In an extreme case, both the variable-name and the structure-name parts may be omitted. This
creates a section of correct but totally useless code.

Once the structure type has been defined you can use it to define variables:

 struct bin printer_cable_box; // Define the box holding printer cables

C++ allows the struct to be omitted, so you can use the following declaration:

 bin printer_cable_box; // Define the box holding printer cables

Page 187

You have defined the variable printer_cable_box containing three named fields: name,
quantity, and cost. To access them you use the syntax:

 variable. field

For example, if you just found out that the price of the cables went up to $12.95, you would do

the following:

 printer_cable_box.cost = 1295; // $12.95 is the new price

To compute the value of everything in the bin, you can simply multiply the cost by the number
of items using the following:

 total_cost = printer_cable_box.cost * printer_cable_box.quantity;

Structures may be initialized at declaration time by putting the list of elements in curly braces
({ }).

 /*
 * Printer cables
 */
 struct bin {
 char name[30]; // Name of the part
 int quantity; // How many are in the bin
 int cost; // The cost of a single part (in cents)
 };
 struct bin printer_cable_box = {
 "Printer Cables", // Name of the item in the bin
 0, // Start with empty box
 1295 // Cost -- $12.95
 };

The definition of the structure bin and the variable printer_cable_box can be combined
in one step:

 struct bin {
 char name[30]; // Name of the part
 int quantity; // How many are in the bin
 int cost; // The cost of a single part (in cents)
 } printer_cable_box = {
 "Printer Cables", // Name of the item in the bin
 0, // Start with empty box
 1295 // Cost -- $12.95
 };

Page 188

Unions

A structure is used to define a data type with several fields. Each field takes up a separate
storage location. For example, the structure

 struct rectangle {
 int width;
 int height;
 };

appears in memory as shown in Figure 12-1.

A union is similar to a structure; however, it defines a single location that can be given many
different field names.

 union value {

 long int i_value; // Long integer version of value
 float f_value; // Floating version of value
 }

Figure 12-1 Structure and union layout

The fields i_value and f_value share the same space. You might think of a structure as a
large box divided up into several different compartments, each with its own name. A union is a
box, not divided at all, with several different labels placed on the single compartment inside.

In a structure, the fields do not interact. Changing one field does not change any others. In a
union, all fields occupy the same space, so only one may be active at a time. In other words, if
you put something in i_value, assigning something to f_value wipes out the old value of
i_value.

Page 189

The following shows how a union may be used:

 /*
 * Define a variable to hold an integer or
 * a real number (but not both)
 */
 union value {
 long int i_value; // The real number
 float f_value; // The floating point number
 } data;

 int i; // Random integer
 float f; // Random floating point number

 main()
 {
 data.f_value = 5.0;
 data.i_value = 3; // Data.f_value overwritten

 i = data.i_value; // Legal

 f = data.f_value; // Not legal; will generate unexpected results

 data.f_value = 5.5; // Put something in f_value/clobber i_value
 i = data.i_value; // Not legal; will generate unexpected results

Suppose you want to store the information about a shape. The shape can be any standard shape
such as a circle, rectangle, or triangle. The information needed to draw a circle is different
from the data needed to draw a rectangle, so you need to define different structures for each
shape:

 struct circle {
 int radius; // Radius of the circle in pixels
 };
 struct rectangle {
 int height, width; // Size of the rectangle in pixels
 };
 struct triangle {
 int base; // Length of the triangle's base in pixels
 int height; // Height of the triangle in pixels
 };

Now you define a structure to hold the generic shape. The first field is a code that tells you
what type of shape you have. The second is a union that holds the shape information:

 const int SHAPE_CIRCLE = 0; // Shape is a circle
 const int SHAPE_RECTANGLE = 1; // Shape is a rectangle
 const int SHAPE_TRIANGLE = 2; // Shape is a triangle

 struct shape {
 int kind; // What kind of shape is stored
 union shape_union { // Union to hold shape information
 struct circle circle_data; // Data for a circle

Page 190

 struct rectangle rectangle_data; // Data for a
rectangle
 struct triangle triangle_data; // Data for a triangle
 } data;
 };

Graphically you can represent shape as a large box. Inside the box is the single integer kind
and our union shape_union. The union is a box with three labels on it. The question is
which one is the "real" label. You can't tell from looking at the union, but that's why you
defined kind It tells us which label to read. The layout of the shape structure is illustrated by
Figure 12-2.

Figure 12-2 "shape" layout

Now you can store a circle in the generic shape:

 struct shape a_shape;
 //...
 a_shape.kind = SHAPE_CIRCLE;
 a_shape.data.circle_data.radius = 5.0; // Define the radius of the
 circle

typedef

C++ allows you to define your own variable types through the typedef statement. This
provides a way for you to extend C++'s basic types. The general form of the typedef
statement is:

 typedef type-declaration

The type-declaration is the same as a variable declaration except a type name is used instead
of a variable name. For example:

 typedef int width; // Define a type that is the width of an object

defines a new type, width, that is the same as an integer. So the declaration:

 width box_width;

Page 191

is the same as:

 int box_width;

At first glance, this is not much different from:

 #define width int

 width box_width;

However, typedefs can be used to define more complex objects which are beyond the
scope of a simple #define statement, such as:

 typedef int group[10];

Group is now a new type denoting an array of 10 integers. For example:

 main()
 {
 typedef int group[10]; // Create a new type "group"

 group totals; // Use the new type for a variable

 // Initialize each element of total
 for (i = 0; i < 10; ++i)
 totals[i] = 0;

enum Type

The enumerated (enum) data type is designed for variables that can contain only a limited set
of values. These values are referenced by name (tag). The compiler assigns each tag an integer

value internally, such as the days of the week. You could use the directive const to create
values for the days of the week (day_of_the_week) as follows:

 typedef int day_of_the_week; // Define the type for days of the week

 const int SUNDAY = 0;
 const int MONDAY = 1;
 const int TUESDAY = 2;
 const int WEDNESDAY = 3;
 const int THURSDAY = 4;
 const int FRIDAY = 5;
 const int SATURDAY = 6;

 /* Now to use it */
 day_of_the_week today = TUESDAY;

Page 192

This method is cumbersome. A better method is to use the enum type:

 enum day_of_the_week {SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY,
 FRIDAY, SATURDAY};

 /* Now use it */
 enum day_of_the_week today = TUESDAY;

The general form of an enum statement is:

 enum enum-name {tag-1, tag-2, . . .} variable-name

As with structures, the enum-name or the variable-name may be omitted. The tags may be any
valid C++ identifier; however, tags are usually all uppercase.

An additional advantage of using an enum type is that C++ will restrict the values that can be
used to the ones listed in the enum declaration. The following will result in a compiler error:

 today = 5; // 5 is not a day_of_the_week

One disadvantage of using enum is that enum variables cannot be used to index an array. The
following will result in an error:

 enum day of the week today = TUESDAY;

 // Define string versions of our days of the week
 char day_names[7][] = {
 "Sunday",
 "Monday",
 "Tuesday",
 "Wednesday",
 "Thursday",
 "Friday",
 "Saturday"
 }:
 . . .

 /*
 * The following line generates a warning

 * because today is not an integer
 */
 cout << "Today is " << day_names[today] << '\n';

To get around this problem, you need to tell C++ to treat today as an integer. This is
accomplished through the cast or typecast operation. The expression int(today) tells
C++, "I know today is not an integer, but treat it like one.'' To fix the above problem, use the
statement:

 cout << "Today is " << day_names[int(today)] << '\n';

Page 193

Casts are also useful in expressions to make sure the variables have the correct type. In
general, you can change the type of almost any expression with the expression:

 type (expression)

This is particularly useful when working with integers and floating point numbers.

 int won, lost; // # games won/lost so far
 float ratio; // Win/loss ratio

 won = 5;
 lost = 3;

 ratio = won / lost; // Ratio will get 1.0 (a wrong value)

 /* The following will compute the correct ratio */
 ratio = float(won) / float(lost);

C++ also supports the older C-style casting. The syntax for C-style casting is:

 (type) value

For example:

 (float)i // Turn "i" into a floating point number

C-style casts are frowned upon because they can easily be ambiguous. For example, in the
expression:

 (float)3 + 5

does the (float) apply to 3 or 3 + 5? It's not clear. To make this expression clearer you need
to add parentheses:

 ((float)3) + 5

As you can see, this form is more complex than C++ casts. Simpler is better, so use C++
casting.*

Bit Fields or Packed Structures

So far all the structures you've been using have been unpacked. Packed structures allow you
to declare structures in a way that takes up a minimum of storage. For example, the following
structure takes up 6 bytes (on a 16-bit machine):

 struct item {
 unsigned int list; // True if item is in the list

* Note The current C++ Draft Standard describes a number of new casting operations These are
discussed in Chapter 28, C++'s Dustier Corners

Page 194

 unsigned int seen; // True if this item has been seen
 unsigned int number; // Item number
 };

The storage layout for this structure can be seen in Figure 12-3. Each structure uses 6 bytes of
storage (2 bytes for each integer).

Figure 12-3. Unpacked structure

However, the fields list and seen can have only two values, 0 and 1, so only 1 bit is
needed to represent them. You never plan on having more than 16383 items (0x3fff or 14 bits).
You can redefine this structure using bit fields, so, it takes only 2 bytes, by following each field
with a colon and the number of bits to be used for that field.

struct item {
 unsigned int list:l; // True if item is in the list
 unsigned int seen:l; // True if this item has been seen
 unsigned int number:14; // Item number
};

In this example, you tell the compiler to use 1 bit for list, 1 bit for seen and 14 bits for
number. Using this method you can pack data into only 2 bytes as seen in Figure 12-4.

Figure 12-4. Packed structure

Packed structures should be used with care. The machine code to extract data from bit fields is
relatively large and slow. Unless storage is a problem, packed structures should not be used.

In Chapter 11, Bit Operations, you needed to store character data and five status flags for
8,000 characters. In this case, using a different byte for each flag would eat up a lot of storage
(five bytes for each incoming character). You used

Page 195

bitwise operations to pack the five flags into a single byte. Alternatively, a packed structure
could have accomplished the same thing:

 struct char_and_status {
 char character; // Character from device
 int error:1; // True if any error is set
 int framing_error:l;// A framing error occurred
 int parity_error:l; // Character had the wrong parity
 int carrier_lost:l; // The carrier signal went down
 int channel_down:1; // Power was lost on the channel
 };

Using packed structures for flags is clearer and less error-prone than using bitwise operators.
However, bitwise operators allow additional flexibility. You should use the one that is
clearest and easiest for you to use.

Arrays of Structures

Structures and arrays can be combined. Suppose you want to record the time a runner
completes each lap of a four-lap race. You define a structure to store the time:

 struct time {
 int hour; // Hour (24-hour clock)
 int minute; // 0-59
 int second; // 0-59
 };

 #define MAX_LAPS 4 /* We will have only 4 laps*/

 /* The time of day for each lap*/
 struct time lap[MAX_LAPS];

The statement:

 struct time lap[MAX_LAPS];

defines lap as an array of four elements. Each element consists of a single time structure.

You can use this as follows:

 /*
 * Runner just past the timing point
 */

 lap[count].hour = hour;
 lap[count].minute = minute;
 lap[count].second = second;
 ++count;

This array can also be initialized at run time.

Page 196

Initialization of an array of structures is similar to the initialization of multidimensional arrays.

 struct time start_stop[2] = {

 {10, 0, 0},
 {12, 0, 0}
 };

Suppose you want to write a program to handle a mailing list. Mailing labels are 5 lines high
and 60 characters wide. You need a structure to store names and addresses. The mailing list
will be sorted by name for most printouts, and sorted in zip-code order for actual mailings. The
mailing list structure looks like:

 struct mailing {
 char name[60]; // Last name, first name
 char addressl[60]; // Two lines of street address
 char address2[60];
 char city[40]; // Name of the city
 char state[2]; // Two-character abbreviation
 long int zip; // Numeric zip code
 };

You can now declare an array to hold the mailing list:

 /* Our mailing list */
 struct mailing list[MAX_ENTRIES];

Programming Exercises

Exercise 12-1: Design a data structure to handle the data for a mailing list.

Exercise 12-2: Design a structure to store time and date. Write a function to find the difference
between two times in minutes.

Exercise 12-3: Design an airline reservation data structure that contains the following data:

Flight number
Originating airport code (3 characters)
Destination airport code (3 characters)
Departure time
Arrival time

Write a program that lists all the planes that leave from two airports specified by the user.

Page 197

13
Simple Classes

In This Chapter:

 •• Stacks
 •• Improved Stack
 •• Using a Class
 •• Introduction to

Constructors and
Destructors

 •• Automatically
Generated Member
Functions

 •• Shortcuts
 •• Style
 •• Programming

Exercises

She thinks that even up in heaven Her class lies late and snores
—Cyril Connolly

So far you've used simple variables and structures to hold data and functions to process the
data. C++ classes allow you to combine data and the functions that use it.

In this chapter you'll see how a class can improve your code by implementing a simple stack
two ways: first, using a structure and functions, and then using a class.

Stacks

A stack is an algorithm for storing data. Data can be put in the stack using a push operation.
The pop operation removes the data. Data is stored in last-in-first-out (LIFO) order.

You can think of a stack as a stack of papers. When you perform a push operation, you put a
new paper on top of the stack. You can push as many times as you want. Each time the new data
goes on top of the stack. You get data out of a stack using the pop operation, which takes the top
paper off the stack and gives it to the caller.

Suppose you start with an empty stack and put three elements on it, 4, 5, and 8, using three push
operations. The first pop would return the top element: 8. The elements 4 and 5 remain in the
stack. Popping again will give us 5. You then

Page 198

push another value, 9, on the stack. Popping twice will give us the numbers 9 and 4, in that
order. This is illustrated by Table 13-1.

Table 13-1. Stack Operation

Operation Stack After Operation

Push (4) 4

Push (5) 5 4

Push (5) 5 4

Push (8) 8 54

Pop (returns 8) 5 4

Pop (returns 5) 4

Push (9) 9 4

Pop (returns 9) 4

Pop (returns 4) <empty>

Designing a Stack

You start a stack design by designing the data structure. This structure will need a place to put
the data (called data) and a count of the number of items currently pushed on the stack (called
count):

 const int STACK_SIZE = 100; // Maximum size of a stack

 // The stack itself
 struct stack {
 int count; // Number of items in the stack
 int data[STACK_SIZE]; // The items themselves
 };

Next you need to create the routines to handle the push and pop operations. The push function
stores the item on the stack and then increases the data count.

 inline void stack_push(struct stack &the_stack, const int item)
 {
 the_stack.data[the_stack.count] = item;
 ++the_stack.count;
 }

Note: This version of the program does not check for stack overflow or other error conditions.
Later, in Chapter 14, More on Classes, you'll see how you can use this simple stack to make a
safer, more complex one.

Popping simply removes the top item and decreases the number of items in the stack.

 inline int stackpop(struct stack &the_stack)
 {
 // Stack goes down by one
 --the_stack. count;

Page 199

 // Then we return the top value
 return (the_stack.data[the_stack.count]);
 }

There is one item you've overlooked: initializing the stack. You see you must set up the stack
before you can use it. Keeping with the spirit of putting everything in a stack_xxxx routine

get the stack_init function.

 inline void stack_init(struct stack &the_stack)
 {
 the_stack.count = 0; // Zero the stack
 }

Notice that you don't need to zero the data field in the stack, since the elements of data are
overwritten by the push operation.

You are now finished. To actually use the stack you declare it with a struct statement. Next
you must make sure that you initialize it, and then you can push and pop to your heart's content
(or at least within the limits of the stack).

 struct stack a_stack; // Declare the stack

 stack_init(a_stack); // Initialize the stack
 // Stack is ready for use

Example 13-1 contains a complete implementation of the structure version of the stack and a
short test routine.

Example 13-1. stack_s/stack_s.cc

/**
 * Stack *
 * A set of routines to implement a simple integer *
 * stack. *
 * *
 * Procedures *
 * stack_init -- initialize the stack *
 * stack_push -- put an item on the stack *
 * stack_pop -- remove an item from the stack *
 **/
#include <stdlib.h>
#include <iostream.h>

const int STACK_SIZE = 100; // Maximum size of a stack

// The stack itself
struct stack {
 int count; // Number of items in the stack
 int data[STACK_SIZE]; // The items themselves
};

/***
 * stack_init -- initialize the stack *

Page 200

Example 13-1 stack_s/stack_s cc (Continued)

 * *
 * Parameters *
 * the_stack -- stack to initialize *
 ***/

inline void stack_init(struct stack &the_stack)
{
 the_stack.count = 0; // Zero the stack
}
/***
 * stack_push -- push an item on the stack *
 * *
 * Warning: We do not check for overflow *
 * *
 * Parameters *
 * the_stack -- stack to use for storing the item *
 * item -- item to put in the stack *
 ***/
inline void stack_push(struct stack &the_stack,
 const int item)
{
 the_stack.data[the_stack.count] = item;
 ++the_stack.count;
}
/***
 * stack_pop -- get an item off the stack *
 * *
 * Warning: We do not check for stack underflow *
 * *
 * Parameters *
 * the_stack -- stack to get the item from *
 * *
 * Returns *
 * the top item from the stack *
 ***/
inline int stackpop(struct stack &the_stack)
{
 // Stack goes down by one
 --the_stack.count;

 // Then we return the top value
 return (the_stack.data[the_stack.count]);
}

// A short routine to test the stack
main()
{
 struct stack a_stack; // Stack we want to use

 stack_init(astack);

 // Push three values on the stack
 stack_push(a_stack, 1);

Page 201

Example 13-1. stack_s/stack_s.cc (Continued)

 stack_push(a_stack, 2);
 stack_push(a_stack, 3);

 // Pop the items from the stack

 cout << "Expect a 3 ->" << stackpop(a_stack) << '\n';
 cout << "Expect a 2 ->" << stack_pop(a_stack) << '\n';
 cout << "Expect a 1 ->" << stack_pop(a-stack) << '\n';

 return (0);
}

Improved Stack

The structure version of the stack works but has a few drawbacks. The first is that the data and
the functions are defined separately, forcing you to pass a struct stack variable into each
procedure.

There is also the problem of data protection. The fields data and count are accessible to
anyone. The design states that only the stack functions should have access to these fields, but
there is nothing to prevent rogue code from modifying them.

A C++ struct is a mixed collection of data. The C++ class not only holds data like a
structure, but also adds a set of functions for manipulating the data and access protection.

Turning the struct stack into a class you get:

 class stack {
 private:
 int count; // Number of items in the stack
 int data[STACK_SIZE]; // The items themselves
 public:
 // Initialize the stack
 void init(void);

 // Push an item on the stack
 void push(const int item);

 // Pop an item from the stack
 int pop(void);
 };

Let's go into this class declaration in more detail. The beginning looks much like a structure
definition except that you're using the word class instead of struct.

 class stack {
 private:

Page 202

 int count; // Number of items in the stack
 int data[STACK_SIZE]; // The items themselves

This declares two fields: count and data. In a class these items are not called fields; they
are called member variables. The keyword private indicates the access privileges
associated with these two member variables.

There are three levels of access privileges: public, private, and protected.
Class members, both data and functions, marked private cannot be used outside the class.
They can be accessed only by functions within the class. The opposite of private is

public, which indicates members that anyone can access.

Finally, protected is similar to private except that it allows access by derived
classes. (We discuss derived classes in Chapter 21, Advanced Classes.)

You've finished defining the data for this class. Now you need to define the functions that
manipulate the data.

 public:
 // Initialize the stack
 void init(void);

 // Push an item on the stack
 void push(const int item);

 // Pop an item from the stack
 int pop(void);
 };

This section starts with the keyword public. This tells C++ that you want all these member
functions to be available to the outside. In this case, you just define the function prototypes. The
code for the function will be defined later.

Next comes the body of the init function. Since this function belongs to the stack class, you
prefix the name of the procedure with stack::. (We discuss the scope operator :: in more
detail in Chapter 14, More on Classes.)

The definition of the init function looks like:

 inline void stack::init(void)
 {
 count = 0; // Zero the stack
 }

This procedure zeroes the stack's count. In the structure version of the stack_ init
function you must pass the stack in as a parameter. Since this function is part of the stack class,
that's unnecessary. This also means that you can access the member variables directly. In other
words, instead of having to say the_ stack. count, you just say count.

Page 203

The functions push and pop are implemented in a similar manner.

 inline void stack::push(const int item)
 {
 data[count] = item;
 ++count;
 }

 inline int stack::pop(void)
 {
 // Stack goes down by one
 --count;

 // Then we return the top value
 return (data[count]);

 }

The stack class is now complete. All you have to do is use it.

Using a Class

Using a class is much like using a structure. Declaring a class variable is the same, except you
use the word class instead of struct.

 class stack a_stack; // Stack we want to use

The word class is not needed and is frequently omitted.

 stack a_stack; // Stack we want to use

You access the fields of a structure using a dot, for example:

 structure.field = 5;

Accessing the members of a class is similar, except that the members of a class can be both
data and functions. Also, you can access only the members that are public.

To call the init member function of the stack class all you need to do is:

 a_stack.init();

The push and pop member functions can be accessed in a similar manner:

 a_stack.push(l);
 result = astack.pop();

Example 13-2 contains a class version of the stack.

Example 13-2. stack_c/stack_c.cc

/**
 * Stack *
 * A file implementing a simple stack class *
 **/

Page 204

Example 13-2. stack_c/stack_c.cc (Continued)

#include <stdlib.h>
#include <iostream.h>

const int STACK_SIZE = 100; // Maximum size of a stack

/**
 * Stack class *
 * *
 * Member functions *
 * init -- initialize the stack *
 * push -- put an item on the stack *
 * pop -- remove an item from the stack *
 **/

//The stack itself
class stack {
 private:
 int count; // Number of items in the stack
 int data[STACK_SIZE]; // The items themselves
 public:
 // Initialize the stack
 void init(void);

 // Push an item on the stack
 void push(const int item);

 // Pop an item from the stack
 int pop(void);
};

/**
 * stack::init -- initialize the stack *
 ***** **/
inline void stack::init(void)
{
 count = 0; // Zero the stack
}
/**
 * stack::push -- push an item on the stack *
 * *
 * Warning: We do not check for overflow *
 * *
 * Parameters *
 * item -- item to put in the stack *
 **/
inline void stack::push(const int item)
{
 data[count] = item;
 ++count;
}
/**
 * stack::pop -- get an item off the stack *
 * *

Page 205

Example 13-2. stack_c/stack_c.cc (Continued)

 * Warning: We do not check for stack underflow *
 * *
 * Returns *
 * the top item from the stack *
 **/
inline int stack::pop(void)
{
 // Stack goes down by one
 --count;

 // Then we return the top value
 return (data[count]);
}

// A short routine to test the stack
main()
{
 stack a_stack; // Stack we want to use

 a_stack.init();

 // Push three values on the stack
 a_stack.push(l);
 a_stack.push(2);
 a_stack.push(3);

 // Pop the items from the stack
 cout << "Expect a 3 ->" << a_stack.pop() << '\n';
 cout << "Expect a 2 ->" << a_stack.pop() << '\n';
 cout << "Expect a 1 ->" << a_stack.pop() << '\n';

 return (0);
}

Introduction to Constructors and Destructors

This stack class has one minor inconvenience. The programmer must call the init member
function before using the stack. However, programmers are terribly forgetful and sooner or
later someone is going to forget to initialize the stack. Wouldn't it be nice if C++ had an
automatic way of initializing the stack?

It does. Actually C++ will automatically call a number of member functions. The first you are
concerned about is called when the class is created. This is called the constructor function and
has the same name as the class. For example, the constructor for the stack class is named
stack (also known as stack: :stack outside the class body).

A variable is created when it is declared. (It can also be created by the new operator as you
will discuss later in Chapter 20, Advanced Pointers.)

Page 206

You want to have this stack initialized automatically, so you remove the init function and
replace it with the constructor, stack::stack.

 class stack {
 // ...
 public:
 // Initialize the stack
 stack(void);
 // ...
 };

 inline stack::stack(void)
 {
 count = 0; // Zero the stack
 }

You may have noticed that the return type void has been omitted in the constructor

declaration. Constructors can never return a value so the void is not needed. In fact the
compiler will complain if it's present.

Since the constructor is called automatically, the program is now simpler. Instead of writing:

 main()
 {
 stack a_stack; // Stack we want to use

 a_stack.init();

you can just write:

 main ()
 {
 stack a_stack; // Stack we want to use

 // Use the stack

Also, since you no longer have to count on the programmer putting in the init call, the
program is more reliable.

Destructors

The constructor is automatically called when the variable is created. The destructor is
automatically called when the variable is destroyed. This occurs when the variable goes out of
scope or when a pointer variable is deleted. (The delete is defined in Chapter 20, Advanced
Pointers.)

The special name for a destructor is the class name with a tilde (~) in front of it. So, for the
stack class the destructor would be named ~stack.

Page 207

Suppose you make the rule that the stack should be empty when the programmer is finished with
it. In other words, for every push you do, a pop must be done. If this doesn't happen, it's an
error and you should warn the user.

All you have to do is create a destructor for the stack that checks for an empty stack and issues
a warning if the stack is not empty. The destructor looks like:

stack::-stack(void)
 if (count != 0)
 cerr << "Error: Destroying a nonempty stack\n";
}

Parameterized Constructors

The constructor for a class can take parameters. Suppose you want to define a class that
holds a person's name and phone number. The data members for this class would look like:

 class person {
 public:
 char name[80]; // Name of the person
 char phone[80]; // Person's phone number

You want the constructor for this class to automatically initialize both the name and the
phone number.

 public:
 person(const char i_name[], const char i_phone[]);
 // ... rest of class
 };

 person::person(const char i_name[], const char i_phone[])
 {
 strcpy(name, i_name);
 strcpy(phone, i_phone);
 }

Now you are ready to use the class. When you declare variables of this class, you must
put two parameters in the declaration. For example:

 main ()
 {
 person sam("Sam Jones", "555-1234");

Like other functions, constructors can be overloaded. Using the person example, you can take
care of the case where you have a person with no phone by creating a constructor that takes a
name as its only parameter:

 class person {
 // ... rest of the class
 public:
 person(const char i_name[]);
 };

Page 208

 person::person(const char i_name[])
 {
 strcpy(name, i_name);
 strcpy(phone, 'No Phone");
 }

In this case, you have two constructors, one that takes one parameter and one that takes two
parameters. You haven't defined a constructor that takes zero parameters, so you can't declare a
variable of type person without specifying at least one parameter. In other words:

 person unnamed_source; // Illegal

will generate an error message.

Parameterized Destructors

There is no such thing as a parameterized destructor. Destructors take no parameters and
supply no return value. All they do is destroy the variable.

Copy Constructor

The copy constructor is a special constructor that is used to make an exact copy of a class. For

example, a copy constructor for the stack class would look like:

 stack::stack(const stack &old_stack)
 {
 int i; // Index used to copy the data

 for (i = 0; i < old_stack.count; ++i)
 data[i] = old_stack.data[i];
 }
 count = old_stack.count;
 }

Let's examine this function in more detail. The declaration:

 stack::stack(const stack &old_stack)

identifies this as a copy constructor. The single parameter (const stack &old_stack)
identifies this particular constructor as the copy constructor. This function is expected to turn
the current class into an exact copy of the parameter.

The code:

 for (i = 0; i < old_stack.count; ++i) {
 data[i] = old_stack.data[i];
 }
 count = old_stack.count;

takes all the data from the old stack and puts it into the new stack.

Page 209

The copy operator can be invoked explicitly as illustrated in the following example:

 stack a_stack; // A simple stack

 a_stack.push(l); // Put a couple of elements on the stack
 a_stack.push(2);

 stack b_stack(a_stack); // Create a copy of the stack

On the face of it, the copy constructor doesn't seem that important. But if you remember, back in
Chapter 9, Variable Scope and Functions, you discussed the various ways C++ can pass
parameters to a function. One of these was call by value. That's where a copy of the parameter
is made and passed to the function.

When a stack or any other class is passed as a call-by-value parameter, a copy is made of that
class using the copy constructor.

In the following code, we've added some commentary to show you the functions that C++ will
automatically call behind your back.

As you can see, C++ does a lot of work behind the scenes. It starts when a_stack is
declared. C++ calls the default constructor to create a_stack.

The variable a_stack is used, and then passed to the function use_stack. Since a_stack is
passed by value, a copy must be made of the stack using the copy constructor
local_stack.stack(a_stack).

The function then adds a few items to local_stack. Note: This is a copy of a_stack, so
anything you do to local_stack does not affect a_stack. At the

Page 210

end of the function local_stack contains four items, 1, 2, 9, 10, and a_stack contains
two items, 1, 2.

Finally after the function call, you print out the top element of a_stack, which is "2".

Automatically Generated Member Functions

Every class has a constructor and a destructor. If the programmer does not write these member
functions, C++ will automatically generate them. Also, there are several member functions such
as the copy constructor that can be called automatically.

Automatically Generated and Used Functions

class:: class()
Default constructor.

Automatically generated if no other constructors are defined. The generated code fills the
data members of the class with random values.

Automatically called when a variable of this class is declared with no parameters, such
as:

 class_type var;

class::class(const class &old_class)

Copy constructor.

Automatically generated unless the programmer explicitly defines a copy constructor. The
function C++ generates copies all the data members from the old class to the new one.

Automatically called when passing a call-by-value parameter to a function. This member
function may also be called when creating a duplicate of a variable:

 call_type first_var;
 // Call copy constructor to
 // make duplicate of first_var
 class_type second_var(first_var);

class: :-class()
Destructor.

Automatically generated unless the programmer defines one.

Page 211

Automatically called when a variable is destroyed. This occurs when a variable goes out
of scope. (It is also called by the delete operator discussed in Chapter 20, Advanced
Pointers.)

class class::operator = (const class &old_class)

Assignment operator. (Operator overloading is discussed in Chapter 18, Operator
Overloading.)

Automatically generated to handle assignment of one class to another. The function C++
generates copies all the data members from the old class to the new one.

 class_type varl;
 class_type var2;
 varl = var2; // "operator =" called

Shortcuts

So far you have used only function prototypes in the classes you've created. It is possible to
define the body of the function inside the class itself. Thus:

 class stack {
 public:
 // rest of class

 // Push an item on the stack
 void push(const int item);
 };
 inline void stack::push(const int item)
 {
 data[count] = item;
 ++count;
 }
can be written as:

 class stack {
 public:
 // rest of class

 // Push an item on the stack
 void push(const int item)
 data[count] = item;
 ++count;
 }
 };

The inine directive is not required in the second case since all functions declared inside a
class are automatically declared inline.

Page 212

Style

Programming style for classes looks pretty much like the style for structures and functions.
Every member variable should be followed by a comment explaining it and every member
function should be commented like a function.

However, you comment the prototypes for member functions differently from normal function
prototypes. For normal functions you put a full function comment block in front for the
prototype. If you did this for the member functions of a class, the comments would obscure the
structure of the class. This is one of the few cases when too many comments can cause trouble.
So you put a one-line comment in front of each member function prototype and full comments in
front of the function itself.

But what about inline-member functions, where the entire body of the function is declared
inside the class? How do you comment that? If you put in full comments, you obscure the
structure of the class. If you put in one-liners, you omit a lot of useful information. Proper
commenting is a balancing act. You need to put in what's useful and leave out what's not.

The solution is to keep the size of the inline-member function small. There are two reasons for
this, first all inline functions should be small and, secondly, large functions declared inside a
class make the class excessively complex. A good rule of thumb is that if the function requires
more than about five lines of code, put a prototype in the class and put the body of the function
elsewhere.

The structure of very small member functions should be obvious and thus not require a
full-blown comment block. If the function is not obvious and requires extensive comments, you
can always put in a prototype and comment the body of the function later in the program.

C++ does not require an access protection declaration (public, private, or
protected) before the first member variable. The following is perfectly legal:

class example {
 int data;
 // ...
};

But what is the access protection of data? Is it public, private, or protected?

If you put in an explicit declaration, then you don't have to worry about questions like this. (For
those of you who are curious, the access protection defaults to private.)

Finally, C++ will automatically generate some member functions, such as the default
constructor, the copy constructor, and the assignment operator. Suppose you have a class that
does not specify a copy constructor, such as:

Page 213

 // Comments describing the class
 // Note: The style of this class leaves something to be desired
 class queue {
 private:
 int data[100]; // Data stored in the queue
 int first; // First element in the queue
 int last; // Last element in the queue
 public:
 queue(); // Initialize the queue
 void put(int item);// Put an item in the queue
 int get(void); // Get an item from the queue
 };

Did the programmer who created this class forget the copy constructor? Will the copy
constructor automatically generated by C++ work, or did the programmer design this class
knowing that the copy constructor would never be called? These important questions are not
answered by the class as written.

All classes have a default constructor, copy constructor, assignment operator, and destructor. If
you want to use the one C++ generates automatically, put a comment in the class indicating that
the default is being used.

 // Comments describing the class
 class queue {
 private:
 int data[100]; // Data stored in the queue
 int first; // First element in the queue
 int last; // Last element in the queue
 public:
 queue(); // Initialize the queue
 // queue(const queue &old_queue)
 // Use automatically generated copy constructor

 // queue operator = (const queue &old_queue)
 // Use automatically generated assignment operator

 // -queue()
 // Use automatically generated destructor

 void put(int item);// Put an item in the queue
 int get(void); // Get an item from the queue
 };

Now it is obvious what member functions the programmer wanted to let C++ generate
automatically, and being obvious is very important in any programming project.

The copy constructor automatically generated by C++ is rather simple and limited. It doesn't
work in all cases, as you'll see later when you start to construct more complex classes. But
what happens when the automatic copy constructor won't work as you desire and you don't
want to go to the trouble to create your own?

Page 214

After all, you may decide that a class will never be copied (or that if it is, it's an error).

One solution is to create a dummy copy constructor that prints an error message and aborts the
program:

 class no_copy {
 // Body of the class
 public:
 // Copy constructor
 no_copy(const no_copy &oldclass) {
 cerr <<
 "Error: Copy constructor for 'no_copy' called.
Exiting\n";
 exit(8);
 }
 };

This works, sort of. The problem is that errors are detected at runtime instead of compile time.
You want to catch errors as soon as possible, so this solution is at best a hack.

However, you can prevent the compiler from automatically calling the copy constructor. The
trick is to declare it private. That's your way of saying to the world, ''Yes, there is a copy
constructor, but no one can ever use it."

 class no_copy {
 // Body of the class
 private:
 // There is no copy constructor
 no_copy(const no_copy &old_class);
 };

Now when the compiler attempts to use the copy constructor you will get an error message like
"Error: Attempt to access private member function."

Note: Since the copy constructor is never called, you never have to define the body of this
function.

Programming Exercises

Exercise 13-1: Write a parity class. This class allows the program to put any number of items
into it and returns TRUE if an even number of items is put in and FALSE if an odd number is
used.

Member functions:

 void parity::put(void); // Count another element
 int parity::test(void); // Return TRUE(1) if an even number of

 puts have been done. Return FALSE(O)
 for an odd number.

Page 215

Exercise 13-2: Write a "checkbook" class. You put a list of numbers into this class and get a
total out.

Member functions:

 void check::add_item(int amount); // Add a new entry to the checkbook
 int check::total(void); // Return the total of all items

Exercise 13-3: Write a class to implement a simple queue. A queue is very similar to a stack
except the data is removed in first-in-first-out (FIFO) order.

Member functions:

 void queue::put(int item); // Insert an item in the queue
 int queue::get(void); // Get the next item from the queue

Sample usage:

 queue a_queue;

 a_queue.put(1); // Queue contains: 1
 a_queue.put(2); // Queue contains: 1 2
 a_queue.put(3); // Queue contains: 1 2 3

 cout << a_queue.get() << '\n'; // Prints 1, queue contains 2 3
 cout << a_queue.get() << '\n'; // Prints 2, queue contains 3

Exercise 13-4: Define a class that will hold the set of integers from 0 to 31. An element can be
set with the set member function and cleared with the clear member function. It is not an
error to set an element that's already set or clear an element that's already clear. The function
test is used to tell whether an element is set.

Member functions:

 void small_set::set(int item); // Set an element in the set
 void small_set::clear(int item); // Clear an element in the set
 int small_set::test(void); // See whether an element is set

Sample usage:

 small_set a_set;

 a_set.set(3); // Set contains [3]
 a_set.set(5); // Set contains [3,5]
 a_set.set(5); // Legal (set contains [3,5])

 cout << a_set.test(3) << '\n'; // Prints "1"
 cout << a_set.test(0) << '\n'; // Prints "0"

 a_set.clear(5); // Set contains [3]

Exercise 13-5: I have a simple method of learning foreign vocabulary words. I write the

words down on a list of flash cards. I then go through the stack of flash

Page 216

cards one at a time. If I get a word right, that card is discarded. If I get it wrong, the card goes
to the back of the stack.

Write a class to implement this system.

Member functions:

 struct single_card {
 char question[40]; // English version of the word
 char answer[40]; // Other language version of the word
 };

 // Constructor -- takes a list of cards to
 // initialize the flash card stack
 void flash_card::flash_card(single_card list[]);

 // Get the next card
 const single_card &flash_card::get_card(void);

 //The student got the current card right
 void flash_card::right(void);

 // The student got the current card wrong
 void flash_card::wrong(void);

 //Returns 1 -- done / 0 -- more to do
 int done(void);

Page 217

14
More on Classes

In This Chapter:

 •• Friends
 •• Constant Functions
 •• Constant Members
 •• Static Member

Variables
 •• Static Member

Functions
 •• The Meaning of static
 •• Programming

Exercises

This method is, to define as the number of a class the class of all classes
similar to the given class.
—Bertrand Russell
Principles of Mathematics, Part II,
Chapter 11, Section III, 1903

Friends

In Chapter 13, Simple Classes, you defined a basic stack class. Suppose you want to write a
function to see whether two stacks are equal. At first glance this is simple. The function looks
like Example 14-1.

Example 14-1 stack_c/s_equal.cc

/**
 * stack_equal -- Test to see whether two stacks are *
 * equal *
 * *
 * s1, s2 -- the two stacks *
 * *
 * Returns *
 * 0 -- stacks are not equal *
 * 1 -- stacks are equal *
 **/
int stack_equal(const stack &sl, const stack &s2)
{
 int index; // Index into the items in the array

 // Check number of items first
 if (sl.count != s2.count)
 return (0);

Page 218

Example 14-1. stack_c/s_equal cc (Continued)

 for (index = 0; index < sl.count; ++index) {
 if (sl.data[index] != s2.data[index])
 return (0);
 }
 return (1);
}

Like many programs, this solution is simple, clear, and wrong. The problem is that the member
variables count and data are private. That means you can't access them.

So what do you do? One solution is to make these variables public. That gives the function
stack_equal access to count and data. The problem is that it also gives everyone else
access, and you don't want that.

Fortunately C++ gives you a way to say, "Let stack_equal and only stack equal have
access to the private data of the class stack." This is accomplished through the friend
directive. Classes must declare their friends. No function from the outside may access the
private data from the class, unless the class allows it.

Example 14-2 stack_c/f_stack.cc

// The stack itself
class stack {
 private:
 int count; // Number of items in the stack
 int data[STACK_SIZE]; // The items themselves
 public:
 // Initialize the stack
 void init(void);

 // Push an item on the stack
 void push(const int item);

 // Pop an item from the stack
 int pop(void);

 friend int stack_equal(const stack &sl, const stack &s2);
};

NOTE

stack_equal is not a member function of the class stack. It is
a normal, simple function. The only difference is that because the
function is a friend it has access to private data for any class that
calls it friend.

Page 219

Friend Classes

Friends are not restricted to just functions. One class can be a friend of another. For example:

 class item {
 private:
 int data;

 friend class setof_items;
 };
 class set_of_items {

 // ...
 };

In this case since the class set_of_items is a friend of item it has access to all the
members of item

Constant Functions

C++ lets you define two types of numbers: constant and nonconstant. For example:

 int index; // Current index into the data array
 const int DATA_MAX(100); // Maximum number of items in the array

These two items are treated differently. For example, you can change the value of index but

you can't change DATA_MAX.

Now let's consider a class to implement a set of numbers from 0 to 31. The definition of this
class is:

 // Warning: The member functions in this class are incomplete
 // See below for a better definition of this class
 class int_set {
 private:
 // ... whatever
 public:
 int_set(void); // Default constructor
 int_set(const int_set &old_set); // Copy constructor
 void set(int value); // Set a value
 void clear(int value); // Clear an element
 int test(int value); // See whether an element is set
 };

As with numbers, C++ will let you define two types of sets: constant and nonconstant.

 int_set var_set; // A variable set (we can change this)

 varset.set(1); // Set an element in the set

Page 220

 // Define a constant version of the set (we cannot change this)
 const int_set const_set(var_set);

In the int_set class there are member functions such as set and clear that change the
value of the set. There is also a function test that changes nothing.

Obviously you don't want to allow set and clear to be used on a constant. However, it is
okay to use the test member function.

But how does C++ know what can be used on a constant and what can't? The trick is to put the
keyword const at the end of the function header. This tells C++ that this member function can
be used for a constant variable. So if you put const after the member function test, C++
will allow it to be used in a constant. The member functions set and clear do not have this
keyword, so they can't be used in a constant.

 class int_set {
 private:
 // ... whatever
 public:
 int_set(void); // Default constructor
 int_set(const int_set &old_set); // Copy constructor
 void set(int value); // Set a value
 void clear(int value); // Clear an element
 int test(int value) const; // See whether an element is set
 };

So in your code you can do the following:

 int_set var_set; // A variable set (we can change this)

 var_set.set(1); // Set an element in the set (legal)

 // Define a constant version of the set (we cannot change this)
 const int_set const_set(var_set);

 // In the next statement we use the member function "test" legally
 cout << "Testing element 1. Value=" << const_set.test() << '\n';

 const_set.set(5); // Illegal (set is not allowed on a const)

Constant Members

Classes may contain constant members. The problem is that constants behave a little
differently inside classes than outside. Outside, a constant variable declaration must be
initialized. For example:

 const int data_size = 1024; // Number of data items in the input stream

Page 221

Inside a class, constants are not initialized when they are declared. For example:

 class data_list {
 public:
 const int data_size; // Number of items in the list
 // ... rest of the class
 };

Constant member variables are initialized by the constructor. It's not as simple as:

 class data_list {
 public:
 const int data_size; // Number of items in the list

 data_list(void) {
 data_size = 1024; // This code won't work
 };
 // ... rest of the class
 };

Instead, because data_size is a constant it must be initialized with a special syntax:

 data_list(void) : data_size(1024) {
 };

But what happens if you want just a simple constant inside your class? Unfortunately C++
doesn't allow you to do:

 class foo {
 public:
 const int foo_size = 100; // Illegal

You are left with two choices:

1. Put the constant outside the code:

 const int foo_size = 100; // Number of data items in the list

 class foo {

This makes foo_size available to all the world.

2. Use a syntax trick to fool C++ into defining a constant:

 class foo {
 public:
 enum {foo_size = 100}; // Number of data items in the list

This defines foo_size as a constant whose value is 100. It does this by actually declaring
foo_size as a element of an enum type and giving it the explicit value 100. Because C++
treats enums as integers, this works for defining integer constants.

Page 222

The drawbacks to the method are that it's tricky, it only works for integers, and it exploits some
holes in the C++ syntax that may go away as the language is better defined. Such code can
easily cause difficulties for other programmers trying to maintain your code who aren't familiar
with the trick.

Static Member Variables

Suppose you want to keep a running count of the number of stacks in use at any given time. One
way to do this is to create a global variable stack_count that is incremented in the stack
constructor and decremented in the destructor.

 int stack_count = 0; // Number of stacks currently in use

 class stack {
 private:
 int count; // Number of items in the stack
 // ... member variables
 public:
 int data_count; // Number of items in the stack
 // ... member variables
 stack() {
 // We just created a stack
 ++stack_count;
 count = 0;
 }
 -stack() {
 // We now have one less stack
 --stack_count;
 }
 // ... other member functions
 };

Note that stack_count is a single global variable. No matter how many different stacks you
create, there is one and only one stack_count.

Although this system works, it has some drawbacks. The definition of the class stack
contains everything about the stack, except the variable stack_count. It would be nice to
put stack_count in the class, but if you define it as a member variable, you'll get a new
copy of stack_count each time you declare a stack class variable.

C++ has a special modifier for member variables: static. This tells C++ that one and only
one variable is to be defined for the class.

 class stack {
 private:
 static int stack_count; // Number of stacks currently in use
 int count; // Number of items in the stack
 // ... member variables
 public:

Page 223

 stack() {
 // We just created a stack
 ++stack_count;
 count = 0;

 ~stack() {
 // We now have one less stack
 --stack_count;
 }
 // ... other member functions
 };

This new version looks almost the same as the global variable version. There is, however, one
thing missing: the initialization of stack_count. This is done with the statement:

 int stack::stack_count = 0; // No stacks have been defined

The difference between static and non-static member variables is that if you define three
stacks, you create three different data_count member variables, but there is one and only
one stack_count. Member variables belong to the individual stack. Static variables belong
to the class.

So if you have:

 stack a_stack;
 stack b_stack;

Then a_stack.stack_count is the same as b_stack.stack_count. There is only
one stack_count for the class stack. C++ allows you to access this using the syntax:

 <class>::<variable>

Thus you can get to stack_count with the statement:

 cout << "The number of active stacks is " << stack::stack_count <<
'\n';

(Or at least you could if stack_count was not private.)

Static Member Functions

The member variable stack_count is defined as private. This means that nothing outside
the class can access it. You want to know how many stacks are defined, so you need a function
to get the value of stack_count. A first cut might be:

 class stack {
 static int stack_count; // Number of stacks currently in use
 // ... member variables
 public:
 // Not quite right
 int get_count(void) {

Page 224

 return (stack_count);
 }
 // ... other member functions
 };

This works, but you need a stack type variable to access this function.

 {
 stack temp_stack; // Stack for getting the count
 cout << "Current count " << temp_stack.get_count() << '\n';
 }

Because get_count doesn't use any nonstatic data from stack, it can be made a static
member function.

 class stack {
 static int stack_count; // Number of stacks currently in use
 // ... member variables
 public:
 // Right
 static int get_count(void) {
 return (stack_count);
 }
 // ... other member functions
 };

You can now access the static member function get_count much like you access the static
member variable stack_count:

 cout << "The number of active stacks is " << stack::get_count() <<
'\n';

Static member functions are very limited. They can't access nonstatic member variables or
functions in the class. They can access static member data, static member functions, and
functions and data outside the class.

The Meaning of static

The keyword static has many different meanings in C++. Table 14-1 is a complete list of
the various ways static can be used.

Table 14-1 The Meanings of static

Usage Meaning

Variable outside the
body of any function

The scope of the variable is limited to the file in which it is
declared.

body of any function declared.

Variable declaration
inside a function

The variable is permanent. It is initialized once and only one
copy is created even if the function is called recursively.

Function declaration The scope of the function is limited to the file in which it is
declared.

Page 225

Table 14-1. The Meanings of static (Continued)

Usage Meaning

Member variable One copy of the variable is created per class (not one per
variable).

Member function Function can only access static members of the class.

Programming Exercises

Exercise 14-1: Two classes share a file. Other areas of the program need to know when this
file is busy. Create a function that returns 1 when the file is being used by either of these two
classes.

Exercise 14-2: You are asked to write a booking program for the veterinarian: Dr. Able Smith,
PHD (Pigs, Horses, Dogs). Define a class type for each animal. Each class should keep track
of the number of animals that have been defined using that class in a private static variable.
Define a function that returns the total number of animals (all three types combined).

Exercise 14-3: Write a class where each instance of the class can access a stack-not one stack
per instance, but one stack period. Any instance of the class can lock the stack for its own
exclusive use and unlock it later. Define member functions to perform the lock and unlock
functions.

As an added attraction, make the unlock function check to see that the current instance of the
class was the same instance that locked the stack in the first place.

Exercise 14-4: You need to supply some I/O routines for handling lines in a file. The basic
definition of the line-number class is:

 class line_number {
 public:
 void goto_line(int line);
 int get_current_line(void);
 long int get_char_pos(void);
 }

The member functions are defined as:

void goto_line(int line);

Positions the input file at specified line.

int get_current_line(void);

Returns the current line number (as set by goto_line).

long int get_char_pos(void);

Returns the character position of the current line. (This is the tricky one.)

Page 226

Several line_number classes may be in use at any time. The class maintains its own
internal list so that it knows which line_number classes are in use. When goto_line is
called, the function will scan the list of line_number classes to find the one nearest the
given line number and use it to start scanning for the given line number.

For example, suppose there are four active line_number variables:

Variable Position

beginning Line 0

chapter_start Line 87

current_heading Line 112

current_location Line 52

You wish to move current_location to line 90. The goto_line function would
search the list for the line nearest the new location (in this case chapter_start) and use it
to jump to line 87. It then would read the file character by character until it saw three
end-of-line characters to position itself at line 90.

Page 227

15
Simple Pointers

In This Chapter:

 •• Constant Pointers
 •• Pointers and Printing
 •• Pointers and Arrays
 •• Splitting Strings
 •• Pointers and

Structures
 •• Command-Line

Arguments
 •• Programming

Exercises
 •• Answers to Chapter

Questions

The choice of a point of view is the initial act of culture
—Ortega y Gasset

There are things and there are pointers to things (Figure 15-1).

Figure 15-1. A thing and a pointer to a thing

Things can come in any size; some may be big, some may be small. Pointers come in only one
size (relatively small).*

Throughout this book you use a box to represent a thing. The box may be large or small, but
things are always a box. Pointers are represented by arrows.

Most novice programmers get pointers and their contents confused. To limit this problem, all
pointer variables in this book end with the extension _ptr. You probably want to follow this
convention in your own programs. Although not as common as it should be, this notation is
extremely useful.

* This is not strictly true in Turbo-C++. Because of the strange architecture of the 8086, Turbo-C++
is forced to use both near pointers (16 bits) and far pointers (32 bits) See the Turbo- C++ manual for
details

Page 228

Figure 15-1 shows one thing: a variable named thing. The name of the variable is written on
the box that represents it. This variable contains the value 6. The actual address of this
variable is 0x1000. C++ automatically assigns an address to each variable at compile time.
The actual addresses differ from machine to machine. Most of the time you don't have to worry

about variable addresses, as the compiler takes care of that detail. (After all, you've gotten
through 14 chapters of programming without knowing anything about addresses.)

The pointer (thing_ptr) points to the variable thing. Pointers are also called address
variables since they contain the addresses of other variables. In this case, the pointer contains
the address 0x1000. Since this is the address of thing, you say that thing_ptr points to
thing. (You could put another address in thing_ptr and force it to point to something
else.)

You use ''things" and "addresses" in everyday life. For example, you might live in a house (a
thing). The street address might be "123 W. Main Street." An address is a small thing that can
be written down on a piece of paper. Putting a house on a piece of paper is something else
requiring a lot of work and a very large crane.

Street addresses are approximately the same size: one line. Houses come in various sizes. So
while "1600 W. Pennsylvania Ave." might refer to a big house and "8347 Skid Row" might
refer to a one-room shack, both addresses are the same size.

Many different address variables can point to the same thing. This is true for street addresses
as well. Table 15-1 lists the location of important services in a small town.

Table 15-1 Small-town Directory

Service (Variable Name) Address (Address Value) Building (Thing)

Fire department 1 Main Street City Hall

Police station 1 Main Street City Hall

Planning office 1 Main Street City Hall

Gas station 2 Main Street Ed's Gas Station

In this case you have one, large, multipurpose building that is used by several services.
Although there are three address variables (Services), there is only one address (1 Main
Street) pointing to one building (City Hall.)

As you will see in this chapter, pointers can be used as a quick and simple way to access
arrays. In later chapters you will discover how pointers can be used to create new variables
and complex data structures such as linked lists and trees. As you go through the rest of the
book, you will be able to understand these data structures as well as create your own.

Page 229

A pointer is declared by putting an asterisk (*) in front of the variable name in the declaration
statement:

int thing; // Define "thing" (see Figure 15-2A)
int *thing_ptr; // Define "pointer to a thing" (see Figure 15-2B)

Table 15-2 lists the operators used in conjunction with pointers.

Table 15-2. Pointer Operators

Operator Meaning

• De-reference (given a pointer, get the thing referenced)

& Address of (given a thing, point to it)

The ampersand operator (&) changes a thing into a pointer. The * changes a pointer into a
thing. These operators can easily cause confusion. Let's look at some simple uses of these
operators in detail.

thing
A thing. The declaration int thing does not contain an asterisk, so thing is not a
pointer. Example:

 thing = 4;

&thing
A pointer to thing. thing is an object. The & (address of) operator gets the address of
an object (a pointer), so &thing is a pointer. Example:

 thing_ptr = &thing;// Point to the thing
 // (See Figure 15-2A)
 *thing_ptr = 5; // Set "thing" to 5
 // (See Figure 15-2B)

thingptr
Thing pointer. The asterisk (*) in the declaration indicates this is a pointer. Also, you
have put the extension _ptr onto the name.

*thingptr
A thing. The variable thing_ptr is a pointer. The * (de-reference operator) tells C++
to look at the data pointed to, not at the pointer itself. Note: This points to an integer, any
integer. It may or may not point to the specific variable thing.

 *thing_ptr = 5; // Assign 5 to an integer
 // We may or may not be pointing
 to the specific integer "thing"

The following examples show misuse of pointer operators.

*thing
Illegal. Asks C++ to get the object pointed to by the variable thing. Since thing is not
a pointer, this is an invalid operation.

Page 230

Figure 15-2 Pointer operators

&thing_ptr
Legal, but strange. thing_ptr is a pointer. The & (address of) operator gets a pointer
to the object (in this case thing_ptr). The result is a pointer to a pointer. (Pointers to
pointers do occur in more complex programs.)

Example 15-1 illustrates a very simple use of pointers. It declares one object, thing_var,
and a pointer, thing_ptr. thing_var is set explicitly by the line:

 thing_var = 2;

The line:

 thing_ptr = &thing_var;

causes C++ to set thing_ptr to the address of thing_var. From this point on,
thing_var and *thing_ptr are the same.

Example 15-1. thing/thing.cc

#include <iostream.h>
main()
{
 int thing_var; // Define a variable

Page 231

Example 15-1. thing/thing.cc (Continued)

 int *thing_ptr; // Define a pointer

 thing_var = 2; // Assigning a value to "thing"

 cout << "Thing " << thing_var << '\n';

 thingptr = &thing_var; // Make the pointer point to "thing"
 *thing_ptr = 3; // thing_ptr points to thing_var so
 // thing_var changes to 3
 cout << "Thing " << thing_var << '\n';

 // Another way of printing the data
 cout << "Thing " << *thing_ptr << '\n';
 return (0);
}

Several pointers can point to the same thing:

 1: int something;
 2:
 3: int *first ptr; // One pointer
 4: int *second_ptr; // Another pointer
 5:
 6: something = 1; // Give the thing a value
 7:
 8: first_ptr = &something;
 9: second_ptr = first_ptr;

In line 8 you use the & operator to change a simple variable (something) into a pointer that
can be assigned to first_ptr. Because first_ptr and second_ptr are both pointers,
you can do a direct assignment in line 9.

After executing this program fragment, you have the situation illustrated by Figure 15-3.

Figure 15-3. Two pointers and a thing

It is most important to note that while you have three variables, there is only one integer
(thing). The following are all equivalent:

 something = 1;
 *first_ptr = 1;
 *second_ptr = 1;

Page 232

Finally, there is a special pointer called NULL that points to nothing. (The actual numeric value
is 0.) The standard include file, stddefh, defines the constant NULL. (Most standard include
files that have anything to do with pointers automatically include NULL as well.) The NULL
pointer is represented graphically in Figure 15-4.

Figure 15-4 NULL

const Pointers

Declaring constant pointers is a little tricky. For example, although the declaration:

 const int result = 5;

tells C++ that result is a constant, so

 result = 10; // Illegal

is illegal. The declaration:

 const char *answer_ptr = "Forty-Two";

does not tell C++ that the variable answer_ptr is a constant. Instead it tells C++ that the
data pointed to by answer_ptr is a constant. The data cannot be changed, but the pointer
can. Again we need to make sure we know the difference between "things" and "pointers to
things."

What's answer_ptr? A pointer. Can it be changed? Yes, it's just a pointer.. What does it
point to? A const char array. Can the data pointed to by answer_ptr be changed? No,
it's constant.

In C++ this is:

 answer_ptr = "Fifty-One"; // Legal (answerptr is a variable)
 *answerptr = 'X'; // Illegal (*answer_ptr is a constant)

If you put the const after the *, we tell C++ that the pointer is constant. For example:

 char *const nameptr = "Test";

What's name_ptr? A constant pointer. Can it be changed? No. What does it point to? A
character. Can the data we pointed to by name_ptr be changed? Yes.

Page 233

 nameptr = "New"; // Illegal (name_ptr is constant)
 *nameptr = 'B'; // Legal (*nameptr is a char)

Finally, we put const in both places, creating a pointer that cannot be changed to a data item
that cannot be changed.

 const char *const titleptr = "Title";

Pointers and Printing

In C++ you can print the value of a pointer just like you can print the value of a simple variable

such as an integer or floating point number. For example:

 int an_integer = 5; // A simple integer
 int *intptr = &an_integer; // Pointer to an integer

 cout << "Integer pointer " << int_ptr << '\n';

outputs

 Integer pointer 0x58239A

In this case, the value 0x58239A represents a memory address. This address may vary from
program to program.

C++ treats character pointers a little differently from other pointers. A character pointer is
treated as a pointer to a string. For example:

 char some_characters[10] = "Hello"; // A simple set of characters
 char *char_ptr = &some_characters[O]; // Pointer to a character

 cout << "String pointer " << charptr << '\n';

outputs

 String pointer Hello

Pointers and Arrays

C++ allows pointer arithmetic. Addition and subtraction are allowed with pointers. Suppose
you have the following:

 char array[10];
 char *arrayptr = &array[O];

Graphically this is represented in Figure 15-5.

In this example, *array_ptr is the same as array[0], *(array_ptr+l) is the same as
array[1], and so on. Note the use of parentheses. (*array_ptr)+1 is not the same as
array[1]. The +1 is outside the parentheses so it is added after the de-reference. Thus
(*array_ptr)+1 is the same as array[0] +1.

Page 234

Figure 15-5 Pointers and an array

At first glance this may seem like a complex way of representing simple array indices. You
are starting with simple pointer arithmetic. In later chapters you will use more complex
pointers to handle more difficult functions efficiently.

Pointers are merely memory addresses. In an array each element is assigned to consecutive
addresses. For example, array[0] may be placed at address 0xff000024. Then
array[1] would be placed at address 0xff000025 and so on. Example 15-2 prints out the
elements and addresses of a simple character array. (Note: The I/O manipulators hex and dec
are described in Chapter 16, File Input/Output.)

Example 15-2. array-p/array-p. cc

#include <iostream.h>
#include <iomanip.h>

const int ARRAY_SIZE = 10; // Number of characters in array
// Array to print
char array[ARRAY_SIZE] = "012345678";

main()
{
 int index; /* Index into the array */

 for (index = 0; index < ARRAY_SIZE; ++index)
 cout << hex; // Trick to print hex numbers
 cout <<
 "&array[index]=0x" << int(&array[index]) <<
 " (array+index)=0x" << int(array+index) <<
 " array[index]=0x" << int(array[index]) << '\n',
 cout << dec;
 }
 return (0);
}

Page 235

When run this program prints:

 &array[index]=0x20090 (array+index)=0x20090 array[index]=0x30
 &array[index]=0x20091 (array+index)=0x20091 array[index]=0x31
 &array[index]=0x20092 (array+index)=0x20092 array[index]=0x32
 &array[index]=0x20093 (array+index)=0x20093 array[index]=0x33
 &array[index]=0x20094 (array+index)=0x20094 array[index]=0x34
 &array[index]=0x20095 (array+index)=0x20095 array[index]=0x35
 &array[index]=0x20096 (array+index)=0x20096 array[index]=0x36
 &array[index]=0x20097 (array+index)=0x20097 array[index]=0x37
 &array[index]=0x20098 (array+index)=0x20098 array[index]=0x38
 &array[index]=0x20099 (array+index)=0x20099 array[index]=0x0

Characters usually take up one byte, so the elements in a character array will be assigned
consecutive addresses. A short int takes up two bytes, so in an array of short ints the
addresses increase by two. Does this mean short_array+1 will not work for anything
other than characters? No. C++ automatically scales pointer arithmetic so it works correctly. In
this case short_array+1 will point to element number 1.

C++ provides a shorthand for dealing with arrays. Rather than write:

 array_ptr = &array[0];

you can write:

 array_ptr = array;

C++ blurs the distinction between pointers and arrays by treating them the same in many cases.
Here you used the variable array as a pointer and C++ automatically did the necessary
conversion.

Example 15-3 counts the number of elements that are non-zero and stops when a zero is found.
No limit check is provided, so there must be at least one zero in the array.

Example 15-3. ptr2/ptr2a. cc

#include <iostream.h>

int array[10] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int index;

main()
{
 index = 0;
 while (array[index] != 0)
 ++index;

 cout << "Number of elements before zero " << index << '\n';
 return (0);
}

Page 236

Rewriting this program to use pointers gives us Example 15-4.

Example 15-4. ptr2/ptr2. cc

#include <iostream.h>

int array[10] = {4, 5, 8, 9, 8, 1, 0, 1, 9, 3};
int *array_ptr;

main()
{
 array_ptr = array;

 while ((*array_ptr) != 0)
 ++array_ptr;

 cout << "Number of elements before zero <<
 (array_ptr - array) << '\n';
 return (0);
}

The first program uses the expression (array[index] != 0). This requires the compiler

to generate an index operation, which takes longer than a simple pointer de-reference:
((*array_ptr) != 0). The expression at the end of this program, array_ptr -
array, computes how far array_ptr is into the array.

When passing an array to a procedure, C++ will automatically change the array into a pointer.
In fact, if you put an & before the array, C++ will issue a warning. Example 15-5 illustrates
array passing.

Example 15-5. tnit-a/init-a. cc

const int MAX = 10;

/***
 * init_array_1 -- Zero out an array *
 * *
 * Parameters *
 * data -- the array to zero *
 ***/
void init_array_1(int data[])
{
 int index;

 for (index = 0; index < MAX; ++index)
 data[index] = 0;
}
/***
 * init_array_2 -- Zero out an array *
 * *
 * Parameters *
 * data_ptr -- pointer to array to zero *

Page 237

Example 15-5. init-a/init-a. cc (Continued)

 ***/

void init_array_2(int *data_ptr)
{
 int index;

 for (index = 0; index < MAX; ++index)
 *(data ptr + index) = 0;
}

main ()
{
 int array[MAX];

 // One way of initializing the array
 init_array_l(array);

 // Another way of initializing the array
 init_array_1(&array[0]);

 // Similar to the first method but
 // function is different

 init_array_2(array);

 return (0);
}

Splitting Strings

Suppose you are given a string of the form "Last/First." You want to split this into two strings,
one containing the first name and one containing the last name.

Example 15-6 reads in a single line, stripping the newline character from it. The function
strchr is called to find the location of the slash (/). (The function strchr is actually a
standard function. You have duplicated it for this example so you can see how it works.)

At this point last_ptr points to the beginning character of the last name (with the first
tacked on) and first_ptr points to a slash. You then split the string by replacing the slash
(/) with an end-of-string (NUL or '\0'). Now last_ptr points to just the last name and
first_ptr points to a null string. Moving first_ptr to the next character makes
first_ptr point to the beginning of the first name.

Graphically what you are doing is illustrated in Figure 15-6.

Example 15-6 contains the full program.

Page 238

Figure 15-6. Splitting a string

Example 15-6 split/split.cc

/* **
 * Split -- split an entry of the form Last/First *
 * into two parts *
 **
#include <iostream.h>
#include <string.h>
#include <stdlib.h>

main()
{

 char line[80]; // The input line
 char *first_ptr; // Pointer we set to point to the first name
 char *lastptr; // Pointer we set to point to the last name

 cout << "Enter string\n";
 cin.getline(line, sizeof(line));

 last_ptr = line; // Last name is at beginning of line

 first_ptr = strchr(line, '/'); // Find slash

 // Check for an error
 if (first_ptr == NULL)
 cerr << 'Error: Unable to find slash in " << line << '\n';
 exit (8);
 }

 *first_ptr = '\0'; // Zero out the slash

 ++first_ptr; // Move to first character of name

 cout << "First:" << first_ptr << " Last:" << last_ptr << '\n';

Page 239

Example 15-6. split/splitcc (Continued)

 return (0);
 }
/**
 * strchr -- find a character in a string *
 * Duplicate of a standard library function, *
 * put here for illustrative purposes. *
 * *
 * Parameters *
 * string_ptr -- string to look through *
 * find -- character to find *
 * *
 * Returns *
 * pointer to 1st occurrence of character in string*
 * or NULL for error *
 **/
char *strchr(char * string_ptr, char find)
{
 while (*string_ptr != find)

 // Check for end

 if (*string_ptr == '\0'
 return (NULL); // Not found

 ++string_ptr;
 }
 return (string_ptr); // Found
}

This program illustrates how pointers and character arrays may be used for simple string

processing.

Question 15-1: Example 15- 7 is supposed to print out:

Name: tmpl
but instead you get:

Name: !_@$#ds80
(Your results may vary.) Why does this happen?

Example 15-7. tmp-name/tmp-name.cc

#include <iostream.h>
#include <string.h>

/**
 * tmp_name -- return a temporary filename *
 * *
 * Each time this function is called, a new name will *
 * be returned *
 * *

Page 240

Example 15-7. tmp-name/tmp-name.cc (Continued)

 * Returns *
 * pointer to the new filename *
 **/
char *tmp_name(void)
{
 char name[30]; // The name we are generating
 static int sequence = 0; // Sequence number for last digit

 ++sequence; // Move to the next filename

 strcpy(name, "tmp");

 // Put in the sequence digit
 name[3] = sequence + '0';

 // End the string
 name[4] = '\0';

 return(name);
}

int main()
{
 cout << "Name: " << tmp_name() << '\n';
 return(0);
}

Pointers and Structures

In Chapter 12, Advanced Types, you defined a structure for a mailing list:

 struct mailing {
 char name[60]; // Last name, first name
 char addressl[60];// Two lines of street address
 char address2[60];
 char city[40];
 char state[2]; // Two-character abbreviation
 long int zip; // Numeric zip code
 } list[MAX_ENTRIES];

Mailing lists must frequently be sorted in name order and zip-code order. You could sort the
entries themselves, but each entry is 226 bytes long. That's a lot of data to move around. A way
around this problem is to declare an array of pointers and then sort the pointers:

 // Pointer to the data
 struct mailing *list_ptrs[MAX_ENTRIES];

 int current; // Current mailing list entry

 //

Page 241

 for (current = 0; current = number_of_entries; ++current)
 list_ptrs = &list[current];

 // Sort list_ptrs by zip code

Now instead of having to move a 226-byte structure around, you are moving 4-byte pointers.
This sorting is much faster. Imagine that you had a warehouse full of big heavy boxes and you
needed to locate any box quickly. One way of doing this would be to put the boxes in
alphabetical order. But that would require a lot of moving, so you assign each location a
number, write down the name and number on index cards, and sort the cards by name.

Command-Line Arguments

The procedure main actually takes two arguments. They are called argc and argv. (They
don't have to be called argv and argc; however, 99.99% of C++ programs use these names.)

 main(int argc, char *argv[])
 {

It's easy to remember which comes first when you realize that they are in alphabetical order.

The parameter argc is the number of arguments on the command line (including the program
name). The array argv contains the actual arguments. For example, if the program args were
run with the command line:

args this is a test

then:

 argc = 5
 argv[0] = "args"
 argv[1] = "this"
 argv[2] = "is"

 argv[3] = "a"
 argv[4] = "test"

NOTE

The UNIX shell expands wildcard characters like *, ?, and []
before sending the command line to the program. See your sh or
csh manual for details.

Turbo-C++ will expand wildcard characters if the file
WILDARG.OBJ is linked with your program. See the Turbo-C++
manual for details.

Page 242

Almost all UNIX commands use a standard command-line format. This ''standard" has carried
over into other environments. A standard UNIX command has the form:

 command options filel filel file3 ...

Options are preceded by a hyphen (-) and are usually a single letter. For example, the option
-v might turn on verbose mode. If the option takes a parameter, the parameter follows the
letter. For example, the switch -m1024 sets the maximum number of symbols to 1024 and
-ooutfile sets the output file name to outfile.

You have been given the assignment to write a program that will format and print files. Part of
the documentation for the program looks like:

 print_file [-v] [-l<length>] [-o<name>] [filel] [file2] ...

In this line, -v sets verbose options, which turns on a lot of progress information messages.
The option -l<length> sets the page size to <length> lines (default = 66) and
-o<name> sets the output file to <name> (default = print.out). A list of files to print follows
these options ([fiel], [file2], etc.). If no files are specified, then print the file print.in.

The while loop cycles through the options. The actual loop is:

 while ((argc > 1) && (argv[1][0] == '-')) {

There is always one argument, the program name. The expression (argc > 1) checks for
additional arguments. The first one will be numbered 1. The first character of the first argument
is argv[1][0]. If this character is a dash you have an option.

At the end of the loop is the code:

 --argc;
 ++argv;
 }

This consumes an argument. The number of arguments is decremented to indicate one less
option, and the pointer to the first option is incremented, shifting the list to the left one place.
(Note: After the first increment, argv[0] no longer points to the program name.)

The switch statement is used to decode the options. Character 0 of the argument is the hyphen
(-). Character 1 is the option character, so you use the expression:

 switch (argv[1[1]) {

to decode the option.

Page 243

The option -v has no arguments; it just causes a flag to be set.

The -1 option takes an integer argument. The library function atoi is used to convert the
string into an integer. From the previous example you know that argv[1][2] starts the string
containing the number. This string is passed to atoi.

The option -o takes a filename. Rather than copy the whole string, you set the character pointer
out_file to point to the name part of the string. By this time you know that:

 argv[1][0] = '-'
 argv[1][1] = 'o'
 argv[l][2] = start of the file name

You set out_file to point to the string with the statement:

 out_file = &argv[1][2];

Finally all the options are parsed and you fall through to the processing loop. This merely
executes the function do_file for each file argument. Example 15-8 contains the complete
option-decoding program.

Example 15-8 print/print cc

/**
 * Print -- format files for printing *
 **/
#include <iostream.h>
#include <stdlib.h>

int verbose = 0; // Verbose mode (default = false)
char *out_file = "print.out"; // Output file name
char *program_name; // Name of the program (for errors)
int line_max = 66; // Number of lines per page

/**
 * do_file -- dummy routine to handle a file *
 * *
 * Parameter *
 * name -- name of the file to print *
 **/
void do_file(char *name)
{
 cout << "Verbose" << verbose << " Lines "<< line_max <<
 " Input " << name << " Output " << out_file << '\n';
}
/**
 * Usage -- tell the user how to use this program and *
 * exit *
 **/
void usage(void)

{
 cerr << "Usage is " << program_name << " [options] [file-list]\n";
 cerr << "Options\n";

Page 244

Example 15-8 print/print cc (Continued)

 cerr << " -v verbose\n";
 cerr << -1<number> Number of lines\n";
 cerr <<" -o<name> Set output filename\n";
 exit (8);
}

main(int argc, char *argv[])
{
 // Save the program name for future use
 program_name = argv[0];

 /*
 * Loop for each option
 * Stop if we run out of arguments
 * or we get an argument without a dash
 */
 while ((argc > 1) && (argv[1][0] == '-')) {
 /*
 * argv[l][1] is the actual option character
 */
 switch (argv[1][1]) {
 /*
 * -v verbose
 */
 case 'v':
 verbose = 1;
 break;
 /*
 * -o<name> output file
 * [0] is the dash
 * [1] is the "o"
 * [2] starts the name
 */
 case 'o':
 out_file = &argv[1][2];
 break;
 /*
 * -1<number> set max number of lines
 */
 case '1':
 line_max = atoi(&argv[1][2]);
 break;
 default:
 cerr << "Bad option " << argv[1] << '\n';
 usage();
 }
 /*
 * Move the argument list up one

 * Move the count down one
 */
 ++argv;
 --argc;

Page 245

Example 15-8. print/print.cc (Continued)

 }

 /*
 * At this point all the options have been processed.
 * Check to see if we have no files in the list
 * and, if so, we need to list just standard in
 */
 if (argc == 1)
 do_file("print.in");
 } else {
 while (argc > 1)
 do_file(argv[1]);
 ++argv;
 --argc;
 }
 }
 return (0);
 }

This is one way of parsing the argument list. The use of the while loop and switch
statement is simple and easy to understand. This method does have a limitation. The argument
must immediately follow the options. For example, -o data.out will work, but -o
data.out will not. An improved parser would make the program more friendly, but this
works for simple programs. (See your system documentation for information on the getopt
function.)

Programming Exercises

Exercise 15-1: Write a program that uses pointers to set each element of an array to zero.

Exercise 15-2: Write a function that takes a single string as its argument and returns a pointer
to the first nonwhite character in the string.

Answers to Chapter Questions

Answer 15-1: The problem is that the variable name is a temporary variable. The compiler
allocates space for the name when the function is entered and reclaims the space when the
function exits. The function assigns name the correct value and returns a pointer to it.
However, the function is over, so name disappears and you have a pointer with an illegal
value.

The solution is to declare name static. Consequently, it is a permanent variable and will not
disappear at the end of the function.

Page 246

Question 15-2: After fixing the function, you try using it for two filenames. Example 15-9
should print out:

Name: tmpl
Name: tmp2

but it doesn't. What does it print and why?

Example 15-9. tmp2/tmp2.cc

#include <iostream.h>
#include <string.h>

/* ***
 * tmp_name -- return a temporary filename *
 * *
 * Each time this function is called, a new name will *
 * be returned *
 * *
 * Warning: There should be a warning here, but if we *
 * put it in we would answer the question. *
 * *
 * Returns *
 * pointer to the new filename *

char *tmp_name(void)
{
 static char name[30]; // The name we are generating
 static int sequence = 0; // Sequence number for last digit

 ++sequence; // Move to the next file name

 strcpy(name, "tmp");

 // Put in the sequence digit
 name[3] = sequence + '0';

 // End the string
 name[4] = '\0';

 return(name);
}

int main()
{
 char *namel; // Name of a temporary file
 char *name2; // Name of a temporary file

 name1 = tmp_name();
 name2 = tmp_name();

 cout << "Namel: << namel << '\n';
 cout << "Name2: "<< name2 << '\n';
 return(0);
}

Page 247

Answer 15-2: The first call to tmp_name returns a pointer to name. There is only one
name. The second call to tmp_name changes name and returns a pointer to it. So you have
two pointers, and they point to the same thing, name.

Several library functions return pointers to static strings. A second call to one of these routines
will overwrite the first value. A solution to this problem is to copy the values:

 char namel[100];
 char name2[100];

 strcpy(namel, tmp_name());
 strcpy(name2, tmp_name());

Page 249

IV
Advanced Programming Concepts

Page 251

16
File Input/Output

In This Chapter:

 •• C++ File I/O
 •• Conversion Routines
 •• Binary and ASCII

Files
 •• The End-of-Line

Puzzle
 •• Binary I/O
 •• Buffering Problems
 •• Unbuffered I/O
 •• Designing File

Formats
 •• C-Style I/O Routines
 •• C-Style Conversion

Routines

I am the heir of all the ages, in the foremost files of time

—Tennyson

A file is a collection of related data. C++ treats a file as a series of bytes. Many files reside on
disk; however, devices such as terminals, printers, and magnetic tapes are also considered
files.

The Annotated C++ Reference Manual (Ellis and Stroustrup) is the current widely used
standard for C++. This book does not contain a specification of the I/O system. A de facto
standard has evolved based on the library supplied with the cfront compiler from AT&T. The
problem is that some of the details may differ from compiler to compiler. For example,
Turbo-C++ flushes cout at the end of each line while the SunPro UNIX C++ compiler does
not.

The current version of the ANSI C++ Draft Standard (September 1994) does contain a
detailed description of I/O calls. However, currently no compilers support this, and the
standard also is still undergoing revision.

This chapter discusses three different I/O packages. The first is the C++ I/O stream classes.
This is the most commonly used I/O system and the one we've been using up to now. Next, we
examine the raw I/O routines that give us direct access to the low-level I/O. Finally we look at
the C I/O system. Although it is somewhat outdated, C I/O calls still appear in old code. Also,
in some cases, the C-style I/O routines are superior to the ones provided with C++.

Page 252

C++ File I/O

C++ file I/O is based on three classes: the istream class for input, the ostream class for
output, and the iostream class for input/output. C++ refers to files as streams since it
considers them a stream of bytes. Four class variables are automatically created when you start
a program. These are listed in Table 16-1.

Table 16-1 Predefined I/O Class Variables

Variable Use

cin Console input (standard input)

cout Console output (standard output)

cerr Console error (standard error)

clog Console log

These variables are defined in the standard include file <iostream.h>. Normally cin is
assigned to the keyboard and cout, cerr, and clog are assigned to the screen. Most
operating systems allow you to change these assignments through I/O redirection (see your
operating system manual for details).

For example, the command

 my_prog <file.in

runs the program my_prog and assigns cin to the file file.in.

When doing I/O to disk files (except through redirection) you must use the file version of the
stream classes. These are ifstream, ofstream, and fstream and are defined in the
include file <fstream.h>.

NOTE

The ifstream class is actually derived from the istream class.
Similarly, ofstream is derived from ostream and fstream is
derived from iostream. You'll learn about derived classes in
Chapter 21, Advanced Classes.

Suppose you want to read a series of 100 numbers from the file numbers.dat. You start by
declaring the input file variable:

 ifstream data_file; // File we are reading the data from

Next you need to tell C++ what disk file to use. This is done through the open member
function:

 data_file.open("numbers.dat");

Page 253

Now you can read the file using the same statements you've been using to read cin:

 for (i = 0; i < 100; ++i)
 data_file >> data_array[i];

Finally you need to tell the I/O system that you are done with the file:

 data_file.close();

Closing the file frees resources that can then be used again by the program.

C++ allows the open call to be combined with the constructor. For example, instead of
writing:

 ifstream data_file; // File we are reading the data from
 data_file.open("numbers.dat");

you can write:

 ifstream data_file("numbers.dat"); // File we are reading the data
from

Additionally, the destructor automatically calls close.

But what if the file numbers.dat is missing? How can you tell if there is a problem? The
member function bad returns "true" if there is a problem, and "false" otherwise. So to test for
problems all you need is:

 if (data_file.bad()) {

 cerr << "Unable to open numbers.dat\n";
 exit (8);
 }

A better version of the program for reading numbers is Example 16-1.

Example 16-1. read/read.cc

/***
 * Read -- read in 100 numbers and sum them *
 * *
 * Usage: *
 * read *
 * *
 * Numbers are in the file "numbers.dat" *
 * *
 * Warning: No check is made for a file with fewer than *
 * 100 numbers in it *
 **/
#include <istream.h>
#include <fstream.h>
#include <stdlib.h>

 main()
 {
 const int DATA_SIZE = 100; // Number of items in the data
 int data_array[DATASIZE]; // The data

Page 254

Example 16-1. read/read.cc (Continued)

 ifstream data_file("numbers.dat"); // The input file
 int i; // Loop counter

 if (data_file.bad() {
 cerr << "Error: Could not open numbers.dat\n";
 exit (8);
 }

 for (i = 0; i < DATA_SIZE; ++i)
 data_file >> data_array[i];

 int total; // Total of the numbers

 total = 0;
 for (i = 0; i < DATA_SIZE; ++i)
 total += data_array[i];

 cout << "Total of all the numbers is" << total << '\n';
 return (0);
}

Finally, you have the getline member function. It is used to read a full line of data from the
input file. This function is defined as:

 istream &getline(char *buffer, int len, char delim = '\n')

The parameters to this function are:

buffer
A buffer to store the data that has been read.

len
Length of the buffer in bytes. The function reads up to len -1 bytes of data into the buffer.
(One byte is reserved for the terminating null character \0.) This parameter is usually
sizeof(buffer).

delim
The character used to signal end-of-line.

This function returns a reference to the input file. The function reads up to and including the
end-of-line character. The end-of-line character is not stored in the buffer.

Problems can occur if the size specified is too big. C++ provides a convenient way to make
sure the size parameter is just right through the use of the sizeof operator.

The sizeof operator returns the size in bytes of its argument. For example:

 long int array[10]; // Each element contains 4 bytes
 char string[30];

Page 255

The sizeof(string) is 30 and sizeof(array) is 40 (4 bytes per long * 10 longs in
the array).

NOTE

sizeof is not the same as length. The sizeof operator returns the
number of bytes in string (used or not).

Output Files

The functions for output files are similar to input files. For example, the declaration:

 ofstream out_file("out.dat");

creates a file named out.dat and lets you write to the file using the file variable out_file.

Actually, the constructor can take two additional parameters. The full definition of the output
file constructor is:

 ofstream::ofstream(const char *name, int mode=ios::out,
 int prot = filebuf::openprot);

The parameters for this function are:

name
The name of the file.

mode
A set of flags ORed together that determine the open mode. The flag ios: :out is

required for output files. Other flags are listed in Table 16-2. (The ios:: prefix is used
to indicate the scope of the constant. This operator is discussed in more detail in Chapter
21, Advanced Classes.)

prot
File protection. This is an operating-system-dependent value that determines the
protection mode for the file. In UNIX the protection defaults to 0644 (read/write owner,
group read, others read). For MS-DOS/Windows this defaults to 0 (normal file).

Table 16-2. Open Flags

Flag Meaning

ios: :app Append data to the end of the output file.

ios: :ate Go to the end of the file when opened

ios::in Open for input (must be supplied to opens for ifstream variables).

ios: :out Open file for output (must be supplied to ofstream opens).

Page 256

Table 16-2. Open Flags (Continued)

Flag Meaning

ios: :binary Binary file (if not present, the file is opened as an ASCII file) See the section
"Binary I/O" on page 262 for a definition of a binary file.

ios:: trunc Discard contents of existing file when opening for write.

ios::nocreate Fail if the file does not exist. (Output files only. Input files always fail if there is
no file.)

ios::noreplace Do not overwrite existing file. If a file exists, cause the open to fail.

For example, the statement:

 ofstream out_file("data.new",
 ios::out|ios::binary|ios::nocreate|ios::app);

appends (ios: :app) binary data (ios: :binary) to anexisting file
(ios::nocreate) named data.neu'.

Conversion Routines

So far we have just considered writing characters and strings. In this section, we consider
some of the more sophisticated I/O operations: conversions.

To write a number to a printer or terminal you must convert the number to characters. The
printer understands only characters, not numbers. For example, the number 567 must be

converted to the three characters ''5", "6", and "7" to be printed.

The << operator is used to convert data to characters and put them in a file. This function is
extremely flexible. It can convert a simple integer into a fixed- or variable-size string as a hex,
octal, or decimal number with left or right justification. So far you've been using the default
conversion for your output. It serves pretty well, but if you want to control your output exactly,
you need to learn about conversion flags.

The member functions setf and unsetf are used to set and clear the flags that control the
conversion process. The general form of the functions is:

 fi1e_var.setf(flags); // Set flags
 file_var.unsetf(flags); // Clear flags

Table 16-3 lists the various flags and their meanings.

Table 16-3 I/0 Conversion Flags

Flag Meaning

ios:: skipws Skip leading white-space characters on input.

ios:: left Output is left justified.

Page 257

Table 16-3 I/O Conversion Flags (Continued)

Flag Meaning

ios: :right Output is right justified.

ios::internal Numeric output is padded by inserting a fill character between the sign or base
character and the number itself.

ios::dec Output numbers in base 10, decimal format

ios::oct Output numbers in base 8, octal format.

ios::hex Output numbers in base 16, hexadecimal format.

ios::showbase Print out a base indicator at the beginning of each number For example:
hexadecimal numbers are preceded with "Ox"

ios::showpoint Show a decimal point for all floating point numbers whether or not it's needed.

ios::uppercase When converting hexadecimal numbers show the digits A-F as uppercase.

ios: :showpos Put a plus sign before all positive numbers.

ios::scientific Convert all floating point numbers to scientific notation on output.

ios::fixed Convert all floating point numbers to fixed point on output.

ios::unitbuf Buffer output. (More on this later).

ios::unitbuf Buffer output. (More on this later).

ios: :stdio Flush stream after each output.

If you want to output a number in hexadecimal format, all you have to do is:

 number = Ox3FF;
 cout << "Dec: " << number << '\n';

 cout.setf(ios: :hex);
 cout << "Hex: " << number << '\n';

 cout.setf(ios::dec);

When run, this program produces the output:

 Dec: 1023
 Hex: 3ff

NOTE

People normally expect the output mode to be decimal, so it is a
good idea to reset the mode after each output to avoid later
confusion.

When converting numbers to characters the member function:

 int file_var.width(int size);

determines the minimum characters to use. For example, the number 3 would normally convert
to the character string "3" (note the lack of spaces). If the width is set to four, then the result
would be " 3" where represents a single space.

Page 258

The member function:

 int flie_var.precision(int digits);

controls how many digits are printed after the decimal point.

Finally, the function:

 char file_var.fill(char pad);

determines the fill character. This character is used for padding when a number is smaller than
the specified width.

NOTE

Some of these flags and parameters are reset after each output call
and some are not. Which flags are permanent and which are
temporary seems to change from compiler to compiler. In general,
don't assume anything is going to remain set and you'll be okay. (Just
because you're paranoid doesn't mean the compiler isn't out to get

you.)

These functions can be called directly or you can use an I/O manipulator An I/O manipulator
is a special function that can be used in an I/O statement to change the formatting. You can think
of a manipulator as a magic bullet that when sent through an input or output file changes the
state of the file. A manipulator doesn't cause any output; it just changes the state. For example,
the manipulator hex changes the output conversion to hexadecimal.

 #include <iostream.h>
 #include <iomanip.h>

 number = Ox3FF;
 cout << "Number is " << hex << number << dec << '\n';

The I/O manipulators are defined in the include file <iomanip.h>. Table 16-4 contains the
full list of I/O manipulators.

Table 16-4. I/O Manipulators

Manipulator Description

setiosflags(long flags) Set selected conversion flags.

resetiosflags(long flags) Reset selected flags.

dec Output numbers in decimal format.

hex Output numbers in hexadecimal format.

oct Output numbers in octal format.

setbase(int base) Set conversion base to 8, 10, or 16. Sort of a generalized
dec, hex, oct.

setw(int width) Set the width of the output.

setprecision(int precision) Set the precision of floating point output

Page 259

Table 16-4 I/O Manipulators (Continued)

Manipulator Description

setfill (char ch) Set the fill character.

ws Skip white space on input.

endl Output end-of-line

ends Output end-of-string ('\0').

flush Force any buffered output out. (See Chapter 17,
Debugging and Optimization, for an explanation of how
to use this function).

Example 16-2 shows how some of the I/O manipulators may be used.

Example 16-2 io/io.cc

#include <iostream.h>
#include <iomanip.h>
main()

{
 int number = 12; // A number to output
 float real = 12.34; // A real number

 cout << "123456789012345678901234567890\n"; // Output ruler
 cout << number << "<-\n";
 cout << setw(5) << number << "<-\n";
 cout << setw(5) << setfill('*') << number << "<-\n";
 cout << setiosflags(ios::showpos|ios::left) << setw(5) <<
 number << "<-\n";

 cout << real << "<-\n";
 cout << setprecision(l) << setiosflags(ios::fixed) << real << "<-\n";
 cout << setiosflags(ios::scientific) << real << "<-\n";
 return (0);
}

The output of this program is:

123456789012345678901234567890
 12<-
 12<-
***12<-
+12**<-
12.34<-
12.3<-
le+01<-

Page 260

Binary and ASCII Files

So far we have limited ourselves to ASCII files. "ASCII" stands for American Standard Code
for Information Interchange. It is a set of 95 printable characters and 33 control codes. (A
complete list of ASCII codes can be found in Appendix A, ASCII Table.) ASCII files are
human readable. When you write a program, the prog.cc file is ASCII.

Terminals, keyboards, and printers deal with character data. When you want to write a number
like 1234 to the screen, it must be converted to four characters (1, 2, 3, -4) and written.

Similarly, when you read a number from the keyboard, the data must be converted from
characters to integers. This is done by the >> operator.

The ASCII character "0" has the value 48, "1" the value 49, and so on. When you want to
convert a single digit from ASCII to integer, you must subtract this value number:

 int integer;
 char ch;

 ch = '5';
 integer = ch - 48;
 cout << "Integer << integer << '\n';

Rather than remember that "()" is 48, you can just subtract "0":

 integer = ch - '0';

Computers work on binary data. When reading numbers from an ASCII file, the program must
process the character data through a conversion routine like the integer conversion routine just
defined. This is expensive. Binary files require no conversion. They also generally take up less
space than ASCII files. The drawback is they cannot be directly printed on a terminal or
printer. (If you've ever seen a long printout coming out of the printer displaying pages with a
few characters at the top that look like "!E#(@$%@^Aa^AA^JHC%^X" then you know what
happens when you try to print a binary file.)

ASCII files are portable (for the most part). They can be moved from machine to machine with
very little trouble. Binary files are almost certainly nonportable. Unless you are an expert
programmer, it is almost impossible to make a portable binary file. (See Chapter 25,
Portability Problems.)

Which file type should you use? In most cases, ASCII is best. If you have small to medium
amounts of data, the conversion time does not seriously affect the performance of your
program. (Who cares if it takes 0.5 second to start up instead of 0.3?) ASCII files also make it
easy to verify the data.

Page 261

Only when you are using large amounts of data will the space and performance problems force
you to use the binary format.

The End-of-Line Puzzle

Back in the dark ages BC (Before Computers), there existed a magical device called a
Teletype Model 33. This amazing machine contained a shift register made out of a motor and a
rotor as well as a keyboard ROM consisting solely of levers and springs.

The teletype contained a keyboard, a printer, and a paper tape reader/punch. It could transmit
messages over telephones using a modem at the blazing rate of 10 characters a second.

But teletype had a problem. It took 2/10 second to move the printhead from the right side to the
left. 2/10 second is two character times. If a second character came while the printhead was in
the middle of a return, that character was lost.

The teletype people solved this problem by making end-of-line two characters: <carriage
return> to position the printhead at the left margin, and <line feed> to move the paper up one
line. That way the <line feed> "printed" while the printhead was racing back to the left margin.

When the early computers came out, some designers realized that using two characters for

end-of-line wasted storage (at this time storage was very expensive). Some picked <line feed>
for their end-of-line, and some chose <carriage return>. Some of the die-hards stayed with the
two-character sequence.

UNIX uses <line feed> for end-of-line. The new-line character \n is code 0xA (LF or <line
feed>).

MS-DOS/Windows uses the two characters <carriage return><line feed>. Compiler designers
had problems in dealing with the old C programs that thought new-line was just <line feed>?
The solution was to add code to the I/O library that stripped out the <carriage return>
characters from ASCII input files and changed <line feed> to <carriage return><line feed> on
output.

In MS-DOS/Windows, whether or not a file is opened as ASCII or binary is important to note.
The flag ios: :binary is used to indicate a binary file:

 // Open ASCII file for reading
 ascii_file.open("name", ios::in);

 // Open binary file for reading
 binary_file.open("name", ios::in|ios::binary);

Question 16-1: The member function put can be used to write out a single byte of a binary
file. The follouing program writes numbers 0 to 127 to afile called test.out.

Page 262

It works just fine in UNIX, creating a 128-byte long file; however, in MSDOS/Windows,
thefile contains 129 bytes. Why?

Example 16-3.wbin/wbin.cc

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

main()
{
 int cur_char; // Current character to write
 ofstream out_file; // Output file

 out_file.open("test.out", ios::out);
 if (out_file.bad()) {
 (cerr << "Cannot open output file\n");
 exit (8);
 }

 for (cur_char = 0; cur_char < 128; ++cur_char)
 out_file << cur_char;
 }
 return (0);
}

Hint: Here is a hex dump of the MS-DOS/Windows file:

000:0001 0203 0405 0607 0809 OdOa ObOc OdOe

010:0f1O 1112 1314 1516 1718 191a 1b1c 1dle
020:1f20 2122 2324 2526 2728 292a 2b2c 2d2e
030:2f30 3132 3334 3536 3738 393a 3b3c 3d3e
040:3f40 4142 4344 4546 4748 494a 4b4c 4d4e
050:4f50 5152 5354 5556 5758 595a 5b5c 5d5e
060:5f60 6162 6364 6566 6768 696a 6b6c 6d6e
070:6f70 7172 7374 7576 7778 797a 7b7c 7d7e
080:7f

UNIX programmers don't have to worry about the C++ library automatically fixing their
ASCII files In UNIX, a file is a file and ASCII is no different from binary. In fact, you can
write a half-ASCII/half-binaryfile if you want to.

Binary I/O

Binary I/O is accomplished through two member functions: read and write. The syntax for
read is:

 in_file.read(dataptr, size);

data_ptr
Pointer to a place to put the data.

Page 263

size
Number of bytes to be read.

The member function gcount returns the number of bytes gotten by the last read. This may
be less than the number of bytes requested. For example, the read might encounter an
end-of-file or error:

 struct {
 int width;
 int height;
 } rectangle;

 in_file.read((char *)(&rectangle), sizeof(rectangle));
 if (infile.bad() {
 cerr << "Unable to read rectangle\n";
 exit (8);
 }
 if (in_file.gcount() != sizeof(rectangle)) (
 cerr << "Error: Unable to read full rectangle\n";
 cerr << "I/O error of EOF encountered\n";
 }

In this example you are reading in the structure rectangle. The & operator makes
rectangle into a pointer. The cast "(char *)" is needed since read wants a character
array. The sizeof operator is used to determine how many bytes to read in as well as to
check that read was successful.

The member function write has a calling sequence similar to read.

 out_file.write(data_ptr, size);

Buffering Problems

Buffered I/O does not write immediately to the file. Instead, the data is kept in a buffer until
there is enough for a big write, or until it is flushed. The following program is designed to print
a progress message as each section is finished.

 cout << "Starting";
 do_step_l ();
 cout << "Step 1 complete";
 do_step_2();
 cout << "Step 2 complete";
 do_step_3();
 cout << "Step 3 complete\n";

Instead of writing the messages as each step completes, cout puts them in a buffer. Only after
the program is finished does the buffer get flushed, and all the messages come spilling out at
once.

Page 264

The I/O manipulator flush forces the flushing of the buffers. Properly written, the above
example should be:

 cout << "Starting" << flush;
 do_step_l();
 cout << "Step 1 complete" << flush;
 do_step_2();
 cout << "Step 2 complete" << flush;
 do_step_3();
 cout << "Step 3 complete\n" << flush;

Unbuffered I/O

In buffered I/O, data is buffered and then sent to the file. In unbuffered I/O, the data is
immediately sent to the file.

If you drop a number of paperclips on the floor, you can pick them up in buffered or unbuffered
mode. In buffered mode, you use your right hand to pick up a paper clip and transfer it to your
left hand. The process is repeated until your left hand is full, and then you dump a handful of
paperclips into the box on your desk.

In unbuffered mode, you pick up a paperclip and dump it into the box. There is no left-hand
buffer.

In most cases buffered I/O should be used instead of unbuffered. In unbuffered I/O, each read
or write requires a system call. Any call to the operating system is expensive. Buffered I/O
minimizes these calls.

Unbuffered I/O should be used only when reading or writing large amounts of binary data or
when direct control of a device or file is required.

Back to the paperclip example—if you were picking up small items like paperclips you would
probably use a left-hand buffer. But if you were picking up cannon balls (which are much

larger), no buffer would be used.

The open system call is used for opening an unbuffered file. The macro definitions used by
this call differ from system to system. You are using both UNIX and MS-DOS/Windows, so
you have used conditional compilation (#ifdef / #endif) to bring in the correct
files.

 #include <sys/types.h>
 #include <sys/stat.h>
 #include <fcntl.h>

 #ifdef _MSDOS_ // If we are MS-DOS
 #include <io.h> // Get the MS-DOS include file for raw I/O
 #else /* _MSDOS_ */
 #include <unistd.h> // Get the UNIX include file for raw I/O

Page 265

 #endif /* _MSDOS_ */

 int file_descriptor;

 file_descriptor = open(name, flags); // Existing file
 file_descriptor = open(name, flags, mode); //New file

file_descriptor
An integer that is used to identify the file for the read, write and close calls. If
file_descriptor is less than 0 an error occurred.

name
Name of the file.

flags
Defined in the fcntl.h header file. Open flags are described in Table 16-5.

Table 16-5 Open Flags

Flag Meaning

O_RDONLY Open for reading only

O_WRONLY Open for writing only

O_RDWR Open for reading and writing

O_APPEND Append new data at the end of the file

O_CREAT Create file (mode file required when this flag is present)

O_TRUNC If the file exists, truncate it to 0 length

O_EXCL Fail if file exists

O_BINARY Open in binary mode (older UNIX systems may not have this flag)

mode
Protection mode for the file. Normally this is 0666 for most files.

For example, to open the existing file data.txt in text mode for reading, you use the following:

 data_fd = open("data.txt", O_RDONLY);

The next example shows how to create a file called output.dat for writing only:

 out_fd = open("output.dat", O_CREAT|O_WRONLY, 0666);

Notice that you combined flags using the OR (|) operator. This is a quick and easy way of
merging multiple flags.

When any program is initially run, three files are already opened. These are described in Table
16-6.

Page 266

Table 16-6. Standard Unbuffered Files

File Number Description

0 Standard in

1 Standard out

2 Standard error

The format of the read call is:

 read_size = read(filedescriptor, buffer, size);

read_size
The actual number of bytes read. A 0 indicates end-of-file and a negative number indicates
an error.

file_descriptor
File descriptor of an open file.

buffer
Pointer to the place to read the data.

size
Size of the data to be read. This is the size of the request. The actual number of bytes read
may be less than this. (For example, you may run out of data.)

The format of a write call is:

write_size = write(file_descriptor, buffer, size);

write_size
Actual number of bytes written. A negative number indicates an error.

file_descriptor
File descriptor of an open file.

buffer
Pointer to the data to be written.

size
Size of the data to be written. The system will try to write this many bytes, but if the
device is full or there is some other problem, a smaller number of bytes may be written.

Finally, the close call closes the file:

flag = close(file_descriptor)

flag
0 for success, negative for error.

file_descriptor
File descriptor of an open file.

Page 267

Example 16-4 copies a file. Unbuffered I/O is used because of the large buffer size. It makes no
sense to use buffered I/O to read 1K of data into a buffer (using an ifstream) and then
transfer it into a 16K buffer.

Example 16-4 copy.2/copy2.cc

/**
 * Copy -- copy one file to another *
 * *
 * Usage *
 * copy <from> <to> *
 * *
 * <from> -- the file to copy from *
 * <to> -- the file to copy into *
 **/
#include <iostream.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#ifdef _MSDOS_ // If we are MS-DOS
#include <io.h> // Get the MS-DOS include file for raw I/O
#else /* _MSDOS_ */
#include <unistd.h> // Get the UNIX include file for raw I/O
#endif /* _MSDOS_ */

const int BUFFER_SIZE = (16 * 1024); // Use 16K buffers

main(int argc, char *argv[])

{
 char buffer[BUFFER_SIZE]; // Buffer for data
 int in_file; // Input file descriptor
 int out_file; // Output file descriptor
 int read_size; // Number of bytes on last read

 if (argc != 2) {
 cerr << "Error: Wrong number of arguments\n";
 cerr << "Usage is: copy <from> <to>\n";
 exit(8);
 }
 in_file = open(argv[1], O_RDONLY);
 if (in_file < 0) {
 cerr << "Error: Unable to open " << argv[1] << '\n';
 exit(8);
 }
 out_file = open(argv[2], O_WRONLY | O_TRUNC | O_CREAT, 0666);
 if (out_file < 0) {
 cerr << "Error: Unable to open " << argv[2] << '\n';
 exit(8);
 }
 while (1)
 read_size = read(in_file, buffer, sizeof(buffer));

Page 268

Example 16-4 copy2/copy2. cc (Continued)

 if (read_size == 0)
 break; // End of file

 if (read_size < 0)
 cerr << "Error: Read error\n";
 exit(8);
 }
 write(out_file, buffer, (unsigned int) read_size);
 }
 close(in_file);
 close(outfile);
 return (0);
}

Several things should be noted about this program. First of all, the buffer size is defined as a
constant, so it is easily modified. Rather than have to remember that 16K is 16,384, the
programmer used the expression (16 * 1024). This form of the constant is obviously 16K.

If the user improperly uses the program, an error message results. To help the user get it right,
the message tells how to use the program.

You may not read a full buffer for the last read. That is why read_size is used to determine
the number of bytes to write.

Designing File Formats

Suppose you are designing a program to produce a graph. The height, width, limits, and scales
are to be defined in a graph configuration file. You are also assigned to write a user-friendly

program that asks the operator questions and writes a configuration file so he or she does not
have to learn the text editor. How should you design a configuration file?

One way would be as follows:

height (in inches)
width (in inches)
x lower limit
x upper limit
y lower limit
y upper limit
x-scale
y-scale

Page 269

A typical plotter configuration file might look like:

 10.0
 7.0
 0
 100
 30
 0.5
 2.0

This file does contain all the data, but in looking at it, you have trouble identifying what, for
example, is the value of the Y lower limit. A solution is to comment the file so the
configuration program writes out not only the data. but also a string describing the data.

 10.0 height (in inches)
 7.0 width (in inches)
 0 x lower limit
 100 x upper limit
 30 y lower limit
 300 y upper limit
 0.5 x-scale
 2.0 y-scale

Now the file is human readable. But suppose a user runs the plot program and types in the
wrong filename, and the program gets the lunch menu for today instead of a plot configuration
file. The program is probably going to get very upset when it tries to construct a plot whose
dimensions are ''BLT on white" versus "Meatloaf and gravy."

The result is that you wind up with egg on your face. There should be some way of identifying
this file as a plot configuration file. One method of doing this is to put the words "Plot
Configuration File" on the first line of the file. Then, when someone tries to give your program
the wrong file, the program will print an error message.

This takes care of the wrong file problem, but what happens when you are asked to enhance the
program and add optional logarithmic plotting? You could simply add another line to the
configuration file, but what about all those old files? It's not reasonable to ask everyone to
throw them away. The best thing to do (from a user's point of view) is to accept old format

files. You can make this easier by putting a version number in the file.

A typical file now looks like:

 Plot Configuration File V1.0
 log Logarithmic or normal plot
 10.0 height (in inches)
 7.0 width (in inches)
 0 x lower limit

Page 270

 100 x upper limit
 30 y lower limit
 300 y upper limit
 0.5 x-scale
 2.0 y-scale

In binary files, it is common practice to put an identification number in the first four bytes of the
file. This is called the magic number. The magic number should be different for each type of
file.

One method for choosing a magic number is to start with the first four letters of the program
name (e.g., list) and convert them to hex: 0x6c607374. Then add 0x80808080 to the number:
0xECEOF3F4.

This generates a magic number that is probably unique. The high bit is set on each byte to make
the byte non-ASCII and avoid confusion between ASCII and binary files.

When reading and writing a binary file containing many different types of structures, it is easy
to get lost. For example, you might read a name structure when you expected a size structure.
This is usually not detected until later in the program. To locate this problem early, the
programmer can put magic numbers at the beginning of each structure. Then if the program
reads the name structure and the magic number is not correct, it knows something is wrong.

Magic numbers for structures do not need to have the high bit set on each byte. Making the
magic number just four ASCII characters makes it easy to pick out the beginning of structures in
a file dump.

C-Style I/O Routines

C++ allows you to use the C I/O library in C++ programs. Many times this occurs because
someone took a C program and translated it to C++ and didn't want to bother translating the I/O
calls. In some cases, the old C library is better and easier to use than the new C++ library. For
example, C string-conversion routines such as sscanf and sprintf are far easier to use
than their C++ counterparts.

The declarations for the structures and functions used by the C I/O functions are stored in the
standard include file <stdio.h>.

The declaration for a file variable is:

 FILE *file_variable, /* Comment */

Example:

 #include <stdio.h>

 FILE *in_file; /* File containing the input data */

Page 271

Before a file can be used, it must be opened using the function fopen. fopen returns a
pointer to the file structure for the file. The format for fopen is:

 filevariable = fopen(name, mode);

file_variable
A file variable.

name
Actual name of the file (data.txt, temp.dat, etc.).

mode
Indicates whether the file is to be read or written. Mode is "w" for writing and "r" for
reading.

The function fclose closes the file. The format of fclose is:

status = fclose (file_variable);

The variable status will be zero if the fclose was successful or non-zero for an error.

C provides three preopened files. These are listed in Table 16-7.

Table 16-7. Standard Files

File Description

stdin Standard input (open for reading). Equivalent to C++'s cin.

stdout Standard output (open for writing). Equivalent to C++'s cout.

stderr Standard error (open for writing). Equivalent to C++'s cerr.

There is no C file equivalent to C++'s clog.

The function fgetc reads a single character from a file. If there is no more data in the file the
function returns the constant EOF (EOF is defined in stdio.h). Note that fgetc returns an
integer, not a character. This is necessary because the EOF flag must be a noncharacter value.

Example 16-5 counts the number of characters in the file input.txt.

Example 16-5. copy/copy.cc

#include <stdio.h>
#include <stdlib.h> /* ANSI Standard C file */
#include <iostream.h>

const char FILE_NAME[] = "input.txt"; // Name of the input file

main()
{
 int count = 0; // Number of characters seen

Page 272

Example 16-5 copy/copy cc (Continued)

 FILE *in_file; // Input file

 int ch; // Character or EOF flag from input

 in_file = fopen(FILE_NAME, "rb");
 if (in_file == NULL) {
 cerr << "Cannot open " << FILE_NAME << '\n';
 exit(8);
 }

 while (1)
 ch = fgetc(in_file);
 if (ch == EOF)
 break;
 ++count;
 }
 cout << "Number of characters in" << FILE_
 NAME << " is " << count << '\n';

 fclose(in_file);
 return (0);
}

A similar function, fputc, exists for writing a single character. Its format is:

fputc (character, file),

The functions fgets and fputs work on one line at a time. The format of the fgets call is:

 string_ptr = fgets (string, size, file);

sring_ptr
Equal to string if the read was successful, or NULL if EOF or an error is detected.

string
A character array where the function places the string.

size
The size of the character array. fgets reads until it gets a line (complete with ending
\n) or it reads size - 1 characters. It then ends the string with a null (\0).

Example:

 char string[100];

 ...

 fgets(string, sizeof(string), in_file);

Page 273

fputs is similar to fgets except it writes a string instead of reading it. The format of the
fputs function is:

 string_ptr = fputs (string, file);

The parameters to fputs are similar to the ones for fgets. fputs needs no size because it
gets the size of the line to write from the length of the string. (It keeps writing until it hits a null
character, \0).

C-Style Conversion Routines

C++ uses the << operator for output. C uses the printf family of functions. A printf call
consists of two parts: a format that describes how to print the data and a list of data to print.

The general form of the printf call is:

 printf (format, parameter-1, parameter-2, ...);

The format string is printed exactly. For example:

 printf("Hello World\n");

prints:

 Hello World

To print a number, you must put a % conversion in the format string. For example, when C sees
%d in the format string, it takes the next parameter from the parameter list (which must be an
integer) and prints it.

Figure 16-1 shows how the elements of the printf statement work to generate the final
result:

Figure 16-1. printf structure

Page 274

The conversion %d is used for integers. Other types of parameters use different conversions.
For example, if you want to print a floating point number, you need a %f conversion. Table
16-8 lists the conversions.

Table 16-8. C-style Conversions

Conversion Variable Type

%d int

%ld long int

%d short int

%f float

%lf double

%u unsigned int

%lu unsigned long int

%u unsigned short int

%s char * (string)

%c char

%o int (prints octal)

%x int (prints hexadecimal)

%e float (in the form d
dddE+dd)

Many additional conversions also can be used in the printf statement. See your reference
manual for details.

The printf function does not check for the correct number of parameters on each line. If you
add too many, the extra parameters are ignored. If you add too few, C will make up values for
the missing parameters. Also C does not type check parameters, so if you use a %d on a
floating point number, you will get strange results.

Question 16-2: Why does 2 + 2 = 5986? (Your results may vary.)

[File: two/two.c]
#include <stdio.h>
main ()
{
 int answer;

 answer = 2 + 2;

 printf("The answer is %d\n");
 return (0);
}

Page 275

Question 16-3: Why does 21 / 7 = O? (Your results may vary.)

[File: float3/float3.c]
#include <stdio.h>

main()
{
 float result;

 result = 21.0 / 7.0;
 printf ("The result is %d\n", result);
 return (0);

The function fprintf is similar to printf except that it takes one additional parameter, the
file to print to.

 fprintf(file, format, parameter-1, parameter-2, ...);

Another flavor of the printf family is the sprintf call. The first parameter of sprintf
is a string. The function formats the output and stores the result in the given string.

 sprintf(string, format, parameter-1, parameter-2, ...);

For example:

 char string[40]; /* The filename */

 /* Current file number for this segment */
 int file_number = 0;

 sprintf(string, "file.%d", file_number);
 ++file_number;
 out_file = fopen(string, "w");

Warning: The return value of sprintf differs from system to system. The ANSI standard
defines it as the number of characters stored in the string; however, some implementations of
UNIX C define it to be a pointer to the string.

Reading is accomplished through the scanf family of calls. The scanf function has similar
sister functions: fscanf and sscanf. The format for fscanf is:

 number = fscanf(file, format, ¶meter-l, . . .);

number
Number of parameters successfully converted

fie
A file opened for reading

format
Describes the data to be read

Page 276

parameter-1

First parameter to be read

WARNING

If you forget to put & in front of each variable for scanf, the result
can be a "Segmentation violation core dumped" or "Illegal memory
access" error. In some cases a random variable or instruction will
be modified. This is not common on UNIX machines, but
MS-DOS/Windows, with its lack of memory protection, cannot
easily detect this problem. In MS-DOS/Windows, omitting & can
cause a system crash.

There is one problem with this scanf: It's next to impossible to get the end-ofline handling
right. However, there's a simple way to get around the limitations of scanf—don't use it.
Instead use fgets followed by the string version of scanf, the function sscanf:

 char line[100]; // Line for data

 fgets(line, sizeof(line), stdin); // Read numbers
 sscanf(line, "%d %d", &numberl, &number2);

Finally, there is a file version of scanf, the function fscanf. Again this function is extremely
difficult and should not be used. Use fgets and sscanf instead.

C-Style Binary I/O

Binary I/O is accomplished through two routines: fread and fwrite. The syntax for fread
is:

 read_size = fread (dataptr, 1, size, file);

read_size
Size of the data that was read. If this is less than size, then an end-of-file or error
occurred.

data_ptr
Pointer to the data to be read.

size
Number of bytes to be read.

file
Input file.

Example:

 struct {
 int width;
 int height;

Page 277

 } rectangle;

 if (fread((char *)&rectangle, 1, sizeof(rectangle), in_file) !=
 sizeof(rectangle)) {
 fprintf(stderr, "Unable to read rectangle\n");
 exit (8);
}

In this example you are reading in the structure rectangle. The & operator makes the
structure into a pointer. The cast "(char *)" turns &rectangle into the proper parameter
type, and the sizeof operator is used to determine how many bytes to fread in as well as to
check that read was successful.

fwrite has a calling sequence similar to fread:

 write_size = fwrite(data_ptr, 1, size, file);

NOTE

To make programming simpler and easier, I always use 1 as the
second parameter to fread and fwrite. For a full description of
these functions see your C reference manual.

Question 16-4: No matter what filename you give the following program, our program can't
find it. Why?

[File: fun-file/fun-file.c]
#include <stdio.h>
#include <stdlib.h>

int main()
{
 char name[100]; /* Name of the file to use */
 FILE *in_file; /* File for input */

 printf("Name? ");
 fgets(name, sizeof(name), stdin);

 in_file = fopen(name, "r");
 if (in_file == NULL) {
 (void) fprintf(stderr, "Could not open file\n");
 exit(8);
 }
 printf("File found\n");
 fclose(in_file);
 return (0);
}

Page 278

Programming Exercises

Exercise 16-1: Write a program that reads a file and counts the number of lines in it.

Exercise 16-2: Write a program to copy a file, expanding all tabs to multiple spaces.

Exercise 16-3: Write a program that reads a file containing a list of numbers and writes two

files, one with all the numbers divisible by 3 and another containing all the other numbers.

Exercise 16-4: Write a program that reads an ASCII file containing a list of numbers and
writes a binary file containing the same list. Write a program that goes the other way so you
can check your work.

Exercise 16-5: Write a program that copies a file and removes all characters with the high bit
set (((ch & 0x80) != 0).)

Exercise 16-6: Design a file format to store a person's name, address, and other information.
Write a program to read this file and produce a set of mailing labels.

Answers to Chapter Questions

Answer 16-1: The problem is that you are writing an ASCII file, but you wanted a binary file.
In UNIX, ASCII is the same as binary, so the program runs fine. In MSDOS/Windows, the
end-of-line issue causes problems. When you write a new-line character (OxOa) to the file, a
carriage return (OxOD) is added to the file. (Remember that end-of-line in MS-DOS/Windows
is <carriage return><line feed>, or OxOd, OxOa.) Because of this editing, you get an extra
carriage return (OxOd) in the output file.

To write binary data (without output editing) you need to open the file with the binary option:

 out_file.open("test.out", ios::out | ios::binary);

Answer 16-2: The printf call does not check for the correct number of parameters. The
statement:

 printf("The answer is %d\n");

tells the printf to print the string "The answer is" followed by the answer. The problem is
that the parameter containing the answer was omitted. When this happens printf gets the
answer from a random location and prints garbage.

Properly written, the printf statement is:

 printf("The answer is %d\n", answer);

Page 279

Answer 16-3: The printf call does not check the type of its parameters. You tell the
printf call to print an integer number (%d) and supply it with a floating point parameter
(result). This mismatch causes unexpected results such as printing the wrong answer.

When printing a floating point number you need a %f conversion. Properly written, our
printf statement is:

 printf("The answer is %f\n", result);

Answer 16-4: The problem is that fgets gets the entire line including the new-line character
(\n). If you have a file named sam, the program reads sam\n and tries to look for a file by that
name. Because there is no such file, the program reports an error.

The fix is to strip the new-line character from the name:

 name[strlen(name) - 1] = '\0'; /* Get rid of last character */

The error message in this case is poorly designed. True, you did not open the file, but the
programmer could supply the user with more information. Are you trying to open the file for
input or output? What is the name of the file you are trying to open? You don't even know
whether the message you are getting is an error, a warning, or just part of the normal operation.
A better error message is:

 fprintf(stderr, "Error: Unable to open %s for input\n", name);

Notice that this message would also help us detect the programming error. When you typed in
''sam" the error would be:

 Error: Unable to open sam
 for input

This clearly shows us that you are trying to open a file with a new-line in its name.

Page 281

17
Debugging and Optimization

In This Chapter:

 •• Debugging
 •• Divide and Conquer
 •• Debug-Only Code
 •• Debug Command-

Line Switch
 •• Interactive

Debuggers
 •• Debugging a Binary

Search
 •• Runtime Errors
 •• The Confessional

Method of Debugging
 •• How to Optimize
 •• Case Study
 •• Exercises
 •• Answers to Questions

Bloody instructions which, being learned, return to plague the inventor.
—Shakespeare, on Debugging

Debugging

The hardest part of a program is not the design and writing, but the debugging phase. It is here
that you find out how your program really works (instead of how you think it works).

To eradicate a bug, you need two things: a way of reproducing the bug and information from the
program that lets you locate and correct the problem.

In some cases, finding the bug is easy. You discover the bug yourself, the test department
produces a clear and easy test that displays the bug, or the output always comes out bad.

In some cases, especially with interactive programs, reproducing the bug may be 90 percent of
the problem. This is especially true when dealing with bug reports sent in by users in the field.
A typical call from a user might be:

User:
That database program you gave me is broken.

Programmer:
What's wrong?

User:
Sometimes when I'm doing a sort, it gets things in the wrong order.

Page 282

Programmer:
What command were you using?

User:
The sort command.

Programmer:
Tell me exactly what you typed, keystroke by keystroke, to get it to fail.

User:
I don't remember it exactly. I was doing a lot of sorts.

Programmer:
If I come over can you show me the bug?

User:
Of course.

Five minutes later the programmer is in the user's office and utters the fatal words, "Show me."
The user types away and the program stubbornly works, no matter what the user does to it.

The programmer gives up and goes back to his office only to find a message from the user: "It
failed five minutes after you left."

Example 17-1 is a short database lookup program. It asks the user for input and checks the
input against a hard-coded list of names. Although it is very simple, the program's structure is
typical of much larger and more complex interactive programs.

Example 17-1. base/base.cc

/**
 * Database -- a very simple database program to *
 * look up names in a hard-coded list *
 * *
 * Usage: *
 * database *
 * Program will ask you for a name. *
 * Enter the name; it will tell you whether*
 * the name is in the list. *
 * *
 * A blank name terminates the program. *
 **/
const int STRING_LENGTH = 80; /* Length of typical string */
#include <iostream.h>
#include <string.h>

main()
{
 char name[STRING_LENGTH]; // A name to look up

Page 283

Example 17-1. base/base.cc (Continued)

 int lookup(char *); // Look up a name

 while (1) {
 cout << "Enter name: ";
 cin.getline(name, sizeof(name));

 // Check for blank name
 if (strlen(name) <= 0)
 break;

 if (lookup(name))
 cout << name << is in the list\n";
 else
 cout << name << is not in the list\n";
 }
 return (0);
}
/**
 * Lookup -- look up a name in a list *
 * *
 * Parameters *
 * name -- name to look up *
 * *
 * Returns *
 * 1 -- name in the list *
 * 0 -- name not in the list *
 **/
int lookup(char *name)
{
 // List of people in the database
 // Note: Last name is a NULL for end-of-list
 static char *list[] = {

 "John",
 "Jim",
 "Jane",
 "Clyde",
 NULL
 };

 int index; // Index into list

 for (index = 0; list[index] != NULL; ++index) {
 if (strcmp(list[index], name) == 0)
 return (1);
 }
 return (0);
}

A typical execution of this program is:

Enter name: Sam
Sam is not in the list
Enter name: John

Page 284

Example 17-1. base/base.cc (Continued)

John is in the list
Enter name:

When we release this program, the users immediately start complaining about mysterious
problems that go away whenever the programmer is around. Wouldn't it be nice to have a little
gremlin sitting on the user's shoulder copying down everything he or she types? Unfortunately,
gremlins are unavailable; however, we can change this program so it produces a save file that
contains every keystroke the user typed.

Our program uses the statement:

 cin.getline(name, sizeof(name));

to read the user data.

Let's write a new routine, extended_getline, and use it instead of getline. It not only
will get a line. but also will save the user's response in a save file.

Example 17-2 xgets/xgets.cc

#include <iostream.h>
#include <fstream.h>
/*
 * The main program will open this file if -S is on
 * the command line.
 */
ofstream save_file; // File to use for saving input
int save_file_open = 0; // Save file defaults to not open
/**
 * extended_getline -- get a line from the input file *
 * and record it in a save file if needed *

 * *
 * Parameters *
 * line -- the line to read *
 * size -- sizeof(line) -- maximum number of *
 * characters to read *
 * file -- file to read data from *
 * (normally stdin) *
 * *
 * Returns *
 * NULL -- error or end-of-file in read *
 * otherwise line (just like getline) *
 **/
istream &extended_getline(char *line, int size, ifstream &file)
{
 istream *result; /* Result of gets */

 result = &file.getline(line, size);

 // Did someone ask for a save file?
 if (save_file_open) {

Page 285

Example 17-2 xgets/xgets.cc (Continued)

 save_file << line << '\n';
 }

 return (*result);
}

We also change our main program to handle a new option: "-Sfile" to specify a save file.
(Typically uppercase letters are used for debugging and other less used options.) Our new main
program is shown in Example 17-3:

Example 17-3 base/base2.cc

/**
 * Data Base -- A very simple database program to *
 * look up names in a hard-coded list *
 * *
 * Usage: *
 * database [-S<file>] *
 * *
 * -S<file> Specify save file for *
 * debugging purposes *
 * *
 * Program will ask you for a name. *
 * Enter the name; it will tell you whether*
 * the name is in the list. *
 * *
 * A blank name terminates the program. *
 **/
#include <istream.h>
#include <fstream.h>
#include <stdlib.h>

ofstream save_file; // Save file if any
int save_file_open = 0; // Save file open flag

char *extended_getline(char *line, int size, istream &file);

main(int argc, char *argv[])
{
 char name[80]; // A name to look up
 char *save_file_name; // Name of the save file

 int lookup(char *name);// look up a name

 while ((argc > 1) && (argv[l][0] == '-'))
 switch (argv[1][1]) {
 case 'S':
 save_file_name = &argv[1][2];
 save_file.open(save_file_name, ios::out);
 if (save_file.bad())
 cerr << "Warning: Unable to open save file" <<
 save_file_name << '\n';

Page 286

Example 17-3 base/base2. cc (Continued)

 else
 save_file_open = 1;
 break;
 default:
 cerr << "Bad option: " << argv[1] << '\n';
 exit (8);
 }
 --argc;
 ++argv;
 }

 while (1)
 cout << "Enter name: ";
 extended_getline(name, sizeof(name), cin);

 /* ... rest of program ... */
 }
 return (0);
}

Now we have a complete record of what the user typed. Looking at the input, we see that he
typed:

 Sam
 John

The second name begins with a space and, although "John" is in the list, "<space>John" is not.
In this case we found the error by inspecting the input; however, more complex programs have
much more complex input. We could type all that in when debugging, or we could add another
feature to extended_getline that would add a playback file to it. When the playback file

is enabled, input will not be taken from the keyboard, but instead will be taken from the file.

Example 17-4 xgets/xgets2.cc

#include <iostream.h>
#include <fstream.h>

ofstream save_file; // Save input in this file
int save_file_open = 0; // Save file has been opened
ifstream playback_file; // Playback data from this file
int playback_file_open = 0;// Playback file open flag

/***
 * extended_getline -- get a line from the input file *
 * and record it in a save file if needed *
 * *
 * Parameters *
 * line -- the line to read *
 * size -- sizeof(line) -- maximum number of *
 * characters to read *
 * file -- file to read data from *

Page 287

Example 17-4. xgets/xgets2.cc (Continued)

 * (normally stdin) *
 * *
 * Returns *
 * NULL -- error or end-of-file in read *
 * otherwise line (just like getline) *
 **/
istream &extended_getline(char *line, int size, istream &file)
{
 istream *result; // Rresult of getline

 if (playback_file_open)
 result = &playback_file.getline(line, size);
 if (file == cin)
 // Echo the input to the standard out
 // so the user sees it
 cout << line << '\n';
 } else
 result = &file.getline(line, size);

 // Did someone ask for a save file?
 if (savefile_open)
 save_file << line << '\n';

 return (*result);
}

We also add a playback option to the command line, -Pfile.: This allows us to automatically
"type" the commands that caused the error. Our main program now looks like Example 17-5.

Example 17-5. base/base3.cc

/**
 * Database -- A very simple database program to *
 * look up names in a hard-coded list *
 * *
 * Usage: *
 * database [-S<file> -P<file>] *
 * *
 * -S<file> Specify save file for *
 * debugging purposes *
 * *
 * -P<file> Specify playback file for *
 * debugging or demonstration *
 * *
 * Program will ask you for a name. *
 * Enter the name; it will tell you whether *
 * the name is in the list. *
 * *
 * A blank name terminates the program. *
 **/

Page 288

Example 17-5. base/base3.cc (Continued)

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

ofstream playback_file; // Playback data
int save_file_open = 0; // Save file open flag
ifstream save_file; // Save file if any
int playbackfile_open = 0; // True if playback in progress

char *extended_getline(char *line, int size, istream &file);

main(int argc, char *argv[])
{
 char name[80]; // A name to look up
 char *save_file_name; // Name of the save file
 char *playback_file_name; // Name of the playback file

 int lookup(char *name); // lookup a name

 while ((argc > 1) && (argv[1][0] == '-'))
 switch (argv[1][1]) {
 case 'S':
 save_file_name = &argv[1][2];
 save_file.open(save_file_name, ios::out);
 if (save_file.bad())
 cerr << "Warning: Unable to open save file <<
 save_file_name << '\n';
 else
 save_file_open = 1;
 break;
 case 'P':

 playback_file_name = &argv[1][2];
 playback_file.open(playback_file_name, ios::in);
 if (playback_file.bad) {
 cerr <<
 "Error: Unable to open playback file " <<
 playback_file_name << '\n';
 exit (8);
 }
 playback_file_open = 1;
 break;
 default:
 cerr << "Bad option: "<< argv[1] << '\n';
 exit (8);
 }
 --argc;
 ++argv;
 {

 while (1)
 cout << "Enter name: ";

Page 289

Example 17-5. base/base3.cc (Continued)

 extended_getline(name, sizeof(name), cin);

 /* ... rest of program ... */
 }
 return (0);
}

Now when a user calls up with an error report, we can tell him, "Try it again with the save-file
feature enabled, and then send me a copy of your files." The user then runs the program and
saves the input into the file save.txt.

 % database -Ssave.txt
 Enter name: Sam
 Sam is not in the list
 Enter name: John
 John is not in the list
 Enter name:

He sends us the file save.txt and we run the error with the playback option enabled.

 % database -Psave.txt
 Enter name: Sam
 Sam is not in the list
 Enter name: John
 John is not in the list
 Enter name:

We now have a reliable way of reproducing the problem. In many cases that's half the battle.
Once you can reproduce the problem you can proceed to the next steps: finding it and fixing it.

Once a programmer asked a user to send the programmer a copy of his floppy.
An express package arrived the next day containing a Xerox photocopy of the
floppy. But the user was not completely computer-illiterate: He knew it was a
two-sided floppy, so he had photocopied both sides.

Serial Debugging

Before you start debugging, save the old, "working" copy of your program in a safe place. (If
you are using a source control system such as sccs, RCS, or pcvS, your last working version
should be checked in.) Many times while you are searching for a problem, you may find it
necessary to try out different solutions or to add temporary debugging code. Sometimes you
will find you've been barking

Page 290

up the wrong tree and need to start over. That's when the last working copy becomes
invaluable.

Once you have reproduced the problem, you must determine what caused it to happen. There
are several methods for doing this.

Divide and Conquer

The divide and conquer method has already been briefly discussed in Chapter 7, The
Programming Process. It consists of putting in cout statements where you know the data is
good (to make sure it really is good), where the data is bad, and several points in between.
This way you can start zeroing in on the section of code that contains the error. More cout
statements can further reduce the scope of the error until the bug is finally located.

Debug-Only Code

The divide-and-conquer method uses temporary cout statements. They are put in as needed
and taken out after they are used. The pre-processor conditional-compilation directives can be
used to put in and take out debugging code. For example:

 #ifdef DEBUG
 cout << "Width " << width << " Height " << height << \n';
 #endif /* DEBUG */

The program can be compiled with DEBUG undefined for normal use so you can define it when
debugging is needed.

Debug Command-Line Switch

Rather than using a compile-time switch to create a special version of the program, you can
permanently include the debugging code and add a special program switch that will turn on
debugging output. For example:

 if (debug)

 cout << "Width " << width << " Height " << height << '\n;

where debug is a variable set if -D is present on the command line.

This has the advantage that only a single version of the program exists. One of the problems
with ''debug-only" code is that unless the code is frequently used, it can easily become stale
and out of date. Frequently a programmer tries to find a bug only to discover that the
debug-only code is out of date and needs fixing.

Another advantage of the debug command-line switch is that the user can turn on this switch in
the field, save the output, and send it to you for analysis. The

Page 291

runtime switch should be used in all cases instead of conditional compilation, unless there is
some reason you do not want the customer to be able to get at the debugging information.

Some programs use the concept of a debug level. Level 0 outputs only minimal debugging
information, level 1 more information, and on up to level 9, which outputs everything.

Another debugging technique can be seen in the Ghostscript* program by Aladdin Enterprises.
This program implements the idea of debugging letters. The command option -Zxxx sets
the debugging flags for each type of diagnostic output wanted. For example, f is the code for
the fill algorithm and p is the code for the path tracer. If I wanted to trace both these sections, I
would specify -Zfp.

The option is implemented by the following code:

 /*
 * Even though we only put 1 zero, C++ will fill in the
 * rest of the arrays with zeros
 */
 char debug[128] = {0}; // The debugging flags

 main(argc, argv)
 int argc;
 char *argv[];
 {
 while ((argc > 1) && (argv[l][0] == '-'))
 switch (argv[1][1]) {
 /* normal switch */

 // Debug switch
 case 'Z':
 debug_ptr = &argv[1][2];
 // Loop for each letter
 while (*debug_ptr != \0') {
 debug[*debug_ptr] = 1;
 ++debug_ptr;
 }
 break;
 }
 --argc;
 ++argv;
 }

 /* Rest of program */
 }

* Ghostscript is a PostscriptÔ-lke interpreter available from the Free Software Foundation for a
minimal copying charge They can be reached at. Free Software Foundation. Inc, 675 Mass Ave ,
Cambridge. MA 02139, phone (617) 876-3296.

Page 292

This is used inside the program by:

 if (debug['p'])
 cout << "Starting new path\n";

Ghostscript is a large program (some 25.000 lines) and rather difficult to debug. This form of
debugging allows the user to get a great deal of information easily.

Going Through the Output

Enabling debug printout is a nice way of getting information, but many times there is so much
data that the information you want can easily get lost.

The shell or command-line interpreter allows you to redirect what would normally go to the
screen to a file through the use of the ">file" option. For example:

 buggy -D9 >tmp.out

will run the program buggy with a high level of debug set and send the output to the file
tmp.out.

The text editor on your system also makes a good file browser. You can use its search
capabilities to look for the information you want to find.

Interactive Debuggers

Most compiler manufacturers provide an interactive debugger. They give you the ability to stop
the program at any point, examine and change variables, and "single-step" through the
program. Because each debugger is different, a detailed discussion is not possible.

However, we are going to discuss one debugger gdb. This program is available for many
UNIX machines from the Free Software Foundation. Turbo-C++ has its own built-in debugger.
Although the exact syntax used by your debugger may be different, the principles shown here
will work for all debuggers.

Basic GDB commands are:

run
Start execution of a program.

break line-number
Insert a breakpoint at the given line number. When a running program reaches a
breakpoint, execution stops and control returns to the debugger.

break finction-name
Insert a breakpoint at the first line of the named function. Commonly, the command break
in main is used to stop execution at the beginning of the program.

Page 293

cont
Continue execution after a breakpoint.

print expression
Display the value of an expression.

step
Execute a single line in the program. If the current statement calls a function, the function
is single stepped.

next
Execute a single line in the program, but treat function calls as a single line. This
command is used to skip over function calls.

list
List the source program.

where
Print the list of currently active functions.

status
Print a list of breakpoints.

delete
Remove a breakpoint.

We have a program that should count the number of threes and sevens in a series of numbers.
The problem is it keeps getting the wrong answer for the number of sevens. Our program is
shown in Example 17-6.

Example 17-6. seven/count cc

 1 #include <iostream.h>
 2 int seven_count; /* Number of seven's in the data */
 3 int data[5]; /* The data to count 3 and 7 in */
 4 int three_count; /* Number of threes in the data */
 5
 6 main() {
 7 int index; /* Index into the data */
 8 void get_data(int data[]);
 9
10 seven_count = 0;
11 three_count = 0;
12 get_data(data);
13
14 for (index = 1; index <= 5; ++index) {
15 if (data[index] == 3)
16 ++three_count;

17 if (data[index] == 7)
18 ++seven_count;
19 }
20 cout << "Threes "<< threecount <<
21 " Sevens " << seven_count << '\n';

Page 294

Example 17-6. seven/count.cc (Continued)

22 return (0);
23 }
24 /**
25 * get_data -- get 5 numbers from the command line *
26 **/
27 void get_data(int data[])
28 {
29 cout << "Enter 5 numbers\n";
30 cin >> data[1] >> data[2] >> data[3] >> data[4] >> data[5];
31 }

When we run this program with the data 3 7 3 0 2 the results are:

 Threes 3 Sevens 3

We start by invoking the debugger (GDB) with the name of the program we are going to debug
(count). The debugger initializes, outputs the prompt (gdb), and waits for a command.

 % gdb count
 GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
 There is absolutely no warranty for GDB; type "show warranty" for
details.
 GDB 4.12 (m68k-sun-sunos4.0.3),
 Copyright 1994 Free Software Foundation, Inc...
 (gdb)

We don't know where the variable is getting changed, so we'll start at the beginning and work
our way through until we get an error. At every step we'll display the variable seven_count
just to make sure it's okay.

We need to stop the program at the beginning so we can single-step through it. The command
break main tells GDB to set a breakpoint at the first instruction of the function main. The
command run tells GDB to start the program, which will run until it hits the first breakpoint.

 (gdb) break main
 Breakpoint 1 at 0x22c2: file count.cc, line 10.
 (gdb)

The number 1 is used by GDB to identify the breakpoint. Now we need to start the program:

 (gdb) run
 Starting program: /usr/sdo/count/count

 Breakpoint 1, main () at count.cc:10
 10 seven_count = 0;
 (gdb)

The message Breakpoint 1, main... indicates that the program encountered a
breakpoint and has now turned control over to debug.

Page 295

We have reached the point where seven_count is initialized. The command next will
execute a single statement, treating function calls as one statement. (The names of the command
for your debugger may be different.) We go past the initialization and check to see whether it
worked:

 (gdb) next
 11 three_count = 0;
 (gdb) print seven_count
 $1 = 0
 (gdb)

It did. We try the next few lines, checking all the time:

 (gdb) next
 12 get_data(data);
 (gdb) print seven_count
 $2 = 0
 (gdb) next
 Enter 5 numbers
 37302
 14 for (index = 1; index <= 5; ++index) {
 (gdb) print seven_count
 $3 = 2
 (gdb)

seven_count somehow changed the value to 2. The last statement we executed was
get_data(data); so something is going on in that function. We add a breakpoint at the
beginning of get_data, get rid of the one at main, and start the program over with the run
command:

 (gdb) break get_data
 Breakpoint 2 at 0x23b2: file count.cc, line 29.
 (gdb) info breakpoints
 Num Type Disp Enb Address What
 1 breakpoint keep y 0x000022c2 in main at count.cc:10
 2 breakpoint keep y 0x000023b2 in get_
 data(int *) at count.cc:29
 (gdb) delete 1
 (gdb) run
 The program being debugged has been started already.
 Start it from the beginning? (y or n) Y
 Starting program: /usr/sdo/count/count
 Breakpoint 2, get_data (data=0x208f8) at count.cc:29
 (gdb)

We now start single-stepping again until we find the error:

 Breakpoint 2, get_data (data=0x208f8) at count.cc:29
 29 cout << Enter 5 numbers\n";
 (gdb) print seven_count
 $5 = 0

 (gdb) next
 30 cin >> data[1] >> data[2] >> data[3] >> data[4] >>
data[5];
 (gdb) print seven_count

Page 296

 $6 = 0
 (gdb) next
 Enter 5 numbers
 37302
 31 }
 (gdb) print seven_count
 $7 = 2
 (gdb) list 22
 22 return (0);
 23 }
 24 /**
 25 * get_data -- get 5 numbers from the command line *
 26 **/
 27 void get_data(int data[])
 28 {
 29 cout << "Enter 5 numbers\n";
 30 cin >> data[1] >> data[2] >> data[3] >> data[4] >> data[5];
 31 }

At line 30 the data was good, but when we reached line 31, the data was bad, so the error is
located at line 30 of the program, the cin. We've narrowed the problem down to one
statement. By inspection we can see that we are using data [5], an illegal member of the
array data.

But why does seven_count go bad? Since data is only five elements long, there is no
data[5]. However, the cin >> data[5] has to put the data someplace, so it decided to
put it in a random memory location, in this case seven_count.

Debugging a Binary Search

The binary search algorithm is fairly simple. You want to see whether a given number is in an
ordered list. Check your number against the one in the middle of the list. If it is the number, you
were lucky—stop. If your number was bigger, then you might find it in the top half of the list.
Try the middle of the top half. If it was smaller, try the bottom half. Keep trying and dividing
the list in half until you find the number or the list gets down to a single number.

Example 17-7 uses a binary search to see whether a number can be found in the file
numbers.dat.

Example 17-7. search/searchO.cc

/**
 * Search -- search a set of numbers *
 * *
 * Usage: *
 * search *
 * You will be asked numbers to look up *
 * *

 * *
 * Files: *

Page 297

Example 17-7. search/searchO.cc (Continued)

 * numbers.dat -- numbers 1 per line to search *
 * (numbers must be ordered) *
 **/

#include <istream.h>
#include <stdlibream.h>
#include <stdlib.h>
#include <stdio.h>

const int MAX_NUMBERS = 1000; // Max numbers in file
const char *const DATA_FILE = "numbers.dat"; // File with numbers

int data[MAX_NUMBERS]; // Array of numbers to search
int max_count; // Number of valid elements in data

main()
(
 ifstream in_file; // Input file
 int middle; // Middle of our search range
 int low, high; // Upper/lower bound
 int search; // Number to search for

 in_file.open(DATA_FILE, ios::in);
 if (in_file.bad()) (
 cerr << "Error: Unable to open " << DATA_FILE << '\n;
 exit (8);
 }

 /*
 * Read in data
 */

 max_count = 0;
 while (1)
 char line[30]; // Line from the input file

 if (in_file.eof())
 break;

 in_file.getline(line, sizeof(line));

 sscanf(line, "%d", data[max_count]);
 if (data[max_count] == -1)
 break;

 ++max_count;
 }

 while (1) {
 cout << "Enter number to search for or -1 to quit:" ;

 cin >> search;

 if (search == -1)

Page 298

Example 17-7 search/search() cc (Continued)

 break;

 low = 0;
 high = max_count;

 while (1) {
 middle = (low + high) / 2;

 if (data[middle] == search)
 cout << "Found at index " << middle << '\n';
 }

 if (low == high)
 cout << "Not found\n";
 break;
 }

 if (data[middle] < search)
 low = middle;
 else
 high = middle;
 }
 }
 return (0);
}

Our data file is:

numbers.dat

4
6
14
16
17
-1

When we run this program in UNIX, the results are:

 % search
 Segmentation fault (core dumped)

When we run this program on MS-DOS, the system locks up and we have to hit the reset
switch. If the program is run in Windows we get an application error (if we're lucky).

Either way this is not good. It means something went wrong in our program and the program
tried to read memory that wasn't there. The debugger GDB can read this file and help us
determine what happened.

 % gdb search
 GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.

Page 299

 There is absolutely no warranty for GDB; type "show warranty" for
details.
 GDB 4.12 (m68k-sun-sunos4.0.3),
 Copyright 1994 Free Software Foundation, Inc...
 (gdb) run
 Starting program: /usr/sdo/search/search

 Program received signal SIGSEGV, Segmentation fault.
 0xec46320 in number ()
 (gdb)

The debugger tells us we have been killed by a segmentation fault generated from the
procedure. But we don't have a procedure number! The routine must belong to the C++
library.

We now use the where command to find out which function called which function (also
known as a stack trace):

 (gdb) where
 #0 0xec46320 in number ()
 #1 0xec45cc2 in _doscan ()
 #2 0xec45b34 in sscanf ()
 #3 0x2400 in main () at search.cc:48
 (gdb)

The current function is printed first, then the function that called it, and so on until we reach the
outer function main. From this we see that number was called by _doscan, which was
called by sscanf. We recognize sscanf as a library routine. The other functions must be
subroutines called by sscanf. The last function that had control was the call of sscanf,
which was made from line 48 of main.

Now we use the list command to take a look at the source for this line:

 (gdb) list 48
 43 if (in_file.eof))
 44 break;
 45
 46 in_file.getline(line, sizeof(line));
 47
 48 sscanf(line, "%d", data[maxcount]);
 49 if (data[max_count] == -1)
 50 break;
 51
 52 ++max_count;
 (gdb) quit
 The program is running. Quit anyway (and kill it)? (y or n) Y

This is the line that caused the problem.

Another way of finding the problem is to single-step through the program until the error occurs.

First list a section of the program to find a convenient place to put the breakpoint, and then start
the execution and single-step process.

Page 300

 Script started on Mon Oct 31 10:07:19 1994
 % gdb search
 GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
 There is absolutely no warranty for GDB; type "show warranty" for
details.
 GDB 4.12 (m68k-sun-sunos4.0.3),
 Copyright 1994 Free Software Foundation, Inc...
 (gdb) list main
 18 const char *const DATA_FILE = "numbers.dat";
 // File with numbers
 19
 20 int data[MAX_NUMBERS]; // Array of numbers to search
 21 int max_count; // Number of valid elements in data
 22 main()
 23 {
 24 ifstream infile; // Input file
 25 int middle; // Middle of our search range
 26 int low, high; // Upper/lower bound
 27 int search; // Number to search for
 (gdb) break main
 Breakpoint 1 at 0x2318: file search.cc, line 24.
 (gdb) run
 Starting program: /usr/sdo/search/search

 Breakpoint 1, main () at search.cc:24
 24 ifstream infile; // Input file
 (gdb) step
 29 in_file.open(DATAFILE, ios::in);
 (gdb) step
 30 if (in_file.bad() {
 (gdb) step
 39 max_count = 0;
 (gdb) step
 43 if (in_file.eof())
 (gdb) step
 46 in_file.getline(line, sizeof(line));
 (gdb) step
 48 sscanf(line, "%d", data[max_count]);
 (gdb) step

 Program received signal SIGSEGV, Segmentation fault.
 0xec46320 in number ()
 (gdb) quit
 The program is running. Quit anyway (and kill it)? (y or n) y

This method, too, points at line 48 as the culprit. On inspection we notice that we forgot to put
an ampersand (&) in front of the variable for sscanf. So we change line 48 from:

 sscanf(line, "%d", data[max_count]);

to:

 sscanf(line, "%d", &data[max_count]);

and try again.

Page 301

NOTE

You might wonder why we use the function sscanf when the line:

 in_file >> data[max_count];

performs the same function.

The answer is simple. We used sscanf to cause problems. Without the
pointer error we would have nothing to debug. The in_file statement is more
reliable, and reliable code has no place in a chapter on debugging.

The first number in our list is 4, so we try it. This time our output looks like:

 Enter number to search for or -1 to quit: 4
 Found at index 0
 Found at index 0
 Not found
 Enter number to search for or -1 to quit: ^C

The program should find the number, let us know it's at index 0, and then ask for another
number. Instead we get two found messages and one not found message. We know
that everything is running smoothly up to the time we get the first found message. After that
things go downhill.

Getting back into the debugger, we use the list command to locate the found message and put
a breakpoint there.

 % gdb search
 GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
 There is absolutely no warranty for GDB; type "show warranty" for
details.
 GDB 4.12 (m68k-sun-sunos4.0.3),
 Copyright 1994 Free Software Foundation, Inc...
 (gdb) list 66,77
 66 while (1)
 67 middle = (low + high) / 2;
 68
 69 if (data[middle] == search) {
 70 cout << "Found at index " << middle << '\n';
 71 }
 72
 73 if (low == high)
 74 cout << "Not found\n";
 75 break;
 76 }
 77
 (gdb) break 70
 Breakpoint 1 at 0x249e: file search.cc, line 70.

 (gdb) run
 Starting program: /usr/sdo/search/search
 Enter number to search for or -1 to quit: 4

Page 302

 Breakpoint 1, main () at search.cc:70
 70 cout << "Found at index" << middle << '\n';
 (gdb) step
 Found at index 0
 73 if (low == high)
 (gdb) step
 78 if (data[middle] < search)
 (gdb) step
 81 high = middle;
 (gdb) step
 67 middle = (low + high) / 2;
 (gdb) step
 69 if (data[middle] == search)
 (gdb) step
 70 cout << "Found at index << middle << '\n';
 (gdb) step
 Found at index 0
 73 if (low == high)
 (gdb) quit
 The program is running. Quit anyway (and kill it)? (y or n) y

The program doesn't exit the loop. Instead it continues with the search. Because the number has
already been found, this search results in strange behavior. We are missing a break after the
cout.

We need to change:

 if (data[middle] == search)
 cout << "Found at index " << middle << '\n';
 }

to:

 if (data[middle] == search)
 cout << "Found at index " << middle << '\n';
 break;
 }

Making this fix, we try the program again:

 % search
 Enter number to search for or -1 to quit: 4
 Found at index 0
 Enter number to search for or -1 to quit: 6
 Found at index 1
 Enter number to search for or -1 to quit: 3
 Not found
 Enter number to search for or -1 to quit: 5
 program runs forever (or until we abort it)

We have a runaway program. This time instead of setting a breakpoint we just start running the

program. After a few seconds pass and we believe that we are stuck in the infinite loop, we
stop the program with a control-C (^C). Normally

Page 303

this would abort the program and return us to the shell prompt. Since we are running with the
debugger, it returns control to GDB.

 % gdb search
 GDB is free software and you are welcome to distribute copies of it
 under certain conditions; type "show copying" to see the conditions.
 There is absolutely no warranty for GDB; type "show warranty" for
details.
 GDB 4.12 (m68k-sun-sunos4.0.3),
 Copyright 1994 Free Software Foundation, Inc...
 (gdb) run
 Starting program: /usr/sdo/search/search
 Enter number to search for or -1 to quit: 5
 ^C
 Program received signal SIGINT, Interrupt.
 0x2500 in main () at search.cc:79
 79 if (data[middle] < search)

Now we can use the single-step command to step through the infinite loop, looking at key
values along the way.

 79 if (data[middle] < search)
 (gdb) print middle
 $1 = 0
 (gdb) print data [middle]
 $2 = 4
 (gdb) print search
 $3 = 5
 (gdb) step
 80 low = middle;
 (gdb) step
 67 middle = (low + high) / 2;
 (gdb) step
 69 if (data[middle] == search)
 (gdb) step
 74 if (low == high)
 (gdb) step
 79 if (data[middle] < search)
 (gdb) step
 80 low = middle;
 (gdb) step
 67 middle = (low + high) / 2;
 (gdb) step
 69 if (data[middle] == search)
 (gdb) step
 74 if (low == high)
 (gdb) step
 79 if (data[middle] < search)
 (gdb) step
 80 low = middle;
 (gdb) step
 67 middle = (low + high) / 2;

 (gdb) step
 69 if (data[middle] == search) {
 (gdb) step

Page 304

 74 if (low == high) {
 (gdb) step
 79 if (data[middle] < search)
 (gdb) step
 80 low = middle;
 (gdb) step
 67 middle = (low + high) / 2;
 (gdb) step
 69 if (data[middle] == search)
 (gdb) print low
 $5 = 0
 (gdb) print middle
 $6 = 0
 (gdb) print high
 $7 = 1
 (gdb) print search
 $8 = 5
 (gdb) print data[0]
 $9 = 4
 (gdb) print data[1]
 $10 = 6
 (gdb) quit
 The program is running. Quit anyway (and kill it)? (y or n) y

The problem is that we have reached a point where:

 low = 0 middle = 0 high = 1

The item we are searching for falls exactly between elements 0 and 1. Our algorithm has an
off-by-one error. Obviously the middle element does not match. If it did we'd exit with a found
at message. So there is no point including the middle element in our new search range. Our
code to adjust the interval is:

 if (data[middle] < search)
 low = middle;
 else
 high = middle;

It should be:

 if (data[middle] < search)
 low = middle + 1;
 else
 high = middle - 1;

The full version of the corrected program is shown in Example 17-8.

Example 17-8 search/search4 cc

/**
* Search -- search a set of numbers *
* *

* Usage: *
* search *
* You will be asked numbers to look up *

Page 305

Example 17-8. search/searc4. cc (Continued)

 * Files: *
 * numbers.dat -- numbers 1 per line to search *
 * (numbers must be ordered) *
 **/

#include <istream.h>
#include <fatream.h>
#include <stdlib.h>
#include <stdio.h>

const int MAX_NUMBERS = 1000; // Max numbers in file
const char *const DATA_FILE = "numbers.dat"; // File with numbers

int data[MAX_NUMBERS]; // Array of numbers to search
int max_count; // Number of valid elements in data
main()
{
 ifstream in_file; // Input file
 int middle; // Middle of our search range
 int low, high; // Upper/lower bound
 int search; // Number to search for

 in_file.open(DATA_FILE, ios::in);
 if (in_file.bad())
 cerr << "Error: Unable to open " << DATA_FILE << '\n';
 exit (8);
 }

 /*
 * Read in data
 */

 max_count = 0;

 while (1)
 char line[30]; // Line from the input file

 if (in_file.eof())
 break;

 in_file.getline(line, sizeof(line));

 sscanf(line, "%d", &data[max_count]);
 if (data[max_count] == -1)
 break;

 ++max_count;
 }

 while (1)
 cout << "Enter number to search for or -1 to quit:" ;
 cin >> search;

Page 306

Example 17-8 search/search4.cc (Continued)

 if (search == -1)
 break;

 low = 0;
 high = max_count;

 while (1)
 if (low >= high)
 cout << "Not found\n";
 break;
 }
 middle = (low + high) / 2;

 if (data[middle] == search)
 cout << "Found at index << middle << '\n';
 break;
 }

 if (data[middle] < search)
 low = middle + 1;
 else
 high = middle - 1;
 }
 }
 return (0);
}

Interactive debuggers work well for most programs. Sometimes they need a little help.
Consider Example 17-9. We try to debug it and find it fails when point_number is 735. We
want to put a breakpoint before the calculation is made. When the debugger inserts a breakpoint
into a program, the program will execute normally until it hits the breakpoint, and then control
will return to the debugger. This allows the user to examine and change variables as well as
perform other debugging commands. When a cont command is typed, the program will
continue execution as though nothing happened. The problem is that there are 734 points before
the one we want, and we don't want to stop for each of them.

Example 17-9. debug/cstop.cc

float point_color(int point_number)
{
 float correction; // color correction factor
 extern float red, green, blue;// Current colors

 // Lookup color correction
 extern lookup(int point_number);

 correction = lookup(point_number);
 return (red*correction * 100.0 +

Page 307

Example 17-9. debug/cstop.cc (Continued)

 blue*correction * 10.0 +
 green*correction);
}

How do we force the debugger to stop only when point_number == 735? We can do this
by adding the following temporary code:

48: if (point_number == 735) /* ### Temp code ### */
49: point_number = point_number; /* ### Line to stop on ### */

Line 49 does nothing useful except serve as a line that the debugger can stop on. We can put a
breakpoint on that line with the command break 49. The program will process the first 734
points, and then execute line 49, hitting the breakpoint. (Some debuggers have a conditional
breakpoint. The advanced GDB command break 49 if part_number == 735 would
also work, however, your debugger may not have such advanced features.)

Runtime Errors

Runtime errors are usually the easiest to fix. Some types of runtime errors are segmentation
violation, stack overflow, and divide by 0.

Segmentation violation
This error indicates that the program tried to de-reference a pointer containing a bad
value.

Stack overflow
The program tried to use too many temporary variables. Sometimes this means the
program is too big or using too many big temporary arrays, but most of the time this is due
to infinite recursion problems. Almost all UNIX systems automatically check for this
error. Turbo-C++ will check for stack overflow only if the compile time option -N is
used.

Divide by 0
Divide by 0 is an obvious error. UNIX masks the problem by reporting an integer divide
by zero with the error message Floating exception (core dumped).

In all cases, program execution will be stopped. In UNIX, an image of the running program,
called a core file, is written out. This file can be analyzed by the debugger to determine why
the program died. Our first run of Example 17-7 resulted in a core dump. (One of the problems
with core dumps is that the core files are very big and can fill up a disk quickly.)

Page 308

One problem with runtime errors is that when they occur, program execution stops
immediately. The buffers for buffered files are not flushed. This can lead to some unexpected

surprises. Consider Example 17-10.

Example 17-10 debug/flush. cc

#include <iostream.h>
main()
{
 int i, j; /* Two random integers */

 i = 1;
 j = 0;
 cout << "Starting\n";
 cout << "Before divide...";
 i = i / j; // Divide-by-zero error
 cout << "After\n";
 return(0);
}

When run, this program outputs:

 Starting
 Floating exception (core dumped)

This might lead you to think the divide had never started, when in fact it had. What happened to
the message ''Before divide..."? The cout statement executed, and put the message in a buffer,
and then the program died. The buffer never got a chance to be emptied.

By putting explicit flush-buffer commands inside the code, we get a truer picture of what is
happening, as shown in Example 17-11.

Example 17-11. debug/flush2. cc

#include <iostream.h>
main()
{
 int i, j; /* Two random integers */

 i = 1;
 j = 0;
 cout << "Starting\n";
 cout.flush();
 cout << "Before divide...";
 cout.flush();
 i = i / j; // Divide-by-zero error
 cout << "After\n";
 cout.flush();
 return(O);
}

The flush statement makes the I/O less efficient, but more current.

Page 309

The Confessional Method of Debugging

The confessional method of debugging is one by which the programmer explains his program to

someone: an interested party, an uninterested party, a wall—it doesn't matter whom he explains
it to as long he talks about it.

A typical confessional session goes like this:

"Hey, Bill, could you take a look at this? My program has a bug in it. The output should be 8.0
and I'm getting -8.0. The output is computed using this formula and I've checked out the payment
value and rate and the date must be correct, unless there is something wrong with the leap-year
code, which—Thank you Bill, you've found my problem."

Bill never said a word.

This type of debugging is also called a walkthrough. Getting other people involved brings a
fresh point of view to the process, and frequently other people can spot problems you have
overlooked.

Optimization

And now a word on optimization: Don't. Most programs do not need to be optimized. They run
fast enough. Who cares whether an interactive program takes 0.5 seconds to start up instead of
0.2?

To be fair, there are a lot of slow programs out there that can be sped up. This is usually done
not by the simple optimization steps shown in this chapter, but by replacing poorly designed
core algorithms with more efficient ones.

For a well-written program, the simplest way to get your program to run faster is to get a faster
computer. Many times it is cheaper to buy a more powerful machine than it is to optimize a
program, because you may introduce new errors into your code. Don't expect miracles from
optimization. Usually most programs can only be sped up 10 percent to 20 percent.

Example 17-12 initializes a matrix (two-dimensional array).

Example 17-12. matrix/matrixl. cc

const int X_SIZE = 60;
const int Y_SIZE = 30;

int matrix[X_SIZE][Y_SIZE];

void init_matrix(void)
{
 int x, y; // Current element to initialize

Page 310

Example 17-12 matrix/matrix1.cc (Continued)

 for (x = 0; x < X_SIZE; ++x) {
 for (y = 0; y < Y_SIZE; ++y) {
 matrix[x][y] = -1;
 }
 }
}

How can this function be optimized? First we notice we are using two local varibles. By using
the qualifier register on these variables, we tell the compiler that they are frequently used
and should be placed in fast registers instead of relavely slow main memory. The number of
registers varies from computer to computer. Slow machines like the PC have 2, most UNIX
systems have about 11,and supercomputers can have as many as 128. It is possible to declare
moreregister variables than you have registers. C++ will put the extra variables in
mainmemory.The program now looks like Example 17-13.

Example 17-13 matrix/matrix2.cc

const int X_SIZE = 60;
const int Y_SIZE = 30;

int matrix[X_SIZE][Y_SIZE];

void init_matrix(void)
{
 register int x, y; // Current element to initialize

 for (x = 0; x < X_SIZE; ++x) {
 for (y = 0; y < Y_SIZE; ++y) {
 matrix[x][y] = -1;
 }
 }
}

The outer loop is executed 60 times. This means the overhead associated with starting the inner
loop is executed 60 times. If we reverse the order of the loops, we will have to deal with the
inner loop only 30 times.

In general, loops should be ordered so the innermost loop is the most complex and the
outermost loop is the simplest. Example 17-14 contains the init_matrix function with the loops
reordered.

Example 17-14. matrix/matrix3.cc

const int X_SIZE = 60;
const int Y_SIZE = 30;

Page 311

Example 17-14. matrix/matrix3.cc (Continued)

int matrix[X_SIZE][Y_SIZE];

void init_matrix(void)
}
 register int x, y; // Current element to initialize

 for (y = 0; y < Y_SIZE; ++y) {
 for (x = 0; x < X_SIZE; ++x)
 matrix[x][y] = -1;
 }
 }
}

The Power of Powers of 2

Indexing an array requires a multiply. For example, to execute the line:

 matrix[x] [y] = -1;

the program must compute the location where we want to put the -1. To do this, the program
must perform the following steps:

1. Get the address of the matrix.

2. Compute x * Y_SIZE.

3. Compute y.

4. Add up all three parts to form the address. In C++ this code looks like:

 *(matrix + (x * Y_SIZE) + y) = -1;

However you typically won't write matrix accesses this way because C++ handles the details.
But being aware of the details can help you generate more efficient code.

Almost all C++ compilers will convert multiplies by a power of two (2, 4, 8, ...) into shifts,
thus taking an expensive operation (multiply) and changing it into an inexpensive operation
(shift).

For example:

 i = 32 * j;

is compiled as:

 i = j << 5; /* 2**5 == 32 */

Y_SIZE is 30, which is not a power of two. By increasing Y_SIZE to 32 we waste some
memory but get a faster program.

Example 17-15 shows how we can take advantage of a power of two.

Page 312

Example 17-15. matrix/matrix4.cc

const int X_SIZE = 60;
const int Y_SIZE = 32;

int matrix[X_SIZE][Y_SIZE];

void init_matrix(void)
{
 register int x, y; // Current element to initialize

 for (y = 0; y < Y_SIZE; ++y) {
 for (x = 0; x < X_SIZE; ++x) {
 matrixx] [y] = -1;
 }

 }
}

Since we are initializing consecutive memory locations, we can initialize the matrix by starting
at the first location and storing a -1 in the next X_SIZE * Y_ SIZE elements. Using this
method, we cut the number of loops down to one. The indexing of the matrix has changed from
a standard index (matrix[x] [y]), requiring a shift and add, into a pointer de-referent
(*matrixptr) and an increment (++matrix_ptr). In Example 17-16 we've turned our
arrays into pointers.

Example 17-16. matrix/matrix5.cc

const int X_SIZE = 60;
const int Y_SIZE = 30;

int matrix[X_SIZE][Y_SIZE];

void init_matrix(void)
{
 register int index; // Element counter
 register int *matrix_ptr; // Current element

 matrix_ptr = &matrix[0][0];
 for (index = 0; index < X_SIZE * Y_SIZE; ++index)
 *matrix_ptr = -1;
 ++matrix_ptr;
 }
}

But why have both a loop counter and a matrix_ptr? Couldn't we combine the two? In fact
we can. In Example 17-17 we've successfully eliminated the loop counter by combining it with
the array pointer.

Example 17-17. matrix/matrix6.cc

const int X_SIZE = 60;
const int Y_SIZE = 30;

Page 313

Example 17-17 matrix/matrix6.cc (Continued)

int matrix[X_SIZE][Y_SIZE];

void init_matrix(void)
{
 register int *matrix_ptr; // Current element

 for (matrixptr = &matrix[0][0];
 matrix_ptr <= &matrix[X_SIZE - 1][Y_SIZE - 1];
 ++matrix_ptr)

 *matrixptr = -1;
 }
}

The function is now well optimized. The only way we could make it better is to manually code
it into assembly language. This might make it faster; however, assembly language is highly
nonportable and very error-prone.

The library routine memset can be used to fill a matrix or array with a single character value.
We can use it to initialize the matrix in this program. Frequently used library subroutines such
as memset are often coded into assembly language and may make use of special
processor-dependent tricks to do the job faster than could be done in C++. In Example 17-18
we let the function memset do the work.

Example 17-18 matrix/matrix7.cc

#include <string.h>

const int X_SIZE = 60;
const int Y_SIZE = 30;

int matrix[X_SIZE] [Y_SIZE];

void init_matrix(void)
{
 memset(matrix, -1, sizeof(matrix));
}

Now our function consists of only a single function call. It seems a shame to have to call a
function just to call another function. We have to pay for the overhead of two function calls. It
would be better if we called memset from the main function. Why don't we rewrite the code
using memset instead of init_matrix? Because it has several hundred init_matrix
calls and we don't want to do all that editing.

So how do we get rid of the overhead of a function call? By making the function inline. Our
final version of the function uses inline to eliminate all the call overhead and can be seen in
Example 17-19.

Page 314

Example 17-19. matrix/matrix8.cc

#include <string.h>

const int XSIZE = 60;
const int Y_SIZE = 30;

int matrix[X_SIZE][Y_SIZE];

inline void init_matrix(void)
{
 memset(matrix, -1, sizeof(matrix));
}

Question 17-1: Why does memset successfully initialize the matrix to -1, but when we try
to use it to set every element to 1, we fail?

#include <string.h>

const int X_SIZE = 60;
const int Y_SIZE = 30;

int matrix[X_SIZE][Y_SIZE];

inline void init_matrix(void)
 memset(matrix, 1, sizeof(matrix));
}

How to Optimize

Our matrix initialization function illustrates several optimizing strategies. These are:

Removing invariant code
Code that does not need to be put inside a loop should be put outside the loop. For
example:

 for (i = 0; i < 10; ++i)
 matrix[i] = i + j * 10;

can be written as:

 j_times_10 = j * 10;
 for (i = 0; i < 10; ++i)
 matrix[i] = i + j_times_10;

Most good optimizing compilers will do this work for you if possible.

Loop ordering
Nested loops should be ordered with the simplest loop outermost and the most complex
loops innermost.

Page 315

Reduction in strength
This is a fancy way of saying use cheap operations instead of expensive ones. Table 17-1
lists the relative cost of common operations.

Table 17-1 Relative Cost of Operations

Operation Relative Cost

File input and output (<< and >>), including the C functions
printf and scanf.

1,000

new and delete 800

Trigonometric functions (sin, cos, ...) 500

Floating point (any operation) 100

Integer divide 30

Integer multiply 20

Function call 10

Function call 10

Simple array index 6

Shifts 5

Add/subtract 5

Pointer de-reference 2

Bitwise AND, OR, NOT 1

Logical AND, OR, NOT 1

NOTE

C formatting functions called using scanf, printf, and sscanf
are extremely costly because they have to go through the format
string one character at a time looking for a format conversion
character (%). They then have to do a costly conversion between a
character string and a number. These functions should be avoided in
time-critical sections of code.

Reference pa ra meters
Use constant reference parameters (const type &) instead of constant parameters for
structures, unions, and classes.

Powers of 2
Use a power of 2 when doing integer multiply or divide. Most compilers will substitute a
shift for the operation.

Pointers
Pointers are faster than indexing an array. They are also more tricky to use.

Inlinefunctions
Using inline functions eliminates the overhead associated with a function call. It also can
make the code bigger and a little more difficult to debug. (See case history below.)

Page 316

Case Study: Inline Functions Versus Normal Functions

I once worked on writing a word-processing program for a large computer manufacturer. We
had a function next_char that was used to get the next character from the current file. It was
used in thousands of places throughout the program. When we first tested the program with
next_char written as a function, the program was unacceptably slow. Analyzing our
program we found that 90 percent of the time was spent in next_char. So we changed it to
an inline function. The speed doubled; however, our code size went up 40 percent and required
a memory expansion card to work. So the speed was all right, but the size was unacceptable.
We finally had to write the routine as a function in hand-optimized assembly language to get
both the size and the speed to acceptable levels.

Case Study: Optimizing a Color-Rendering Algorithm

I once was asked to optimize a program that did color rendering for a large picture. The
problem was that the program took eight hours to process a single picture. This limited us to
doing one picture a day.

The first thing I did was run the program on a machine with a floating-point accelerator. This
brought the time down to about six hours. Next I got permission to use a high-speed RISC
computer that belonged to another project but was currently sitting idle. That reduced the time
to two hours.

I saved six hours solely by using faster machines. No code had changed yet.

Two fairly simple functions were being called only once from the innermost loop. Rewriting
these functions as macros saved about 15 minutes.

Next I changed all the floating-point operations I could from floating-point to integer. The
savings amounted to 30 minutes out of a 1:45 run.

Then I noticed the program was spending about 5 minutes reading an ASCII file containing a
long list of floating-point numbers used in the conversion process. Knowing that scanf is an
extremely expensive function, I cut the initialization process down to almost nothing by making
the file binary. Total runtime was now down to 1:10.

By carefully inspecting the code and using every trick I knew, I saved another 5 minutes,
leaving me 5 minutes short of my goal of an hour per run. At this point

Page 317

my project was refocused and the program put in mothballs for use at some future date.

Programming Exercises

Exercise 17-1: Take one of your previous programs and run it using the interactive debugger to
examine several intermediate values.

Exercise 17-2: Write a matrix-multiply function. Create a test program that not only tests the
function, but times it as well. Optimize the program using pointers and determine the time
savings.

Exercise 17-3: Write a program to sum the elements in an array. Optimize it.

Exercise 17-4: Write a program that counts the number of bits in a character array. Optimize it
through the use of register-integer variables. Time it on several different arrays of different
sizes. How much time do you save?

Exercise 17-5: Write your own version of the library function memcpy. Optimize it. Most
implementations of memcpy are written in assembly language and take advantage of all the
quirks and tricks of the processor. How does your memcpy compare with theirs?

Answers to Chapter Questions

Answer 17-1: The problem is that memset is a character fill routine. An integer consists of 2
or 4 bytes (characters). Each byte is assigned the value 1. So a 2-byte integer will receive the
value:

 integer = 0x0101;

The 1-byte hex value for -1 is 0xFF. The 2-byte hex value of -1 is 0xFFFF. So we can take two
single byte -1 values, put them together and come out with - 1. This works for zero also. Any
other number will produce the wrong answer. For example, 1 is 0x01. Two bytes of this is
0x0101, or 257.

Page 319

18
Operator Overloading

In This Chapter:

 •• Operator Functions
 •• Operator Member

Functions
 •• Full Definition of the

Complex Class
 •• Programming

Exercises
 •• Answers to Chapter

Questions

Overloaded, undermanned, ment to
flounder, we Euchred God Almighty's
storm, bluffed the Eternal Sea!
—Kipling

We all know what happens when we add two integers. But C++ doesn't have a built-in
complex type, so it doesn't know how to add two complex numbers. However, through a C++
feature called operator overloading, you can ''teach" C++ how to handle complex numbers.
Operator overloading is used to define a set of functions to add, subtract, multiply and divide
complex numbers using the normal operators +, -, *, and /.

In this section we define a complex number class. Let's start by defining the basic C++ complex
class. A complex number consists of two parts, the real and the imaginary:

 class complex
 {
 protected:
 //
 // Complex numbers consist of two parts
 //

 double real_part; // The real part
 double imaginarypart; // The imaginary part
 // ...

Next we define several member functions. These include the usual constructors and destructors
as well as routines to get at the real and imaginary parts of the number.

 public:
 // Default constructor initializes the number to (0 + Oi)
 complex (void)

Page 320

 {
 realpart = 0;
 imaginary_part = 0;
 }
 // Copy constructor - initialize one complex from another
 complex(const complex& other_complex)
 {
 real_part = other_complex.real_part;
 imaginary_part = other_complex.imaginary_part;
 }
 // Construct a complex from two reals
 // If only real supplied assume the imaginary part is .0
 complex(double init_real, double init_imaginary = 0.0)
 {
 real_part = init_real;
 imaginary_part = init_imaginary;
 }
 // Destructor does nothing
 -complex() {}

 //
 // Functions to return the parts of the number
 //
 double real(void) const // "const" is discussed later
 {
 return (real_part);
 }
 double imaginary(void) const
 {
 return (imaginary_part);
 }

 // Define functions to set parts of a number
 void set_real (double real) {
 real_part = real;
 }
 void set_imaginary(double imaginary) {
 imaginarypart = imaginary;
 }

 };

NOTE

As you may recall, the const appearing after some functions was
discussed in Chapter 14, More on Classes.

Now we want to use our complex numbers. Declaring variables is simple. Even initializing
them with numbers such as (3 + 2i) is easy.

 complex start; // Starting point for the graph
 complex end(3.0, 2.0); // Ending point

Page 321

But what happens when we want to add two complex numbers? We need to define a function to
do it:

 // Version 1 of the complex add function
 inline complex add(const complex &operl, const complex &oper2)
 {
 complex result(operl.real() + oper2.real(),
 operl.imaginary() + oper2.imaginary());
 return (result);
 }

A few things should be noted about this function. First, we defined it to take two complex
numbers and return a complex number. That way we group additions:

 // Add three complex numbers
 answer = add(first, add(second, third));

Constant reference parameters are used (const complex &) for our two arguments. This is
the most efficient way of passing structures into a function. Finally, because it is such a small
function, we've defined it as an inline function for efficiency.

In this function, we explicitly declare a result and return it. We can do both in one step:

 // Version 2 of the complex add function
 inline complex add(const complex &operl, const complex &oper2)
 {
 return (complex(operl.real() + oper2.real(),
 operl.imaginary() + oper2.imaginary()));
 }

Although it is a little harder to understand, it is more efficient.

It is important to understand what C++ does behind your back. Even such a simple statement
as:

 answer = add(first, second);

calls a constructor, an assignment operator, and a destructor-all in that little piece of code.

In version 1 of the add function we explicitly allocated a variable for the result. In version 2,
C++ automatically creates a temporary variable for the result. This number has no name and
doesn't really exist outside the return statement.

Creating the temporary variable causes the constructor to be called. The temporary variable is
then assigned to answer; thus we have a call to the assignment function. After the assignment,

C++ no longer has any use for the temporary variable and throws it away by calling the
destructor.

Page 322

Operator Functions

Using the add function for complex numbers is a little awkward. It would be nice to be able to
convince C++ to automatically call this function whenever we try to add two complex numbers
together with the + operator. That's where operator overloading comes in. All we have to do is
to write the add function as:

 inline complex operator +(const complex &operl, const complex &oper2)
 {
 return (complex(operl.real() + oper2.real(),
 operl.imaginary() + oper2.imaginary()));
 }

and C++ handles the rest.

Note: The operator overloading functions should be used carefully. You should try to design
them so they follow common-sense rules. That is, + should have something to do with addition;
-, with subtraction; and so on. The C++ I/O streams break this rule by defining the shift
operators (<< and >>) as input and output operators. This can lead to some confusion, such as:

 cout << 8 << 2;

Does this output "8" followed by "2," or does it output the value of the expression (8 << 2)?
Unless you're an expert you can't tell. In this case the numbers "8" and "2" will be output.

You've seen how you can overload the + operator. Now let's explore what other operators you
can use.

Binary Arithmetic Operators

Binary operators take two arguments, one on each side of the operator. For example,
multiplication and division are binary operators:

 x *y;
 a / b;

Unary operators take a single parameter. Unary operators include unary - and the address of
(&) operator;

 -x
 &y

The binary arithmetic operator functions take two constant parameters and produce a result.
One of the parameters must be a class or structure. The result can be anything. For example, the
following functions are legal for binary addition:

 complex operator +(complex vl, complex v2);
 complex operator +(complex vl, real v2);

Page 323

 complex operator +(real v1, complex v2);
 complex operator +(real v1, real v2);

We've had to define a lot of different functions just to support the addition of our complex
class. Such diarrhea of the definition is typical when overloading operators.

Table 18-1 lists the binary operators that can be overloaded.

Table 18-1. Binary Operators That Can Be Overloaded

Operator Meaning

+ Addition

Subtraction

* Multiplication

/ Division

% Modulus

^ Bitwise exclusive OR

& Bitwise AND

| Bitwise OR

<< Left shift

>> Right shift

Relational Operators

The relational operators include such things as equals (==) and not equals (!=). Normally they
take two constant classes and return either a 0 or a 1. (Actually they can return anything, but
that would violate the spirit of relational operators.)

The equality operator for our complex class is:

 inline int operator == (const complex& operl, const complex& oper2)
 {
 return ((operl.real() == oper2.real()) &&
 (operl.imaginary() == oper2.imaginary()));
 }

Table 18-2 lists the relational operators.

Table 18-2 Relational Operators

Operator Meaning

== Equality

!= Inequality

< Less than

> Greater than

Page 324

Table 18-2 Relational Operators (Continued)

Operator Meaning

<= Less than or equal to

>= Greater than or equal to

Unary operators

Unary operators, such as negative (-), take a single parameter. The negative operator for our
complex type is:

 inline complex operator -(const complex &oper)
 {
 return (complex(-oper.real(), -oper.imaginary()));
 }

Table 18-3 lists the unary operators.

Table 18-3 Unary Operators

Operator Meaning

+ Positive

- Negative

* Dereference

& Address of

- Ones complement

Shortcut Operators

Operators such as += and -= are shortcuts for more complicated operators. But what are the
return values of += and -=? A very close examination of the C++ standard reveals that these
operators return the value of the variable after the increase or decrease. For example:

 i = 5;

 j = i += 2; // Don't code like this

assigns j the value 7. The += function for our complex class is:

 inline complex &operator +=(complex &operl, const complex &oper2)
 {
 operl.set_real(operl.real() + oper2.real());
 operl.set_imaginary(operl.imaginary() + oper2.imaginary());
 return (oper1);
 }

Note that unlike the other operator functions we've defined, the first parameter is not a constant.
Also we, return a reference to the first variable, not a new variable or a copy of the first
parameter.

Page 325

Table 18-4 lists the shortcut operators.

Table 18-4. Simple Shortcut Operators

Operator Meaning

+= Increase

-= Decrease

*= Multiply by

/= Divide by

%= Remainder

^= Exclusive OR into

&= AND into

|= OR into

<<= Shift left

>>= Shift right

Increment and Decrement Operators

The increment and decrement operators have two forms: prefix and suffix. For example:

 i = 5;
 j = i++; // j = 5
 i = 5;
 j = ++i; // j = 6

Both these operators use a function named operator++. So how do you tell them apart? The
C++ language contains a hack to handle this case. The prefix form of the operator takes one

argument, the item to be incremented. The suffix takes two, the item to be incremented and an
integer. The actual integer used is meaningless; it's just a position holder to differentiate the
two forms of the operation.

If we define ++ for the complex type to mean increment the real part, then our functions to
handle the two forms of ++ are:

 // Prefix x = ++c
 inline complex &operator ++(complex &oper)
 {
 oper.set_real(oper.real() + 1.0);
 return (oper);
 }

 // Suffix x = c++
 inline complex operator ++(complex oper, int)
 {
 complex result(oper); // Result before we incremented
 oper.set_real(oper.real() + 1.0);

Page 326

 return (result);
 }

This is messy. C++ has reduced us to using cute tricks: the unused integer parameter. In actual
practice, I never use the suffix version of increment and always put the prefix version on a line
by itself. That way, I can avoid most of these problems.

The choice, prefix versus suffix, was decided by looking at the code for the two versions. As
you can see, the prefix version is much simpler than the suffix version. So restricting yourself
to the prefix version not only simplifies your code, but it also makes the compiler's job a little
easier.

Table 18-5 lists the increment and decrement operators.

Table 18-5 Increment and Decrement operators

Operator Meaning

++ Increment

-- Decrement

Logical Operators

Logical operators include AND (&&), OR (||), and NOT (!). They can be overloaded, but
just because you can do it doesn't mean you should. In theory, logical operators work only on
Boolean values. In practice, because C++ doesn't have a Boolean type, they work on integers.
Don't confuse the issue more by overloading them.

Table 18-6 lists the logical operators.

Table 18-6 Logical Operators

Operation Meaning

|| Logical OR

&& Logical AND

! Logical NOT

I/O Operators

You've been using the operators << and >> for input and output. Actually these operators are
overloaded versions of the shift operators. This has the advantage of making I/O fairly simple,
at the cost of some minor confusion.

We would like to be able to output our complex numbers just like any other data type. To do
this we need to define a << operator for it.

Page 327

We are sending our data to the output stream class ostream. The data itself is complex. So
our output function is:

 inline ostream &operator << (ostream &out_file, const complex &number)
 {
 out_file << '(' << number.real() << ', <<
 number.imaginary() << ')';
 return (out_file);
 }

The function returns a reference to the output file. This enables the caller to string a series of
<< operations together, such as:

 complex a_complex(1.2, 3.4);
 cout << The answer is" << a_complex << '\n';

The result of this code is:

 The answer is (1.2, 3.4)

Normally the << operator takes two constant arguments. In this case the first parameter is a
non-constant ostream This is because the << operator when used for output has side effects,
the major one being that the data goes to the output stream. In general, however, it's not a good
idea to add side effects to an operator that doesn't already have them.

Input should be just as simple as output. You might think all we have to do is read the numbers
(and the related extra characters):

 // Simple-minded input operation
 inline istream &operator >> (istream &in_file, complex &number)
 double real, imaginary; // Parts of the number
 char l_paren, comma, r_paren; // Extra characters output as part of

 in_file >> l_paren >> real >> comma >> imaginary >> r_paren;
 number.set(real, imaginary);
 return (in_file);
 }

In practice, it's not so simple. First of all, we must call a special member function ipfx to tell
the I/O system that we are planning a formatted read.

 inline istream &operator >> (istream &in_file, complex &number)
 {
 // ...
 in_file.ipfx(l); // Tell the I/O system we are reading
formatted

Next we skip any leading white space.

 in_file >> ws; // Skip white space

We should now be pointing to the "(" at the beginning of the number. But before we can read
this character, we need to check for trouble and abort if necessary.

 if (in_file.bad()) return (in_file);

Page 328

Now, let's grab the "(". Of course, just to make sure, we check to see that we really get a "("
and abort if necessary.

 in_file >> ch; // Get character after white space
 if (ch != '(') {
 in_file.set(ios::failbit); // We have an error
 return (in_file);
 }

The function set is used to set a flag indicating that the input operation found a problem. This
allows the caller to test to see whether the input worked by calling the bad function. (This
function can also cause an exception to be thrown. See Chapter 22, Exceptions, for more
information.)

We have reached the "(". Let's read the real part of the number.

 in_file >> real;

Now we take care of the "," and related white space between the numbers. At each step we
check for errors:

 if (in_file.bad()) return (in_file);
 in_file >> ws >> ch; // Get first character after number
 if (in_file.bad() return (in_file);

 if (ch != ',') {
 in_file.set(ios::failbit);
 return (in_file);
 }

Next is the imaginary part.

 in_file >> imaginary;

Finally, we make sure that the number ends with a ")".

 in_file >> ws >> ch;
 if (in_file.bad()) return (in_file);

 if (ch != ')') {
 in_file.set(ios::failbit);
 return (in_file);
 }

The work's complete, so we store the result and get out.

 number.set(real, imaginary);
 return (in_file);
 }

The complete version of the complex reader (pun intended) appears in Example 18-1.

Page 329

Example 18-1

inline istream &operator >> (istream &in_file, complex &number)
{
 double real, imaginary; // Real and imaginary part
 char ch; // Random character used to verify input

 number.set(0.0, 0.0); // Initialize the number (just in case)

 in_file.ipfx(1); // Tell the I/O system we are reading formatted
 in_file >> ws; // Skip white space

 if (in_file.bad() return (in_file);

 in_file >> ch; // Get character after white space
 if (ch != '(') {
 in_file.set(ios::failbit); // We have an error
 return (in_file);
 }

 in_file >> real;

 if (in_file.bad() return (in_file);

 in_file >> ws >> ch; // Get first character after number

 if (in_file.bad() return (in_file);

 if (ch != ','){
 in_file.set(ios::failbit);
 return (in_file);
 }

 in_file >> imaginary;

 in_file >> ws >> ch;
 if (in_file.bad()) return (in_file);

 if (ch != ')') {
 in_file.set(ios::failbit);
 return (in_file);
 }
 number.set(real, imaginary);
 return (infile);
}

Index Operator ''[]"

The operator [] is used by C++ to index arrays. As we will see in Chapter 20, Advanced
Pointers, this operator is very useful when defining a class that mimics an array. Normally, this
function takes two arguments, a class that simulates an array and an index, and returns a
reference to an item in the array.

 double &operator[](array_class &array, int index)

Page 330

We cover the [] operator in more detail in Chapter 23, Modular Programming.

new and delete

We'll say very little about overloading the global operators new and delete at this time.
First of all, they aren't introduced until Chapter 20, Advanced Pointers, so you don't know what
they do. Second, when you know what they do, you won't want to override them.

I've seen only one program where the new and delete operators were overridden (or at
least their C equivalents). That program was written by a very clever programmer who liked to
do everything a little strangely. The result was code that was a nightmare to debug.

So unless you are a very clever programmer, leave new and delete alone. And if you are a
clever programmer, please leave new and delete alone anyway. Some day I might have to
debug your code.

Exotic Operators

C++ contains a very rich set of operators. Some of these are rarely, if ever, used. These
include:

() Allows you to define a default function for a class.

, Comma operator. Allows two expressions to be concatenated. It is rarely used and
probably should not be overloaded.

->*Pointer to member. Rarely used.

-> Class member.

All of these operators are discussed in Chapter 28, C++'s Dustier Corners.

Operator Member Functions

So far we've been using operator overloading functions just like ordinary functions. They can
also be defined as member functions. The only difference is that as member functions the first
argument, the class itself, is implied. So, for example, you can write the operator += as an
ordinary function or as a member function. Here's the ordinary version that you've already seen.

 inline complex &operator +=(complex &operl, const complex &oper2)
 {
 operl.set_real(operl.real() + oper2.real());
 operl.set_imaginary(operl.imaginary() + oper2.imaginary());
 return (oper1);
 }

Page 331

Here's the member function:

 class complex {
 //
 public:
 inline complex &operator +=(const complex &oper2)
 {
 real_part += oper2.real();
 imaginary_part += oper2.imaginary();
 return (*this);
 }

The only trick used in this function is the keyword this. This is a predefined variable that
refers to the current object. For example, you can access the data member real_part using
the statement:

 real_part += oper2.real();

The same statement can be written as:

 this->real_part += oper2.real();

In most cases, you don't need to use this. However, in a few, such as the += operator, it
comes in handy.

Which flavor of the operator overloading functions should you use? The one that makes your
program the clearest and easiest to read. In general, we use the standard functions for the
simple operators, such as +, -, *, and /, while I use member functions for the shortcut and unary
operators, such as +=, -=, ++, and unary -.

Some overloaded functions only work as member functions. These include the casting
operators as well as class specific versions of new and delete.

Casting

Finally we come to the cast operators. Casting is a way of changing one type to another. For
example, let's say that when we cast our complex type to a double, we want the real part.
We can define a cast operator for this function as:

 class complex:
 public:
 // (We didn't really put this in our complex class)
 double operator double() {return (realpart);}

C++ automatically calls this function whenever it wants to turn a complex into a double.

The trouble is that by defining a cast, you give C++ something else that it can call behind your
back. Personally, I like to know whenever C++ calls something, so I avoid creating cast
operators. Unless you have a very good reason to define one, don't create a cast operator
function.

Page 332

Full Definition of the Complex Class

Example 18-2 lists the entire complex class. The beginning of the header file summarizes all
the functions that are defined. In creating this class I discovered that it consisted of many (29 to
be exact) little one- and two-line functions. Commenting each of these with a full-function
comment block would obscure the code. In other words, this is one of the few cases (the very
few) where adding comments would cause confusion, so most of the small functions have no
comments.

When creating this class, I noticed that a lot of the functions have a similar structure. For
example. += looks a lot like -= and so on. As a matter of fact, I created the -= operator by
copying the += functions and editing a little. C++ contains a rich operator set that causes this
sort of repetition to happen when you're trying to define a complete set of operators for a class.

Finally, the simple operations are defined in the file complex.h while the longer functions are
left in the file complex.cc.

Example 18-2 complex/complex.h , complex/complex.cc

File: complex.h

#ifndef _complex_h_ // Avoid double includes
#define _complex_h__ // Prevent double include

#include <iostream.h>
#include <math.h>

/**
 * Complex class *
 * *
 * Members defined *
 * complex() // Default constructor *
 * complex(real, imaginary)// Specify two parts *
 * // for construction *
 * complex(complex) // Copy constructor *
 * *
 * real() // Get real part *
 * imaginary() // Get imaginary part *
 * *
 * set(real, imaginary) // Set both parts of # *

 * set_real(real) // Set real part of # *
 * set_imaginary(imaginary)// Set imaginary part *
 * *
 * Operator member functions *
 * c -- a complex number *
 * s -- a scalar (double) *
 * c = c *
 * c += c; *

Page 333

Example 18-2. complex/complex.h, complex/complex cc (Continued)

 * c += s; *
 * c -= c; *
 * c -= s; *
 * c /= c; *
 * c /= s; *
 * c *= c; *
 * c *= s; *
 * *
 * The following functions don't really make a lot of *
 * sense for complex numbers, but they are defined *
 * for the purpose of illustration *
 * c++ *
 * ++c *
 * c-- *
 * --c *
 * *
 * Arithmetic operators defined *
 * c=c+c; *
 * c =s+c; *
 * c =c+s; *
 * c=c-c; *
 * c= s-c; *
 * c =c-s; *
 * c =c *c; *
 * C=s*c; *
 * c=c*s; *
 * c=c/c; *
 * c=s/c; *
 * c=c/s; *
 * -c *
 * +c *
 * ostream << c // Output function *
 * istream >> c // Input function *
 **/
class complex
{
 private:
 //
 // Complex numbers consist of two parts
 //
 double real_part; // The real part
 double imaginary_part; // The imaginary part

 public:

 // Default constructor, zero everything
 complex (void)
 {
 real_part = 0.0;
 imaginary_part = 0.0;
 }

 // Copy constructor

Page 334

Example 18-2. complex/complex h, complex/complex.cc (Continued)

 complex(const complex& other_complex)
 {
 real_part = other_complex.real_part;
 imaginary_part = other_complex.imaginary_part;
 }

 // Construct a complex out of two real numbers
 complex(double init_real, double init_imaginary = 0.0)
 {
 real_part = init_real;
 imaginary_part = init_imaginary;
 }

 // Destructor does nothing
 -complex() {}

 //
 // Function to return the parts of the number
 //
 double real(void) const
 {
 return (real_part);
 }
 double imaginary(void) const
 {
 return (imaginary_part);
 }

 // Functions to set parts of a number
 void set(double real, double imaginary)
 real_part = real;
 imaginary_part = imaginary;
 }

 void set_real(double real)
 real_part = real;
 }

 void set_imaginary(double imaginary) {
 imaginary_part = imaginary;
 }

 complex operator = (const complex& oper2)
 set(oper2.real_part, oper2.imaginary_part);

 return (*this);
 }

 complex& operator += (const complex& oper2)
 real_part += oper2.real();
 imaginary_part += oper2.imaginary();
 return (*this);
 }

Page 335

Example 18-2. complex/complex.h,complex/complex. cc (Continued)

 complex& operator += (double oper2)
 real_part += oper2;
 return (*this);
 }

 complex& operator -= (const complex& oper2)
 real_part -= oper2.real();
 imaginary_part -= oper2.imaginary();
 return (*this);
 }

 complex& operator -= (double oper2)
 real_part -= oper2;
 return (*this);
 }

 complex& operator *= (const complex& oper2)
 // Place to hold the real part of the result
 // while we compute the imaginary part
 double real_result = real_part * oper2.real() -
 imaginary_part * oper2.imaginary();

 imaginary_part = real_part * oper2.imaginary() +
 imaginary_part * oper2.real();

 realpart = real_result;
 return *this;
 }

 complex& operator *= (double oper2)
 real_part *= oper2;
 imaginary_part *= oper2;
 return (*this);
 }

 complex& operator /= (const complex& oper2);

 complex& operator /= (double oper2)
 real_part /= oper2;
 imaginary_part /= oper2;
 return (*this);
 }

 // c++
 complex operator ++(int) {
 complex result(*this);
 real_part += 1.0;
 return (result);
 }

 // ++c

Page 336

Example 18-2 complex/complex h, complex/complex.cc (Continued)

 complex &operator ++(void)
 real_part += 1.0;
 return (*this);
 }

 // c--
 complex operator --(int) {
 complex result(*this);
 real_part -= 1.0;
 return (result);
 }

 // --c
 complex &operator --(void) {
 real_part -= 1.0;
 return (*this);
 }
};

inline complex operator + (const complex& operl, const complex& oper2)
{
 return complex(operl.real() + oper2.real(),
 operl.imaginary() + oper2.imaginary());
}

inline complex operator + (const complex& operl, double oper2)
{
 return complex(operl.real() + oper2,
 operl.imaginary());
}

inline complex operator + (double operl, const complex& oper2)
{
 return complex(operl + oper2.real(),
 oper2.imaginary());
}

inline complex operator - (const complex& operl, const complex& oper2)
{
 return complex(operl.real() - oper2.real(),
 operl.imaginary() - oper2.imaginary());
}

inline complex operator - (const complex& operl, double oper2)

{
 return complex(operl.real() - oper2,
 operl.imaginary());
}

inline complex operator - (double operl, const complex& oper2)
{
 return complex(operl - oper2real()

Page 337

Example 18-2. complex/complex h, complex/complex.cc (Continued)

 -oper2.imaginary());
}

inline complex operator * (const complex& operl, const complex& oper2)
{
 return complex(
 operl.real() * oper2.real() - operl.imaginary() * oper2.imaginary(),
 operl.real() * oper2.imaginary() + operl.imaginary() * oper2.real());
}

inline complex operator * (const complex& operl, const double oper2)
{
 return complex(operl.real() * oper2,
 operl.imaginary() * oper2);
}

inline complex operator * (const double operl, const complex& oper2)
}
 return complex(operl * oper2.real(),
 operl * oper2.imaginary());
}

extern complex operator (const complex &operl, const complex &oper2);

inline complex operator / (const double &operl, const complex &oper2) {
 return (complex(operl, 0.0) / oper2);
}

inline complex operator / (const complex &operl, const double &oper2) {
 return (operl / complex(oper2, 0.0));
}

inline int operator == (const complex& operl, const complex& oper2)
{
 return ((operl.real() == oper2.real()) &&
 (operl.imaginary() == oper2.imaginary()));
}

inline int operator != (const complex& operl, const complex& oper2)
{
 return (!(operl == oper2));
}

inline complex operator - (const complex& operl)

{
 return complex(-operl.real(), -operl.imaginary());
}

inline complex operator + (const complex& operl)
{
 return complex(+operl.real(), +operl.imaginary());
}

Page 338

Example 18-2. complex/complex h, complex/complex.cc (Continued)

inline ostream &operator << (ostream &out_file, const complex &number)
{
 out_file << '(' << number.real() << ',' << number.imaginary() << ')';
 return (out_file);
}

extern istream &operator >> (istream &in_file, complex &number);

#endif /* _complex_h_ */ // Avoid double includes

File: complex.cc

#include "complex.h"

/**
 * c = c / c -- complex division *
 * *
 * Parameters *
 * operl, oper2 -- two operands of the divide *
 * *
 * Returns *
 * result of the divide *
 **/
complex operator / (const complex& operl, const complex& oper2)
{
 // Denominator of the result
 double den = fabs(oper2.real()) + fabs(oper2.imaginary());

 // Real part of the operl factor
 double operl_real_den = operl.real() / den;
 // Imaginary part of the operl factor
 double operl_imag_den = operl.imaginary() / den;

 // Real part of the oper2 factor
 double oper2_real_den = oper2.real() / den;
 // Imaginary part of the oper2 factor
 double oper2_imag_den = oper2.imaginary() / den;

 // Normalization factor
 double normalization = oper2_real_den * oper2_real_den +
 oper2_imag_den * oper2_imag_den;

 return complex((operl_real_den * oper2_real_den +
 operl_imag_den * oper2_imag_den) / normalization,

 (operl_imag_den * oper2_real_den -
 operl_real_den * oper2_imag_den) / normalization);
}

/**
 * c /= c -- complex divide by *
 * *

Page 339

Example 18-2 complex/complex.h, complex/complex.cc (Continued)

 * Parameters *
 * oper2 -- operator to divide by *
 * *
 * Returns *
 * reference to the result of the divide *
 * *
 **/
complex& complex::operator /= (const complex& oper2)
{
 // Denominator of the result
 double den = fabs(oper2.real()) + fabs(oper2.imaginary());

 // Denominator -- operator 1 real part
 double oper1_real_den = real_part / den;

 // Denominator -- operator 1 imaginary part
 double operl_imag_den = imaginary_part / den;

 // Denominator -- operator 2 real part
 double oper2_real_den = oper2.real() / den;

 // Denominator -- operator 2 imaginary part
 double oper2_imag_den = oper2.imaginary() / den;

 // Normalization factor
 double normalization = oper2_real_den * oper2_real_den +
 oper2_imag_den * oper2_imag_den;
 real_part = (operl_real_den * oper2_real_den +
 operl_imag_den * oper2_imag_den) / normalization;
 imaginary_part = (operl_imag_den * oper2_real_den -
 operl_real_den * oper2_imag_den) / normalization;
 return (*this);
}
/**
 * istream >> complex -- read a complex number *
 * *
 * Parameters *
 * in_file -- file to read *
 * number -- place to put the number *
 * *
 * Returns *
 * reference to the input file *
 ************************ *** *** ***********************/
istream &operator >> (istream &in_file, complex &number)
{

 double real, imaginary; // Real and imaginary part
 char ch; // Random character used to verify input

 number.set(0.0, 0.0); // Initialize the number (just in case)

 in_file.ipfx(1); // Tell the I/O system we are reading formatted
 in_file >> ws; // Skip white space

Page 340

Example 18-2 complex/complex h. complex/complex.cc (Continued)

 if (in_file.bad()) return (in_file);

 in_file >> ch; // Get character after white space
 if (ch != '(') {
 in_file.setf(ios::failbit); // We have an error
 return (in_file);
 }

 in_file >> real;

 if (in_file.bad()) return (in_file);

 in_file >> ws >> ch; // Get first character after number

 if (in_file.bad()) return (in_file);

 if (ch != ',') {
 in_file.setf(ios: :failbit);
 return (in_file);
 }

 in_file >> imaginary;

 in_file >> ws >> ch;
 if (in_file.bad()) return (in_file);

 if (ch != ')') {
 in_file.setf(ios::failbit);
 return (in_file);
 }
 number.set(real, imaginary);
 return (in_file);
}

Question 18-1: Why does Example 18-3 fail? When run it prints out:

 Copy constructor called
 Copy constructor called

over and over. Hint. Review the section ''Copy Constructor" in Chapter 13. Thanks to Jeff
Hewett for th is problem.

Example 18-3. equal/equal cc

1 #include <iostream.h>

2
3 class trouble {
4 public:
5 int data;
6
7 trouble(void);
8 trouble(const trouble &old);
9 trouble operator = (trouble old_trouble);

Page 341

Example 18-3 equal/equal.cc (Continued)

10 };
11
12 trouble::trouble(void) {
13 data = 0;
14 }
15
16 trouble::trouble(const trouble &old) {
17 cout << "Copy constructor called\n";
18 *this = old;
19 }
20
21 trouble trouble::operator = (trouble old_trouble) {
22 cout << "Operator = called\n";
23 data = old_trouble.data;
24 return (*this);
25 }
26
27 int main()
28 {
29 trouble troublel;
30 trouble trouble2(troublel);
31
32 return (0);
33 }

Programming Exercises

Exercise 18-1: Write a class to handle fractions such as "1/3." Define addition, subtraction,
multiplication, and division operators for these fractions.

For example: 1/3 + 1/2 = 5/6.

Exercise 18-2: Write a fixed-point number class to handle numbers. All numbers are of the
form DDDDD.D. In other words, all numbers have only a single digit to the right of the
decimal point. Use integers to implement this class.

Exercise 18-3: Write a class to implement a sparse integer array. This is much like a simple
integer array:

 int simple_array[100];

But unlike a simple array, the indices can go from 0 to 1,000,000. That's the bad news. The
good news is that at most 100 elements will be set at any time. The rest of the elements will be

zero.

Exercise 18-4: Write a time class. Implement functions to add, subtract, read, and print times.

Exercise 18-5: Write a date class that allows you to add, subtract, read, and print simple dates
of the form MM/DD. Assume year is not a leap year.

Page 342

Exercise 18-6: (Advanced) Write a full-date class that allows you to add, subtract, read, and
print dates of the form MM/DD/YY.

Answers to Chapter Questions

Answer 18-1: The copy constructor calls the operator = function. The parameter list to this
function is:

 trouble trouble::operator = (trouble old_trouble) {

The parameter to this function is being passed as a call-by-value parameter. When C++ sees
this type of parameter it calls the copy constructor to put the parameter on the stack.

So we have an infinite loop The copy constructor calls the operator = function. C++ sees
the call-by-value parameter and calls the copy constructor, which calls operator = and
causes the copy constructor to be called. This keeps up until the system runs out of stack space
or the user gets disgusted and aborts the program.

The solution is to pass the parameter to operator = as a reference. This not only is more
efficient, but also works.

 trouble trouble::operator = (const trouble &old_trouble) {

Page 343

19
Floating Point

In This Chapter:

 •• Floating-Point
Format

 •• Floating
Addition/Subtraction

 •• Multiplication
 •• Division
 •• Overflow and

Underflow
 •• Roundoff Error
 •• Accuracy
 •• MinimizingRoundoff

Error
 •• Determining

Accuracy

1 is equal to 2 for sufficiently large values of 1.
—Anonymous

Computers handle integers very well. The arithmetic is simple, exact, and fast. Floating point is
the opposite. Computers do floating-point arithmetic only with great difficulty.

This chapter discusses some of the problems that can occur with floating point. In order to
address the principles involved in floating-point arithmetic, we have defined a simple decimal
floating-point format. We suggest you put aside your computer and work through these
problems using pencil and paper so you can see firsthand the problems and pitfalls that occur.

The format used by computers is very similar to the one defined in this chapter, except that
instead of using base 10, computers use base 2, 8, or 16. However, all the problems
demonstrated here on paper can occur in a computer.

Floating-Point Format

Floating point numbers consist of three parts: a sign, a fraction, and an exponent. Our fraction
is expressed as a four-digit decimal. The exponent is a single-decimal digit. So our format is:

±f.fff x 10 ±e

Page 344

where:

±i s the sign (plus or minus).

f.fff is the four-digit fraction.

±e is the single-digit exponent.

Zero is + 0.000 x 10 +0. We represent these numbers in "E" format: ±f.fffE±e.

This format is similar to the floating-point format used in many computers. The IEEE has
defined a floating-point standard (#742), but not all machines use it.

Table 19-1 shows some typical floating-point numbers.

Table 19-1. Floating-Point Examples

Notation Number

+1.000E+0 1.0

+3.300E+5 33000.0

-8.223E-3 -0.008223

+0.000E+0 0.0

The floating-point operations defined in this chapter follow a rigid set of rules. To minimize
errors we make use of a guard digit. That is an extra digit added to the end of the fraction
during computation. Many computers use a guard digit in their floating-point units.

Floating Addition/Subtraction

To add two numbers like 2.0 and 0.3, the computer must perform the following steps:

1. Start with the numbers.

+2.000E+0 The number is 2.0

+3.000E-1 The number is 0.3

2. Add guard digits to both numbers.

+2.0000E+0 The number is 2.0

+3.0000E-1 The number is 0.3

3. Shift the number with the smallest exponent to the right one digit and increment its exponent.
Continue until the exponents of the two numbers match.

+2.0000E+0 The number is 2.0

+0.3000E-0 The number is 0.3

Page 345

4. Add the two fractions. The result has the same exponent as the two numbers.

+2.0000E+0 The number is 2.0

+0.3000E-0 The number is 0.3

+2.3000E+0 Result 2.3

5. Normalize the number by shifting it left or right until there is just one nonzero digit to the left
of the decimal point. Adjust the exponent accordingly. A number like +0.1234E+0 would be
normalized to +1.2340E-1. Because the number +2.3000E+0 is already normalized, we do
nothing.

6. Finally, if the guard digit is greater than or equal to 5, round the next digit up. Otherwise,
truncate the number.

+2.3000E+0 Round last digit

+2.300E+0 Result 2.3

7. For floating-point subtraction, change the sign of the second operand and add.

Multiplication

When we want to multiply two numbers such as 0.12 x 11.0, the following rules apply.

1. Add the guard digit.

+1.2000E-1 The number is 0.12

+1.1000E+1 The number is 11.0

2. Multiply the two fractions and add the exponents. (1.2 x 1.1 = 1.32) (-1 + 1 = 0)

+1.2000E-1 The number is 0.12

+1.1000E+1 The number is 11.0

+1.3200E+0 The result is 1.32

3. Normalize the result. If the guard digit is greater than or equal to 5, round the next digit up.
Otherwise, truncate the number.

+1.3200E+0 The number is 1.32

Notice that in multiply, you didn't have to go through all that shifting. The rules for

multiplication are a lot shorter than those for add. Integer multiplication is a lot slower than
integer addition. In floating point, multiplication speed is a lot closer to that of addition.

Page 346

Division

To divide numbers like 100.0 by 30.0, we must perform the following steps.

1. Add the guard digit.

+1.0000E+2 The number is 100.0

+3.0000E+1 The number is 30.0

2. Divide the fractions, and subtract the exponents.

+1.0000E+2 The number is 100.0

+3.0000E+1 The number is 30.0

+0.3333E+1 The result is 3.333

3. Normalize the result.

+3.3330E+0 The result is 3.333

4. If the guard digit is less than or equal to 5, round the next digit up. Otherwise, truncate the
number.

+3.333E+0 The result is 3.333

Overflow and Underflow

There are limits to the size of the number a computer can handle. What are the results of the
following calculation?

 9.000E+9 x 9.000E+9

Multiplying it out, we get:

 8.1 x 1019

However, we are limited to a single-digit exponent, too small to hold 19. This is an example of
overflow (sometimes called exponent overflow). Some computers generate a trap when this
occurs, thus interrupting the program and causing an error message to be printed. Others are not

so nice and generate a wrong answer (like 8.100E+9). Computers that follow the IEEE
floating-point standard generate a special value called +Infinity.

Underflow occurs when the numbers become too small for the computer to handle. Example:

 1.OOOE-9 x 1.OOOE-9

The result is:

 1.0 x 10-18

Because -18 is too small to fit into one digit, we have underflow.

Page 347

Roundoff Error

Floating point is not exact. Everyone knows that 1 + 1 is 2, but did you know that 1/3 + 1/3
!= 2/3? This can be shown by the following floating-point calculations:

2/3 as floating point is 6.667E-1

1/3 as floating point is 3.333-1

+3.333E-1

+3.333E-1

+6.666E-1, or 0.6666

which is not:

+6.667E-1

Every computer has a similar problem with its floating point. For example, the number 0.2 has
no exact representation in binary floating point.

Floating point should never be used for money. Because we are used to dealing with dollars
and cents, it is tempting to define the amount $1.98 as:

 float amount = 1.98;

However, the more calculations you do with floating point, the bigger the roundoff error.
Banks, credit cards, and the IRS tend to be very fussy about money. Giving the IRS a check
that's almost right is not going to make them happy. Money should be stored as an integer
number of pennies.

Accuracy

How many digits of the fraction are accurate? At first glance you might be tempted to say all
four digits. Those of you who have read the previous section on roundoff error might be
tempted to change your answer to three. The answer is:

The accuracy depends on the calculation. Certain operations, such as subtracting two numbers
that are close to each other, generate inexact results. Consider the following equation:

 1 - 1/3 - 1/3 - 1/3

1.000E+0

-3.333E-1

Page 348

-3.333E-1

-3.333E-1

or:

1.000E+0

-3.333E-1

-3.333E-1

-3.333E-1

0.0010E+0, or 1.000E-3

The correct answer is 0.000E+0 and we got 1.000E-3. The very first digit of the fraction is
wrong. This is an example of the problem called roundoff error that can occur during
floating-point operations.

Minimizing Roundoff Error

There are many techniques for minimizing roundoff error. Guard digits have already been
discussed. Another trick is to use double instead of float. This gives you approximately
twice the accuracy as well as twice the range. It also pushes away the minimization problem
twice as far. But roundoff errors still can creep in.

Advanced techniques for limiting the problems caused by floating point can be found in books
on numerical analysis. They are beyond the scope of this text. The purpose of this chapter is to
give you some idea of what sort of problems can be encountered.

Floating point by its very nature is not exact. People tend to think of computers as very accurate
machines. They can be, but they also can give wildly wrong results. You should be aware of
the places where errors can slip into your program.

Determining Accuracy

There is a simple way of determining how accurate your floating point is (for simple

calculations). The method used in the following program is to add 1.0 + 0.1, 1.0 + 0.01, 1.0 +
0.001, and so on until the second number gets so small that it makes no difference in the result.

The old C language specified that all floating-point numbers were to be done in double. C++
removed that restriction, but because many C++ compilers are

Page 349

really front-ends to a C compiler, frequently C++ arithmetic is done in double. This means
that the expression:

 float number1, number2;

 . . .

 while (number1 + number2 != numberl)

is equivalent to:

 while (double(numberl) + double(number2) != double(numberl))

If you use the 1 + 0.001 trick, the automatic conversion of float to double may give a
distorted picture of the accuracy of your machine. (In one case, 84 bits of accuracy were
reported for a 32-bit format.) Example 19-1 computes the accuracy of both floating point as
used in equations and floating point as stored in memory. Note the trick used to determine the
accuracy of the floating-point numbers in storage.

Example 19-1 float/float.cc

#include <iostream.h>
#include <iomanip.h>

main()
{
 // Two numbers to work with
 float number1, number2;
 float result; // Result of calculation
 int counter; // Loop counter and accuracy check

 number1 = 1.0;
 number2 = 1.0;
 counter = 0;

 while (number1 + number2 != numberl)
 ++counter;
 number2 = number2 / 10.0;
 }
 cout << setw(2) << counter << " digits accuracy in calculations\n";

 number2 = 1.0;
 counter = 0;

 while (1) {
 result = number1 + number2;
 if (result == numberl)
 break;

 ++counter;
 number2 = number2 / 10.0;
 }
 cout << setw(2) << counter << " digits accuracy in storage\n";

Page 350

Example 19-1 float/float cc (Continued)

 return (0);
}

Running this on a Sun-3/50 with an MC68881 floating-point chip, we get:

 20 digits accuracy in calculations
 8 digits accuracy in storage

This program only gives an approximation of the floating-point precision arithmetic. A more
precise definition can be found in the standard include file float.h.

Precision and Speed

A variable of type double has about twice the precision of a normal float variable. Most
people assume that double-precision arithmetic takes longer than single-precision. This is not
always the case. Let's assume we have one of the older compilers that does everything in
double.

For the equation:

 float answer, number1, number2;

 answer = number1 + number2;

C++ must perform the following steps:

1. Convert number1 from single to double precision

2. Convert number2 from single to double precision

3. Double-precision add

4. Convert result into single precision and store in answer

If the variables were of type double, C++ would only have to perform the steps:

1. Double-precision add

2. Store result in answer

As you can see, the second form is a lot simpler, requiring three fewer conversions. In some
cases, converting a program from single precision to double precision makes it run faster.

NOTE

Because C++ specifies that floating point can be done in double or
float, you can't be sure of anything. Changing all floats into

doubles may make the program run faster, slower, or the same.
The only thing you can be sure of when using floating point is that the
results are unpredictable.

Page 351

Many computers, including the PC and Sun/3 series machines, have a special chip called a
floating-point processor that does all the floating-point arithmetic. Actual tests using the
Motorola 68881 floating-point chip (which is used in the Sun/3) as well as floating point on the
PC show that single precision and double precision run at the same speed.

Power Series

Many trigonometry functions are computed using a power series. For example, the series for
sine is:

The question is, how many terms do we need to get four-digit accuracy? Table 19-2
contains the terms for sin(ππ/2).

Table 19-2 Terms for sin(π/2)

Term Value Total

1 x 1.571E+0

2 6.462E-1 9.248E-1

3 7.974E-2 1.005E+0

4 4.686E-3 9.998E-1

5 1.606E-4 1.000E+0

6 3.604E-6 1.000E+0

From this we conclude that five terms are needed. However, if we try to compute sin(ππ) we get
Table 19-3.

Table 19-3. Termsfor sin(ππ)

Term Value Total

1 x 3.142E+0

2 5.170E+0 -2.028E+0

3 2.552E-0 5.241E-1

4 5 998E-1 -7.570E-2

Page 352

Table 19-3 Terms for sin(π) (Continued)

Term Value Total

5 8.224E-2 6 542E-3

6 7.381E-3 -8.388E-4

7 4.67l E-4 -3.717E-4

8 2.196E-5 -3.937E-4

9 7.970E-7 -3.929E-4

10 2.300E-8 -3.929E-4

 ππ needs nine terms. So, different angles require a different number of terms. (A program for
computing the sine to four-digit accuracy showing intermediate terms is included in Appendix
D.)

Compiler designers have a dilemma when it comes to designing a sine function. If they know
ahead of time the number of terms to use, they can optimize their algorithms for that number of
terms. However, they lose accuracy for some angles. So a compromise must be struck between
speed and accuracy.

Don't assume that because the number came from the computer, it is accurate. The library
functions can generate bad answers—especially when working with excessively large or small
values. Most of the time you will not have any problems with these functions, but you should be
aware of their limitations.

Finally, there is the question of what is sin(1,000,000)? Our floating-point format is good for
only four digits. The sine function is cyclical. That is, sin(0) = sin(2 ππ) = sin(4 ππ). Therefore,
sin(1,000,000) is the same as sin(1,000,000 mod 2 ππ).

Because our floating-point format is good to only four digits, sin(1,000,000) is actually
sin(1,000,000 mod 1,000). Since 1,000 is bigger than 2 ππ, the error renders meaningless the
result of the sine.

Programming Exercises

Exercise 19-1: Write a class that uses strings to represent floating-point numbers in the format
used in this chapter. The class should have functions to read, write, add, subtract, multiply, and
divide floating-point numbers.

Page 353

I attended a physics class at Cal Tech taught by two professors. One was giving a lecture on the sun
when he said, ''... and the mean temperature of the inside of the sun is 13,000,000 to 25,000,000
degrees." At this point the other instructor broke in and asked, "Is that Celsius or Kelvin (absolute zero
or Celsius -273)?"

The first lecturer turned to the board for a minute and then said, "What's the difference?" The moral of
the story is that when your calculations have a possible error of 12,000,000, a difference of 273 doesn't
mean very much.

Exercise 19-2: Create a class to handle fixed-point numbers. A fixed-point number has a
constant (fixed) number of digits to the right of the decimal point.

Page 355

20
Advanced Pointers

In This Chapter:

 •• Pointers, Structures,
and Classes

 •• delete Operator
 •• Linked List
 •• Ordered Linked

Lists
 •• Double-linked List
 •• Trees
 •• Printing a Tree
 •• The Rest of the

Program
 •• Data Structures for

a Chess Program
 •• Programming

Exercises
 •• Answers to Chapter

Questions

A race that binds
Its body in chains and calls them Liberty,
And calls each fresh link progress
—Robert Buchanan

One of the more useful and complex features of C++ is its use of pointers. With pointers you
can create complex data structures such as linked lists and trees. Figure 20-1 illustrates some
of these data structures.

Up to now all your data structures have been allocated by the compiler as either permanent or
temporary variables. With pointers you can create and allocate dynamic data structures,
which can grow or shrink as needed. In this chapter you will learn how to use some of the more
common dynamic data structures.

Pointers, Structures, and Classes

Structures and classes may contain pointers, or even a pointer to another instance of the same
structure. In the following example:

 class item {
 public:
 int value;
 item *next_ptr;
 };

the structure item is illustrated by Figure 20-2.

The operator new allocates storage for a variable and returns a pointer. It is used to create
new things out of thin air (actually out of an area of memory called the

Page 356

Figure 20-1 Examples of pointer use

Figure 20-2 Item

heap). Up to now we've used pointers solely to point to named variables. So if we used a
statement like:

 int data;
 int *number_ptr;

 number_ptr = &data;

Page 357

the thing we are pointing to has a name (data). The operator new creates a new, unnamed
variable and returns a pointer to it. The "things" created by new can only be referenced through
pointers, never by name.

In the following example, we use new to allocate an integer from the heap. The variable
element_ptr will point to our new integer.

 int *element_ptr; // Pointer to an integer

 element_ptr = new int; // Get an integer from the heap

The operator new takes a single argument: the type of the item to be allocated. According to
the latest C++ standard, if new runs out of memory it should throw an exception and abort the
program. (See Chapter 22, Exceptions, for information on how to handle this.) On older C++
systems, when new runs out of memory, it returns a null pointer.

Suppose we are working on a complex database that contains (among other things) a mailing
list. We want to keep our storage use to a minimum, so we only want to allocate memory for a
person if he or she exists. Creating an array of class person would allocate the data
statically and use up too much space. So we will allocate space as needed. Our structure for a
person is:

 class person {
 public:
 char name[30]; // Name of the person
 char address[30]; // Where he lives
 char city_state_zip[30]; // Part 2 of address
 int age; // His age
 float height; // His height in inches
 }

We want to allocate space for this person. Later the pointer to this record will be put in the
database.

To create a new person, we use the following:

 struct person *new_ptr;

 new_ptr = new person;

The operator new can also allocate more complex data types such as arrays. Example 20-1
allocates storage for a character array 80 bytes long ('\0' included). The variable
string_ptr points to this storage.

Example 20-1

main ()
{
 char *string_ptr;

 string_ptr = new char[80];

Page 358

All we've done is substitute a simple type (such as person) with an array specification
(char[80]).

delete Operator

The operator new gets memory from the heap. To return the memory to the heap you use the
operator delete. The general form of the delete operator is:

 delete pointer; // Where pointer is a pointer to a simple object
 pointer = NULL;

where pointer is a pointer previously allocated by new. If the new operator allocated an
array, then you must use the form:

 delete []pointer; // Where pointer is a pointer to an array
 pointer = NULL;

NOTE

The reason there are two forms of the delete operator is because
there is no way for C++ to tell the difference between a pointer to an
object and a pointer to an array of objects. The delete operator
relies on the programmer using "[]" to tell the two apart.

Strictly speaking, the line:

 pointer = NULL;

is unnecessary. However, it is a good idea to "null out" pointers after they are deleted. That
way, you don't try use a pointer to deleted memory, and also you help prevent any attempts to
delete the same memory twice.

The following is an example using new to get storage and delete to dispose of it.

 const DATA_SIZE = (16 * 1024);

 void copy(void)
 {
 char *dataptr; // Pointer to large data buffer

 data_ptr = new char[DATA_SIZE]; // Get the buffer

 /*
 * Use the data buffer to copy a file
 */
 delete[] data_ptr;
 data_ptr = NULL;
 }

But what happens if we forget to free the memory? The buffer becomes dead. That is, the
memory management system thinks it's being used, but no one is

Page 359

using it. (The technical term for this is a "memory leak.") If the delete statement is removed
from the function copy then each successive call eats up another 16K of memory.

The other problem that can occur is using memory that has been freed. When delete is used,
the memory is returned to the memory pool and can be reused. Using a pointer after a delete
call is similar to an array index out-of-bounds error. You are using memory that belongs to
someone else. This can cause unexpected results or program crashes.

Linked List

Suppose you are writing a program to send a list of names to another computer using a
communications line. The operator types in the names during the day, and then after work you
dial up the other computer and send the names. The problem is, you don't know ahead of time
how many names are going to be typed. By using a linked-list data structure, you can create a
list of names that can grow as more names are entered. With a linked list you can also easily
insert names into the middle of the list (which would be slow and difficult with an array).
Also, as you will see later, linked lists can be combined with other data structures to handle
extremely complex data.

A linked list is a chain of items where each item points to the next item in the chain. Think
about the treasure hunt games you played when you were a kid. You were given a note that
said, "Look in the mailbox." You raced to the mailbox and found the next clue, "Look in the big
tree in the back yard," and so on until you found your treasure (or you got lost). In a treasure
hunt each clue points to the next one.

Figure 20-3 graphically illustrates a linked list.

Figure 20-3. Linked list

Page 360

The class declarations for a linked list are:

 class linkedlist {
 public:
 class linked_list_element {
 public:
 char data[30]; // Data in this
element
 private:
 // Pointer to next element
 linked_list_element *next_ptr;
 friend class linked_list;
 };

 public:
 linked_list_element *first_ptr; // First element in the list

 // Initialize the linked list
 linked_list(void) (first_ptr = NULL;}

 // ... Other member functions
 };

The variable first_ptr points to the first element of the list. In the beginning, before we
insert any elements into the list (it is empty), this variable is initialized to NULL.

Figure 20-4 illustrates how a new element can be added to the beginning of a linked list. Now
all we have to do is translate this into C++ code.

To do this in C++, we execute the following steps:

1. Create the item we are going to add.

 newptr = new linked_list_element;

2. Store the item in the new element.

 (*newptr).data = item;

3. Make the first element of the list point to the new element.

 (*new_ptr).next_ptr = first_ptr;

4. The new element is now the first element.

 firstptr = new_ptr;

The code for the actual program is:

 void linked_list::add_list(int item)
 {
 // Pointer to the next item in the list
 linked_list_element *new_ptr;

 new_ptr = new linked_list_element;

Page 361

Figure 20-4 New element

 strcpy((*new_ptr).data, item);
 (*new_ptr).next_ptr = first_ptr;
 first_ptr = new_ptr;
 }

Now that we can put things in a list, let's use that ability. We'll now write a short function to
search the list till we find a key item or we run out of data. Example 20-2 contains the new

find function.

Page 362

Example 20-2 find/find cc

#include <iostream.h>
#include <string.h>
#include "linked.h"
/***
 * Find -- look for a data item in the list *
 * *
 * Parameters *
 * name -- name to look for in the list *
 * *
 * Returns *
 * 1 if name is found *
 * 0 if name is not found *
 * *
 ***/
int linked_list::find(char *name)
{
 /* Current structure we are looking at */
 linked_list_element *current_ptr;

 current_ptr = firstptr;

 while ((strcmp(current_ptr->data, name) != 0) &&
 (current_ptr != NULL))
 current_ptr = current_ptr->next_ptr;

 /*
 * If current_ptr is null, we fell off the end of the list and
 * didn't find the name
 */
 return (current_ptr != NULL);
}

Question 20-1: Why does running this program sometimes result in a bus error? Other
times it will report "found" (return 1)for an item that is not in the list.

In our find program we had to use the cumbersome notation (*current ptr).data to
access the data field of the structure. C++ provides a shorthand for this construct using the ->
operator. The dot (.) operator means the field of a structure, and the structure pointer operator
(->) indicates the field of a structure pointer.

The following two expressions are equivalent:

 (*currentptr).data = value;
 current_ptr->data = value;

Ordered Linked Lists

So far we have only added new elements to the head of a linked list. Suppose we want to add
elements in order. Figure 20-5 is an example of an ordered linked list.

Page 363

Figure 20-5 Ordered list

Figure 20-6 shows the steps necessary to add a new element, "53," to the list.

The following member function implements this algorithm. The first step is to locate the
insertion point. The first_ptr points to the first element of the list. The program moves the
variable before_ptr along the list until it finds the proper place for the insertion. The
variable after_ptr is set to point to the previous value. The new element will be inserted
between these elements.

 void linked_list::enter(int item)
 {
 linked_list_item *beforeptr; // Insert before this element
 linked_list_item *after_ptr; // Insert after this element

 /*
 * Warning: This routine does not take
 * care of the case where the element is
 * inserted at the head of the list
 */

 before_ptr = first_ptr;
 while (1)
 beforeptr = after_ptr;
 after_ptr = afterptr->next_ptr;

 // Did we hit the end of the list?
 if (after_ptr == NULL)
 break;

 // Did we find the place?
 if (item >= afterptr->data)
 break;
 }

Page 364

Figure 20-6. Adding element ''53" to an ordered list

Now we know where to insert the new element. All we must do is insert it. We start at the
element before the new one (before_ptr). This element should point to the new element,
so:

 before_ptr->nextptr = new_ptr;

Page 365

Next is the new element (new_ptr). It needs to point to the element after it, or after_ptr.
This is accomplished with the code:

 new_ptr->next_ptr = after_ptr;

The element after_ptr needs to point to the rest of the chain. Because it already does, we
leave it alone. The full code for inserting the new element is:

 // Create new item
 new_ptr = new linked_list_item;

 new_ptr->data = item;

 // Link in the new item
 before_ptr->next_ptr = newptr;
 new_ptr->next_ptr = after_ptr;
 }

Double-linked List

A double-linked list contains two links. One link points forward to the next element; the other
points backward to the previous element. Double-linked lists are useful where the program
needs to go through the list both forward and backward.

The classes for a double-linked list are:

 class double_list {
 private:
 class double_list_element {
 public:
 int data; // Data item
 private:
 double_list_element *next_ptr; // Forward
link
 double_list_element *previous_ptr;// Backward
link
 friend class double_list;
 };
 public:
 double_list_element *head_ptr; // Head of the list

 double_list(void) {head_ptr = NULL;}

 // ... Other member functions

This is shown graphically in Figure 20-7.

To insert an item into the list, we first locate the insertion point:

 void double_list::enter(int item)
 {
 double_list_element *insert_ptr; // Insert before this element

 /*
 * Warning: This routine does not take

Page 366

Figure 20-7 Double-linked list

 * care of the case where the element is
 * inserted at the head of the list
 * or the end of the list
 */

 insert_ptr = head_ptr;
 while (1) (
 insert_ptr = insert_ptr->next;

 // Have we reached the end?
 if (insert_ptr == NULL)
 break;

 // Have we reached the right place?
 if (item >= insertptr->data)
 break;
 }

Notice that we do not have to keep track of the variable after_ptr. The pointer
insert_ptr->previous_ptr is used to locate the previous element. To insert a new
element, we must adjust two sets of pointers. First we create the new element:

 // Create new element
 new_ptr = new double_list_element;

Next we set up the forward pointer for the new item:

 new_ptr->next_ptr = insert_ptr;

Graphically this is represented by Figure 20-8.

Next we connect the link to the previous element using the code:

 new_ptr->previous_ptr = insert_ptr->previous_ptr;

Graphically, this is represented in Figure 20-9.

Page 367

Figure 20-8. Double-linked list insert, part #1

The links are set up for the new element. Now all we have to do is break the old links between
items 11 and 36 and connect them to the new item (27).

Getting to item 11 is a bit of a trick. We only have a pointer to item 36 (insert_ptr).
However, if we follow the previous link back (insert_ptr->previous_ptr), we get
the item (11) that we want. Now all we have to do is fix the next_ptr for this item.

The C++ code for this is surprisingly simple:

 insert_ptr->previous_ptr->next_ptr = new_ptr;

Visually we can see this operation in Figure 20-9.

We have only one remaining link to fix: the previous_ptr of the insert_ptr. In C++
the code looks like:

 insert_ptr->previous_ptr = new_ptr;

Graphically this operation is represented by Figure 20-11.

In summary, to insert a new item in a double-linked list, you must set four links:

1. The new item's previous pointer:

 new_ptr->previous_ptr = insert_ptr->previous_ptr;

Page 368

Figure 20-9 Double-linked list insert, part #2

2. The new item's next pointer:

 newptr->nextptr = insertptr;

3. The previous pointer of the item that will follow the new item:

 insert_ptr->previous_ptr->next_ptr = new_ptr;

4. The next pointer of the item that will precede the new item:

 insert_ptr->previous_ptr = new_ptr;

Trees

Suppose we want to create an alphabetized list of the words that appear in a file. We could use
a linked list, but searching a linked list is slow because we must check each element until we
find the correct insertion point. By using a data type called a tree, we can reduce the number of
comparisons tremendously.

A binary tree structure looks like Figure 20-12.

Each box is called a node of the tree. The box at the top is the root and the boxes at the bottom
are the leaves.* Each node contains two pointers: a left pointer and a right pointer, which point
to the left and right subtrees.

Page 369

Figure 20-10. Double-linked list insert, part 3

The structure for a tree is:

 class tree {
 class node {
 public:
 char *data; // Word for this tree
 private:
 node *right; // Tree to the right
 node *left; // Tree to the left
 friend class tree;
 };
 public:
 node *root; // Top of the tree (the root)

 tree(void) {root = NULL;);
 / .. . Other member function
 };

Trees are often used for storing a symbol table (a list of variables used in a program). In this
chapter we will use a tree to store a list of words and then to

* Programming trees are written with the root at the top and the leaves at the bottom Common sense
tells you that this is upside down In case you haven't noticed, common sense has very little to do with
programming

Page 370

Figure 20-11 Double-linked list insert, Part 4

Figure 20-12. Tree

print the list alphabetically. The advantage of a tree over a linked list is that searching a tree
takes considerably less time.

Page 371

In this example, each node stores a single word. The left subtree stores all the words less than
the current word, and the right subtree stores all the words greater than the current word.

For example, Figure 20-13 shows how we descend the tree to look for the word "orange." We
would start at the root, "lemon." Because ''orange" > "lemon," we would descend the right link
and go to "pear." Because "orange" < "pear," we descend the left link, where we find "orange."

Figure 20-13. Tree search

Recursion is extremely useful with trees. Our rules for recursion are 1) the function must make
things simpler and 2) there must be some endpoint.

The algorithm for inserting a word in a tree is:

1. If this is a null tree (or subtree), create a one-node tree with this word.

2. If this node contains the word, do nothing.

3. Otherwise, enter the word in the left or right subtree, depending on the value of the word.

Does this algorithm satisfy our recursion rules? The function has two definite endpoints:

1. A match is found.

2. We have a null node.

Otherwise, we enter the word into a subtree (which is simpler than the whole tree).

Page 372

To see how this works, consider what happens when we insert the word "fig" into the tree.
First we check the word "fig" against "lemon." "Fig" is smaller, so we go to "apple.'' Because
"fig" is bigger, we go to "grape." Because "fig" is smaller than "grape," we try the left link. It is
NULL, so we create a new node.

This code makes use of a new function: strdup. This function creates a copy of a string on
the heap and returns a pointer to the new string. The string may later be returned to the heap
using the delete operator.*

The function to enter a value into a tree is:

 void tree::enter_one(node *&tree_node, char *word)
 {
 int result; // Result of strcmp

 // See if we have reached the end
 if (tree_node == NULL) {

 tree_node = new node;

 tree_node->left = NULL;
 tree_node->right = NULL;
 tree_node->word = strdup(word);
 }
 result = strcmp(node->word, word);
 if (result == 0)
 return;

 if (result < 0)
 enter_one(tree_node->right, word);
 else
 enter_one(tree_node->left, word);
 }

And the function to kick it off is:

 void tree::enter(char *word)
 enter_one(root, word);
 };

This function passes a pointer to the root of the tree to enter_one. If the root is NULL,
enter_one creates the node. Because we are changing the value of a pointer, we must pass a
reference to the pointer.

* The tunction strdup is not part of the proposed ANSI standard for C++. It is, however, available in
all the compilers l've seen It appears to be part of an unwritten standard

Page 373

Printing a Tree

Despite the complex nature of a tree structure, it is easy to print. Again we use recursion. The
printing algorithm is:

1. For the null tree, print nothing.

2. Print the data that comes before this node (left tree).

3. Print this node.

4. Print the data that comes after this node (right tree).

The code for printing the tree is:

 void tree::print_one(node *top)
 {
 if (top == NULL)
 return; // Short tree

 print_one(top->left);
 cout << top->word << '\n';
 print_one(top->right);
 }
 void tree::print(void)

 print_one(root);
 }

The Rest of the Program

Now that we have the data structure defined, all we need to complete the program is a few
more functions. The main function checks for the correct number of arguments and then calls the
scanner and the print_one routine.

The scan function reads the file and breaks it into words. It uses the standard macro isalpha.
The macro returns 1 if its argument is a letter and 0 otherwise. It is defined in the standard
include file ctype.h. After a word is found, the function enter is called to put the word in
the tree. strdup creates the space for a string on the heap and then returns the pointer to it.

Example 20-3 is the listing of words.cc.

Example 20-3. words/words. cc

/**
 * Words -- scan a file and print out a list of words *
 * in ASCII order *
 * *
 * Usage: *
 * words <file> *
 **/
#include <iostream.h>

Page 374

Example 20-3 words/words. cc (Continued)

#include <fstream.h>
#include <ctype.h>
#include <string.h>
#include <stdlib.h>

class tree {
 private:
 // The basic node of a tree
 class node {
 private:
 node *right; // Tree to the right
 node *left; // Tree to the left
 public:
 char *word; // Word for this tree

 friend class tree;
 };

 // The top of the tree
 node *root;

 // Enter a new node into a tree or subtree
 void enter_one(node *&node, char *word);

 // Print a single node

 void print_one(node *top);
 public:
 tree(void) {root = NULL;}

 // Add a new word to the tree
 void enter(char *word) {
 enter_one(root, word);
 }

 // Print the tree
 void print(void)
 print_one(root);
 }
};

static tree words; // List of words we are looking for

/**
 * Scan -- scan the file for words *
 * *
 * *
 * Parameters *
 * name -- name of the file to scan *
 **/
void scan(char *name)
{
 char word[100]; // Word we are working on
 int index; // Index into the word

Page 375

Example 20-3. words/words. cc (Continued)

 int ch; // Current character
 ifstream in_file; // Input file

 in_file.open(name, ios::in);
 if (in_file.bad()) {
 cerr << "Error: unable to open << name << '\n';
 exit(8);
 }
 while (1)
 // Scan past the white space
 while (1) {
 ch = in_file.get();

 if (isalpha(ch) || (ch == EOF))
 break;
 }

 if (ch == EOF)
 break;

 word[0] = ch;
 for (index = 1; index < sizeof(word); ++index) {
 ch = in_file.get();
 if (!isalpha(ch))

 break;
 word[index] = ch;
 }
 // Put a null on the end
 word[index] = '\0';

 words.enter(word);
 }
}

main(int argc, char *argv[])
{
 if (argc != 2) {
 cerr << "Error: wrong number of parameters\n";
 cerr << " on the command line\n";
 cerr << "Usage is:\n";
 cerr << " words 'file'\n";
 exit(8);
 }
 scan(argv[1]);
 words.print();
 return (0);
}

/**
 * tree::enter_one -- enter a word into the tree *
 * *

Page 376

Example 20-3 words/words.cc (Continued)

 * Parameters *
 * new_node -- current node we are looking at *
 * word -- word to enter *
 **/
void tree::enter_one(node *&new_node, char *word)
{
 int result; // Result of strcmp

 // See if we have reached the end
 if (new_node == NULL) {
 new_node = new node;

 new_node->left = NULL;
 new_node->right = NULL;
 new_node->word = strdup(word);
 }
 result = strcmp(new_node->word, word);
 if (result == 0)
 return;

 if (result < 0)
 enter_one(new_node->right, word);
 else
 enter_one(new_node->left, word);

/**
 * tree::print_one -- print out the words in a tree *
 * *
 * Parameters *
 * top -- the root of the tree to print *
 **/
void tree::print_one(node *top)
{
 if (top == NULL)
 return; // Short tree

 print_one(top->left);
 cout << top->word << '\n';
 print_one(top->right);
}

Question 20-2: I once made a program that read the dictionary into memory using a tree
structure and then used it in a program that searched for misspelled words. Although trees
are supposed to befast, this program was so slow you would think I used a linked list. Why?

Hint: Graphically construct a tree using the words "able, " "baker," ''cook, " "delta," and
"easy" and look at the result.

Page 377

Data Structures for a Chess Program

A classic problem in artificial intelligence is the game of chess. So far, in spite of all our
advances in computer science, no one has been able to create a program that plays chess better
than the best grand masters.

We are going to design a data structure for a chess-playing program. In chess there are several
moves you can make. Your opponent has many responses, to which you have many answers,
and so on back and forth for several levels of moves.

Our data structure is beginning to look like a tree. But this is not a binary tree, because we have
more than two branches for each node (Figure 20-14).

Figure 20-14. Chess tree

We are tempted to use the following data structure:

 class chess {
 public:
 class board_class board; // Current board position
 class next_class {
 class move_class move; // Our next move
 class chess *chess_ptr;
 // Pointer to the resulting position
 } next[MAX_MOVES];
 };

The problem is that the number of moves from any given position varies dramatically. For
example, in the beginning you have lots of pieces running around.*

* Trivia question. What are the 21 moves you can make in chess from the starting position? (You can
move each pawn up one (8 moves) or two (8 more), and the knights can move out to the left and right
(4 more) (8+8+4=20)) What's the 21st move?

Page 378

Things like rooks, queens, and bishops can move any number of squares in a straight line.
When you reach the end game (in an evenly matched game), each side probably has only a few
pawns and one major piece. The number of possible moves has been greatly reduced.

We want to be as efficient in our storage as possible because a chess program stresses the
limits of our machine. We can reduce storage requirements by changing the next-move array
into a linked list. The resulting structure is:

 class next_class {
 class move_class move; // Our next move
 class next_class *chess_ptr; // Pointer to the resulting position
 };

 struct chess {
 class board_class board; // Current board position
 class next_class *listptr; // List of moves we can make from
here
 class next_class this_move; // The move we are making
 };

Graphically, this looks like Figure 20-15.

Figure 20-15 Revised chess structure

The new version adds a little complexity, but saves a great deal of storage.

Programming Exercises

Exercise 20-1: Write a cross-reference program.

Exercise 20-2: Write a function to delete an element of a linked list.

Exercise 20-3: Write a function to delete an element of a double-linked list.

Page 379

Exercise 20-4: Write a function to delete an element of a tree.

Answers to Chapter Questions

Answer 20-1: The problem is with the statement:

 while ((current_ptr->data != value) &&
 (current_ptr != NULL))

current_ptr->data is checked before we check to see whether current_ptr is a
valid pointer (!= NULL). If it is NULL we can easily check a random memory location that
could contain anything. The solution is to check current_ptr before checking what it is
pointing to:

 while (currentptr != NULL) {
 if (current_ptr->data == value)
 break;

Answer 20-2: The problem was as follows: because the first word in the dictionary was the
smallest, every other word used the right-hand link. In fact, because the entire list was ordered,
only the right-hand link was used. Although this was defined as a tree structure, the result was a
linked list. See Figure 20-16.

Figure 20-16 Dictionary tree

Page 380

Some of the more advanced books on data structures, such as Wirth's Algorithms + Data
Structures = Programs, discuss ways of preventing this by balancing a binary tree.

Trivia Answer: You give up. That's right, the 21st move is to resign.

Page 381

21
Advanced Classes

In This Chapter:

 •• Derived Classes
 •• Virtual Functions
 •• Virtual Classes
 •• Function Hiding in

Derived Classes
 •• Constructors and

Destructors in
Derived Classes

 •• Summary
 •• Programming

Exercises
 •• Answers to Chapter

Questions

Questions

The ruling ideas of each age have ever
been the ideas of its ruling class
—Karl Marx
Manifesto of the Communist Party

Derived Classes

The stack class that was defined in Example 13-1 contains one major limitation: it does not
check for bad data. For example, there is nothing that prevents the user from pushing too many
things onto the stack.

We need to define a new bounds-checking stack (b_stack). This new stack does everything a
simple stack does but also includes bounds checking. C++ allows you to build new classes on
old ones. In this case we will be building our bounds-checking stack (b_stack) on the
existing simple stack (stack). Technically we will be using the class stack as a base class
to create a new derived class, the bounds-checking stack.

We start by telling C++ that we are creating b_stack out of stack.

 class b_stack: public stack (

The keyword public tells C++ to make all the members of stack accessible to the outside
world. If we declared stack as private then the public and protected members of
stack would be accessible only inside b_stack.

This declaration tells C++ that we are going to use stack as a base for b_stack. Figure
21-1 shows how C++ views this combination.

Now we need to define the new version of the push member function. We first check to see
whether there's room in the stack. If there's no more room, we print

Page 382

Figure 21-1 Derived class h_stack and base class stack

an error message and abort the program. Otherwise we push the item onto the stack. Here's a
limited version of push.

 inline void b_stack::b_push(const int item)
 {
 if (count >= STACK_SIZE)
 cout << "Error: Push overflows stack\n";
 exit(8);
 }
 // This calls the push member function of the stack class

 push(item);
 }

We have been very careful in selecting the name of this member function. It is called b_push
instead of push for a reason. We would like to call it push, but then the code:

 inline void b_stack::push(const int item)
 {
 if (count >= STACK_SIZE)
 cout << "Error: Push overflows stack\n";
 exit(8);
 }
 // The next line wrongly calls b_stack::push (this function),
 // not stack::push
 push(item);
 }

would call the member function push in the class b_stack not stack's push as we
want. The result is that we call b_stack's push, which performs a limit check and then
calls push. This push belongs to b_stack, so we perform a bounds check and call push,
and so on. The result is that push will call itself over and over until the system runs out of
stack space.

This is not want we want. We want to tell C++ that we want to call the push in stack. This
can be accomplished by using the scope operator "::". The new version of
b_stack::push looks like:

 inline void b_stack::push(const int item)
 {
 if (count >= STACK SIZE) {

Page 383

 cout << "Error: Push overflows stack\n";
 exit(8);
 }
 stack::push(item);
 }

The full definition for both the stack and b_stack classes is shown in Example 21-1.

Example 21-1. stack_c/stack_dl.cc

/**
 * Stack *
 * a file implementing a simple stack class *
 **/
#include <stdlib.h>
#include <iostream.h>

const int STACK_SIZE = 100; // Maximum size of a stack

/**
 * Stack class *
 * *
 * Member functions *
 * stack -- initialize the stack *

 * push -- put an item on the stack *
 * pop -- remove an item from the stack *
 **/
// The stack itself
class stack {
 protected:
 int count; // Number of items in the stack
 private:
 int data[STACK_SIZE]; // The items themselves
 public:
 // Initialize the stack
 stack(void);
 // -stack() -- default destructor
 // Copy constructor defaults

 // Push an item on the stack
 void push(const int item);

 // Pop an item from the stack
 int pop(void);
};

/**
 * stack::stack -- initialize the stack *
 **
inline stack::stack(void)
{
 count = 0; // Zero the stack
}

Page 384

Example 21-1 stack_c/stack_d1.cc (Continued)

/**
 * stack::push -- push an item on the stack *
 * *
 * Warning: We do not check for overflow *
 * *
 * Parameters *
 * item -- item to put in the stack *
 **/
inline void stack::push(const int item)
{
 data[count] = item;
 ++count;
}
/**
 * stack::pop -- remove item from stack *
 * *
 * Warning: We do not check for stack underflow *
 * *
 * Returns *
 * the top item from the stack *
 **/
inline int stack::pop(void)
{

 // Stack goes down by one
 --count;

 // Then we return the top value
 return (data[count]);
}

/**
 * b_stack -- bound checking stack *
 * *
 * Member function *
 * push -- push an item on the stack *
 * pop -- remove an item from the stack *
 **/
class b_stack: public stack {
 public:
 // bstack -- default constructor
 // ~b_stack -- default destructor
 // Copy constructor defaults

 // Push an item on the stack
 void push(const int item);

 // Remove an item from the stack
 int pop(void);
};
/**
 * b_stack::push -- push an item on the stack *
 * *

Page 385

Example 21-1. stack_c/stack_dl.cc (Continued)

 * Parameters *
 * item -- item to put in the stack *
 **/
inline void b_stack::push(const int item)
{
 if (count >= STACK_SIZE)
 cerr << "Error: Push overflows stack\n";
 exit (8);
 }
 stack: :push(item);
}
/**
 * b_stack::pop -- get an item off the stack *
 * *
 * Returns *
 * the top item from the stack *
***/
inline int b_stack::pop(void)
{
 if (count <= 0)
 cerr << "Error: Pop causes stack underflow\n";
 exit (8);
 }

 return (stack::pop());
}

Even though these two classes are relatively simple, they illustrate some important features of
the C++ language. First we have declared count as a protected member variable. This
means that this variable can be used only within the class stack and in any classes derived
from stack, such as b_stack. The b_stack functions push and pop can use count to
do their work. However, anyone outside of stack and b_stack cannot use the variable.

Because b_stack is derived from stack, you can use a b_stack type variable wherever
a stack type variable is used. In the following example, we create a b_stack named
bound_stack that is used as a parameter to the function push_things, which takes a
normal, unbounded stack as a parameter.

 void push_things(stack &a_stack) {
 a_stack.push(l);
 a_stack.push(2);
 }

 // ...
 b_stack bounded_stack; // A random stack
 // p
 push_things (bounded_stack);

Page 386

The function push_things takes a stack as a parameter. Even though the variable
bounded_stack is a b_stack type variable, C++ turns it into a stack when
push_things is called.

One way to explain this is that although bounded_stack is of type b_stack, when it is
used by push_things the function is looking through a peephole that allows it to see only
the stack part of the variable as shown in Figure 21-2.

Figure 21-2 How ''push_things" sees a b_stack

Let's improve the basic stack so that instead of always allocating a fixed-size stack, we
allocate the stack dynamically. The new stack starts with:

 class stack {
 private:
 int *data; // Pointer to the data in the stack
 protected:
 int count; // Current item on the stack
 public:
 stack(const unsigned int size)
 data = new int[size];

 count = 0;
 };
 virtual ~stack(void)
 delete data;
 data = NULL;
 }
 // ...

(We discuss the keyword virtual later in this chapter.)

This stack is more flexible. To use the new stack we must give it a size when we declare the
stack variable. For example:

 stack big_stack(1000);
 stack small_stack(10);
 stack bad_stack; // Illegal, size required

Back to the bound-checking stack. Somehow we need to call the base class constructor
(stack) with a parameter.

Page 387

The way we do this is to put the base-constructor unitization just after the declaration of the
constructor for the derived class:

But this flexibility creates some problems for the bound-checking stack: the constructor for
stack contains a parameter. How is the bound-checking stack to initialize the simple stack?

The solution is to use a syntax similar to initializing a constant data member.

 class b_stack: public stack {
 private:
 const unsigned int stack_size; // Size of the simple stack
 public:
 b_stack(const unsigned int size) : stack(size),
 stack_size(size)
 }

In this example, the base class is stack and the derived class is b_stack. The constructor
for b_stack takes a single parameter, the size of the stack. It needs to pass this parameter to
stack. The line:

 b_stack::b_stack(cont unsigned int size) : stack(size),

does this through the stack(size) syntax.

NOTE

Because the new version of stack uses dynamic memory (new and
delete), it is vital that we define the "big four" member functions:
the constructor, the destructor, the copy constructor, and the
assignment operator (=).

Virtual Functions

Today there are many different ways of sending a letter. We can mail it by the United States

Postal Service, send it via Federal Express, send it Certified Mail, or even fax it. All of these
methods get the letter to the person (most of the time), but they differ in cost and speed.

Let's define a class to handle the sending of a letter. We start by defining an address class and
then use this class to define addresses for the sender and the receiver. (The definition of the
address class is "just a simple matter of programming" and is left to the reader.)

 class mail {
 public:
 address sender; // Who's sending the mail (return address)?
 address receiver; // Who's getting the mail?

 // Send the letter

Page 388

 void send_it(void)
 // ... Some magic happens here
 };
 };

There is, however, one little problem with this class. We're depending on "magic" to get our
letters sent. The process for sending a letter is different depending on which service we are
using. One way to handle this is to have send_it call the appropriate routine depending on
what service we are using:

 void mail::send_it(void)
 switch (service) {
 case POST_OFFICE:
 put_in_local_mailbox();
 break;
 case FEDERAL_EXPRESS:
 fill_out_waybill();
 call_federal_for_pickup();
 break;
 case UPS:
 put_out_ups yes_sign();
 give_package_to_driver();
 break;
 //... and so on for every service in the universe

This solution is a bit clunky. Our mail class must know about all the mailing services in the
world. Also consider what happens when we add another function to the class:

 class mail {
 public:
 // Returns the cost of mailing in cents
 int cost(void) {
 // ... more magic
 }

Do we create another big switch statement? If we do, we'll have two big switch
statements to worry about. What's worse, the sending instructions and cost for each service are
now spread out over two functions. It would be nice if we could group all the functions for the
Postal Service in one class, all of Federal Express in one class, and so on.

For example, a class for the Postal Service might be:

 class post_office: public mail{
 public:
 // Send the letter
 void send_it(void)
 put_in_local_mailbox();
 };
 // Cost returns cost of sending a letter in cents
 int cost(void) {
 // Costs 32 cents to mail a letter

Page 389

 return (32); // WARNING: This can easily become dated
 }
 };

Now we have the information for each single service in a single class. The information is
stored in a format that is easy to understand. The problem is that it is not easy to use. For
example, let's write a routine to send a letter:

 void get_address_and_send(mail &letter)
 {
 letter.from = my_address;
 letter.to = gettoaddress();
 letter.send();
 }
 // ..
 class post_office simple_letter;
 get_address_and_send(simple_letter);

The trouble is that letter is a mail class, so when we call letter.send() we call the
send of the base class mail. What we need is a way of telling C++, "Please call the send
function of the derived class instead of the base class."

The virtual keyword identifies a member function that can be overridden by a member
function in the derived class. If we are using a derived class, then C++ will look for members
in the derived class and then in the base class, in that order. If we are using a base class
variable (even if the actual instance is a derived class), then C++ will search only the base
class for the member function. The exception is when the base class defines a virtual
function. In this case, the derived class is searched and then the base class.

Table 21-1 illustrates the various search algorithms.

Table 21-1. Member Function Search Order

Class Type Member Function Type Search Order

Derived Normal Derived->base

Base Normal Base

Base virtual Derived->base

Example 21-2 illustrates the use of virtual functions.

Example 21-2. virt/virt.cc

// Illustrates the use of virtual functions

#include <iostream.h>

class base {
 public:
 void a(void) { cout << "base::a called\n"; }

Page 390

Example 21-2 virt/virt cc (Continued)

 virtual void b(void) { cout << "base::b called\n"; }
 virtual void c(void) { cout << "base::c called\n"; }
};

class derived: public base {
 public:
 void a(void) { cout << "derived::a called\n"; }
 void b(void) { cout << "derived::b called\n"; }
};

void do_base(base &a_base)
{
 cout << "Call functions in the base class\n";

 a_base.a();
 a_base.b();
 a_base.c();
}

main()
{
 derived a_derived;

 cout << "Calling functions in the derived class\n";

 a_derived.a();
 a_derived.b();
 a_derived.c();

 do_base(a_derived);
 return (0);
}

The derived class contains three member functions. Two of them are self-defined: a and b. The
third, c, is inherited from the base class. When we call a, C++ looks at the derived class to see
whether that class defines the function. In this case it does, so the line:

 a_derived.a();

outputs:

 derived::a called

When b is called the same thing happens, and we get:

 derived::b called

It doesn't matter whether the base class defines a and b or not. C++ calls the derived class
and goes no further.

Page 391

However, the derived class doesn't contain a member function named c. So when we reach the
line:

 a_derived.c();

C++ tries to find c in the derived class and fails. Then it tries to find the member function in the
base class. In this case it succeeds and we get:

 base::c called

Now let's move on to the function do_base. Because it takes a base class as its arguments,
C++ restricts its search for member functions to the base class. So the line:

 a_base.a();

outputs

 base::a called

But what happens when the member function b is called? This is a virtual function. That
tells C++ that the search rules are changed. C++ first checks whether there is a b member
function in the derived class, and then C++ checks the base class. In the case of b, there is a b
in the derived class, so the line:

 a_base.b();

outputs:

 derived::b called

The member function c is also a virtual function. Therefore, C++ starts by looking for the
function in the derived class. In this case it's not defined there, so C++ then looks in the base
class. It is defined there, so we get:

 base::c called

Now getting back to our mail. We need a simple base class that describes the basic mailing
functions for each different type of service.

 class mail {
 public:
 address sender; // Who is sending the mail (return address)?

 address receiver; // Who is getting the mail?

 // Send the letter
 virtual void send_it(void) {
 cout << "Error: send_it not defined in derived class.\n"
 exit (8);
 };
 // Cost of sending a letter in pennies
 virtual int cost(void) {
 cout << "Error: cost not defined in derived class.\n"

Page 392

 exit (8);
 };
 };

Now we can define a derived class for each different type of service. For example:

 class postoffice: public mail {
 public:
 void send_it(void) {
 put_letter_inbox();
 }
 int cost(void)
 return (29);
 }
 };

Now we can write a routine to send a letter and not have to worry about the details. All we
have to do is call send_it and let the virtual function do the work.

The mail class is an abstraction that describes a generalized mailer. To associate a real
mailing service, we need to use it as the base for a derived class. But what happens if the
programmer forgets to put the right member functions in the derived class? For example:

 class federal_express: public mail {
 public:
 void send_it(void) {
 put_letter_in_box();
 }
 // Something is missing
 };

When we try to find the cost of sending a letter via Federal Express, C++ will notice that
there's no cost function in federal_express and call the one in mail. The cost
function in mail knows that it should never be called, so it spits out an error message and
aborts the program. Getting an error message is nice, but getting it at compilation rather than
during the run would be better.

C++ allows you to specify virtual functions that must be overridden in a derived class. For
this example, the new, improved, abstract mailer is:

 class mail {
 public:
 address sender; // Who is sending the mail (return address)?

 address receiver; // Who is getting the mail?

 // Send the letter
 virtual void send_it(void) = 0;
 // Cost of sending a letter in pennies
 virtual int cost(void) = 0;
 };

Page 393

The "= 0" tells C++ that these member functions are pure virtual functions. That is, they can
never be called directly. Any class containing one or more pure virtual functions is called an
abstract class. If you tried to use an abstract class as an ordinary type, such as:

 void send_package(void)
 mail a_mailer; // Attempt to use an abstract class

you would get a compile-time error.

Virtual Classes

Let's design some classes to handle a tax form. In the upper right corner of each form is a blank
for your name, address, and Social Security number. All the forms contain this same
information, so we'll define a class for this corer of the form.

 class name {
 public:
 char *name; // Name of the taxpayer
 //... Rest of the class
 };

Now let's use this class to design another class for the 1040 form.

 class form_1040: public name {
 public:
 int income; // Wages, tips, and other income
 // ...
 };

Our class structure so far is illustrated by Figure 21-3.

Figure 21-3. 1040 class structure

Unfortunately our tax returns consist of more than one form. For deductions we need Schedule
A, so let's define a class for it.

 class schedule_a: public name {
 public:
 int home_interest; // Interest deduction for home
mortgage

 // ... Rest of class
 };

Page 394

Putting the two forms together, we get a simple return.

 class tax_return: public form_1040, schedule_a {
 //... Rest of class
 };

Figure 21-4 illustrates this class structure.

Figure 21-4. Tax return structure

The problem with this structure is that we have two name classes. But the taxpayer's name
doesn't change from one form to another. What we want is the class structure shown in Figure
21-5.

Figure 21-5. Better tax return structure

Declaring a base class virtual tells C++ to combine common base classes. Redefining
tax_return using virtual base classes we get:

 class form_1040: virtual public name {
 public:
 int income; // Wages, tips, and other income
 // ...
 };

 class schedule_a: virtual public name {
 public:
 int home_interest; // Interest deduction for home mortgage

Page 395

 // ... Rest of class
 };

 class tax_return: public form_1040, schedule_a {
 //... Rest of class
 };

Notice that the class name is used as the base for two derived classes; derived classes cause
their base class's constructor to be called to initialize the class. Does this mean that the
constructor for name will be called twice? The answer is no. C++ is smart enough to know
that name is used twice and to ignore the second initialization.

Function Hiding in Derived Classes

Example 21-3 defines a base class with the overloaded function do_it, which comes in both
an integer version and a floating-point version. The program also defines a derived class that
contains the single integer do_it.

Example 21-3. doit/doit.cc

class simple {
 public:
 int do_it(int i, int j) {return (i*j);}
 float do_it(float f) {return (f*2);}
};
class derived: public simple {
 public:
 int do_it(int i, int j) {return (i+j);}
};

Clearly, when we are using the derived class and we call the integer version of do_it, we
are calling the one in the derived class. But what happens if we call the floating-point version?
The derived class has no floating point do_it. Normally, if we don't have a member function
in the derived class, C++ will look to the base class.

However, since a version of do_it is defined in the derived class, C++ will look to the
derived class for all flavors of do_it. In other words, if one form of do_it is defined in the
derived class, then that locks out all forms of the function.

 main() {
 derived test; // Define a class for our testing
 int i; // Test variable
 float f; // Test variable

 i = test.do_it(l, 3); // Legal; returns 4 (1 + 3)
 f = test.do_it(4.0); // Illegal; "do_it(float)" not defined in
 // the class "derived"

Page 396

Constructors and Destructors in Derived Classes

Constructors and destructors behave differently from normal member functions especially
when used with derived classes. When a derived-class variable is created, the constructor for

the base class is called first, followed by the constructor for the derived class.

Example 21-4 defines a simple base class and uses it to create a derived class.

Example 21-4 cons/class cc

#include <iostream.h>

class baseclass {
 public:
 base_class()
 cout << "base_class constructor called\n";
 }
 -base_class() {
 cout << "base_class destructor called\n";
 }
};
class derived_class:public base_class {
 public:
 derived_class()
 cout << "derived_class constructor called\n";
 }
 ~derived_class() {
 cout << "derived_class destructor called\n";
 }
};

Now when we execute the code:

 derived_class *sampleptr = new derived_class;

the program prints:

 base_class constructor called
 derivedclass constructor called

After the variable is destroyed, the destructors are called. The destructor for the derived class
is called first, followed by the destructor for the base class. So when we destroy the variable
with the statement:

 delete sample_ptr;
 sample_ptr = NULL;

we get:

 derivedclass destructor called
 base_class destructor called

Page 397

But C++ has a surprise lurking for us. Remember that derived classes can operate as base
classes. For example:

 base_class *base_ptr = new derived_class;

is perfectly legal. However, there is a problem when the variable is deleted:

 delete base_ptr;

 base_ptr = NULL;

You see, base_ptr is a pointer to a base class. At this point all the code can see is the
base class. There is no way for C++ to know that there is a derived class out there.
So when the variable is deleted, C++ fails to call the derived class destructor.

The output of the delete statement is:

 base_class destructor called

We have just tricked C++ into deleting a class without calling the proper destructor.

We need some way to tell C++, ''Hey, there is a derived class out there and you might want to
call its destructor." The way we do this is to make the destructor for the base class a
virtual function.

 class base_class {
 public:
 base_class() {
 cout << "base_class constructor called\n";
 }
 virtual ~base_class() {
 cout << "base_class destructor called\n";
 }
 };

The keyword virtual normally means, "Call the function in the derived class instead of the
one in the base class." For the destructor, it has a slightly different meaning. When C++ sees a
virtual destructor, it will call the destructor of the derived class and then call the destructor
of the base class.

So with the virtual destructor in place, we can safely delete the base_class variable
and the program will output the proper information:

 derived_class destructor called
 base_class destructor called

Question 21-1: Why does Example 21-5 fail when we delete the variable list_ptr? The
program seems to get upset when it tries to call clear at line 20.

Page 398

Example 21-5. blow/blow.cc

1 #include <iostream.h>
2 #include <stdlib.h>
3
4 class list {
5 private:
6 int item; // Current item number
7
8 public:
9 virtual void clear() = 0;
10
11 void next_item(void) {
12 ++item;

13 }
14
15 list(void) {
16 item = 0;
17 }
18
19 virtual ~list() {
20 clear();
21 }
22 };
23
24 class list_of_integers : public list {
25 public:
26 int array[100]; // Place to store the items
27
28 void clear(void) {
29 int i; // Array index
30
31 for (i = 0; i < 100; ++i)
32 array[i] = 0;
33 }
34 };
35
36 main()
37 {
38 list_of_integers *list_ptr = new list_of_integers;
39
40 // Cause problems
41 delete list_ptr;
42 list_ptr = NULL;
43 return (0);
44 }

Summary

Since programming began, programmers have been trying to find ways of building re-usable
code. C++, through the use of derived classes, allows you to

Page 399

build classes on top of existing code. This provides a great deal of flexibility and makes the
code easier to organize and maintain.

Programming Exercises

Exercise 21-1: Combine the checkbook class of Exercise 13-2 with the queue class of
Exercise 13-3 to implement a checkbook class that can print out the last ten entries of your
checkbook.

Exercise 21-2: Define a "string-match" base class.

 class string_matcher {
 public:
 // Returns true if string matches, false if not
 int match(const char *const string);

 ...

Define derived classes that match words, numbers, and blank strings.

Exercise 21-3: Define a base class shape that can describe any simple shape such as a
square, circle or equilateral triangle. The size of all these shapes can be reduced to a single
dimension.

Define derived classes for each of the three shapes.

Create a virtual function in the base class that returns the area of each shape.

Note: You will need to more precisely define what dimensions are stored in the base class. (Is
the size in the base class for circle, the radius, or the diameter?)

Exercise 21-4: Write a base class called person that describes a person of either gender.
Define two derived classes called man and woman that define gender specific items. Write
pure virtual functions in the base class for operations that are common to both sexes yet are
handled in different ways by each of them.

Exercise 21-5: Write a base class number that holds a single integer value and contains one
member function, print_it. Define three derived classes to print the value in hex, octal, and
decimal.

Answers to Chapter Questions

Answer 21-1: Remember that destructors are called in the order of derived class first and then
base class. In this case, the destructor for the derived class, list_of_integers, is called
to destroy the class. The class is gone.

Next, the destructor for the base class list is called. It calls the function clear. This a pure
virtual function, so C++ must call the clear function in the derived class. But the derived
class is gone. There is no clear function. This

Page 400

makes C++ very upset and it aborts the program. (Actually, only good compilers will cause a
program to abort. Others may do something really strange to your program.)

You should never call pure virtual functions from a destructor.

Page 401

V
Other Language Features

Page 403

22
Exceptions

In This Chapter:

 •• Stack Exceptions
 •• Runtime Library

Exceptions
 •• Programming

Exercises

How glorious it is — and also how
painful— to be an exception
—Alfred de Musset

Airplanes fly from one place to another and 99.9% of the time there's no trouble. But when
there is trouble such as a stuck wheel or an engine fire, pilots are trained to handle the
emergency.

Let's examine in detail what happens during an airborne emergency such as an engine catching
fire. This is an exception to normal flight. A fire alarm goes off in the cockpit.

This catches the pilots' attention and they start going through the fire-emergency procedure.
This is an extensive list of things to do in case of fire. The airline prepared this list ahead of
time and the pilots have the list memorized. The pilots do what's necessary to handle the
exception: activate the fire extinguisher, shut down the engine, land very quickly, etc.

Let's break down this procedure into C++ pseudocode. When the pilots take off they are going
to try to fly the plane from one point to another without problems. The C++ "code" for this is:

 try {
 fly_from_point_a_to_point_b();
 }

The try keyword indicates that we are going to attempt an operation that may cause an
exception.

Page 404

But what happens when we get an exception? We need to handle it. The C++ code for this is:

 catch (fire_emergency &fire_info)
 active_extinguisher(fire_info.engine);
 turn_off(fire_info.engine);
 land_at_next_airport();
 }

The keyword catch indicates that this section of code handles an exception. In this case the
exception handled is a fire_emergency. This is the type of emergency. It could be a fire in

engine number 1, engine number 2, or engine number 3 (assuming a three-engine plane). Which
engine is on fire is stored in the variable fire_info.

The fire_emergency class describes what type of fire occurred. Its definition is:

 class fire_emergency {
 public:
 int engine; // Which engine is on fire
 // Other information about the fire
 };

We've covered everything but the actual detection of the fire. Buried within each engine is a
fire sensor. The code for this sensor is:

 // Watch for fire in engine #2
 void sensor_2(void) {
 while (engine_running())
 if (engineonfire()) {
 fire_emergency fire_info;

 fire_info.engine = 2;
 throw(fire_info);
 }
 }
 }

When this code senses a fire, it puts the information in a fire_emergency variable named
fire_info and triggers an exception with the throw statement.

When the throw statement is executed, normal processing is stopped. After all, when a fire
occurs, normal flying is stopped. Execution is transferred to the catch statement for the
fire_emergency.

To summarize, exception handling consists of:

• A description of a possible problem, in this case the fire_emergency class.

• A section of code in which the exception may occur, which is enclosed in a try statement.
In this case, the statement is fly_from_point_atopoint b().

Page 405

• Something that causes an exception and triggers the emergency procedures through a
throw statement.

• Exception-handling code inside a catch block.

Stack Exceptions

In Chapter 21, Advanced Classes, we defined a stack with bounds checking. If the user
attempted to push too much data on the stack or to pop too much off, the class would issue an
error message and abort. This is not a good way to handle an exception. Think of how the
pilots would feel if the plane displayed an error message and shut down every time there was a
fire.

The first thing we need to do is decide what type of exceptions we are going to handle and
describe them as classes. In our stack example, the only exception we expect is an
out-of-bounds error. We'll describe this error with a simple string. The class for an
out-of-bounds error is:

 const int WHAT_MAX = 80; // Longest possible error message
 class bound_err {
 public:
 char what[WHAT_MAX]; // What caused the error

 // Initialize the bound error with a message
 bound_err(char *_what) {
 // WARNING: This does not check for "_what" being too long
 strcpy(what, _what);
 }
 // bound_err(bound_err) -- default copy constructor
 // ~bound_err -- default destructor
 };

Exception checking starts with the keyword try. This tells C++ that exceptions may be
generated in the section of code that follows and that they will be handled immediately after the
try block. For example, if we are trying to perform a big stack operation, the code might look
like:

 try {
 do_big_stack_operation();
 };

Immediately after the try block, we need to tell C++ what problems we will handle, by using
a catch statement. The syntax for this statement is:

 catch (problem_type ¶meter) {
 statements;
 }

Page 406

The problem_type is the class that describes what happened. For the out-of-bounds error, the
catch statement looks like:

 catch (bound_err &what_happened) {
 cerr << "Error: Bounds exceeded\n";
 cerr << "Reason: " << what_happened.what << '\n';
 }

Several catch statements may be used to catch different types of exceptions. If an exception
is not caught, it is considered an unexpected exception and will cause a call to the
unexpected-exception handler, which aborts the program by default. If you want to catch all
exceptions, use "..." for the exception type. For example:

 catch (bound_err &what_happened)
 // Body of catch
 }
 catch (...)
 c}err << "Something strange happened\n";

 }

Now we need to update our old stack program and replace all the "error-message-and-abort"
code with throw statements. The new procedure for push now looks like:

 inline void b_stack::push(const int item)
 {
 if (count >= STACK_SIZE)
 bounderr overflow("Push overflows stack");
 throw overflow;
 }
 stack: :push(item);
 }

Actually we don't need a special variable for overflow. The code can be consolidated. In the
previous example we used two statements to explicitly show what is going on. The following
code performs the same operation:

 inline void b_stack::push(const int item)
 {
 if (count >= STACK_SIZE)
 throw bound_err("Push overflows stack");
 }
 stack: :push(item);
 }

The basic function definition we've been using so far tells C++, "Expect any exception to be
thrown at any time." The push function can only throw a bound_err exception. C++ allows
you to list all the possible exceptions in a function by putting a throw directive at the end of
the function declaration:

 inline void b_stack::push(const int item) throw(bound_err) {

Page 407

But what happens if we throw an exception that's not in the list of exceptions? C++ will turn
this into a call to the function unexpected().

Example 22-1 contains a new version of the bound-checking stack with exceptions.

Example 22-1. stack_c/stack_el.cc

/**
 * Stack *
 * a file implementing a simple stack class *
 **/
#include <stdlib.h>
#include <iostream.h>

const int STACK_SIZE = 100; // Maximum size of a stack

/**
 * Stack class *
 * *
 * Member functions *
 * stack -- initialize the stack *
 * push -- put an item on the stack *

 * pop -- remove an item from the stack *
 **/
// The stack itself
class stack {
 protected:
 int count; // Number of items in the stack
 private:
 int data[STACK_SIZE]; // The items themselves
 public:
 // Initialize the stack
 stack(void);
 // ~stack() -- default destructor
 // Copy constructor defaults

 // Push an item on the stack
 void push(const int item);

 // Pop an item from the stack
 int pop(void);
};

/**
 * stack::stack -- initialize the stack *
 **/*
inline stack::stack(void)
{
 count = 0; // Zero the stack
}
/**
 * stack::push -- push an item on the stack *
 * *

Page 408

Example 22-1. stack_c/stack_el.cc (Continued)

 * Warning: We do not check for overflow *
 * *
 * Parameters *
 * item -- item to put in the stack *
 ***/
inline void stack::push(const int item)
{
 data[count] = item;
 count++;
}
/**
 * stack::pop -- get an item off the stack *
 * *
 * Warning: We do not check for stack underflow *
 * *
 * Parameters *
 * the_stack -- stack to initialize *
 * *
 * Returns *
 * the top item from the stack *
 **/

inline int stack::pop(void)
{
 // Stack goes down by one
 count--;

 // Then we return the top value
 return (data[count]);
}

const int WHAT_MAX = 80; // Largest possible error message
/***
 * bound_err -- a class used to handle out-of-bounds *
 * exceptions. *
 ***/
class bound_err {
 public:
 char what[WHAT_MAX]; // What caused the error

 // Initialize the bound error with a message
 bound_err(char *_what) {
 if (strlen(_what) < (WHAT_MAX -1))
 strcpy(what, _what);
 else
 strcpy(what, "Internal error: _what is too long");
 }
 // bound_err(bound_err) -- default copy constructor
 // ~ bound_err -- default destructor
};

/***
 * b_stack -- bound-checking stack *

Page 409

Example 22-1. stack_c/stack_el.cc (Continued)

 * *
 * Member function *
 * push -- push an item on the stack *
 * pop -- remove an item from the stack *
 ***/
class b_stack: public stack {
 public:
 // bstack -- default constructor
 // ~b_stack -- default destructor
 // Copy constructor defaults

 // Push an item on the stack
 void push(const int item) throw(bound_err);

 // Remove an item from the stack
 int pop(void) throw(bound_err);
};
/***
 * b_stack::push -- push an item on the stack *
 * *
 * Parameters *

 * item -- item to put in the stack *
 * *
 ***/
inline void b_stack::push(const int item) throw(bound_err)
{
 if (count >= STACK_SIZE)
 bound_err overflow("Push overflows stack");
 throw overflow;
 }
 stack::push(item);
}
/***
 * b_stack::pop -- get an item off the stack *
 * *
 * Returns *
 * the top item from the stack *
 ***/
inline int b_stack::pop(void) throw(bound_err)
{
 if (count <= 0)
 throw bound_err("Pop causes stack underflow");
 }
 return (stack::pop());
 }

b_stack test_stack; // Define a stack for the bounds checking

void push_a_lot(void) {
 int i; // Push counter

 for (i = 0; i < 5000; i++)
 test_stack.push(i);

Page 410

Example 22-1 stack_c/stack_el.cc (Continued)

 }
}

main ()
{
 try {
 push_a_lot();
 }
 catch (bound_err &err)
 cerr << "Error: Bounds exceeded\n";
 cerr << "Reason: " << err.what << '\n';
 exit (8);
 }
 catch (...) {
 cerr << "Error: Unexpected exception occurred\n";
 exit (8);
 }
 return (0);
}

Runtime Library Exceptions

The exception-handling mechanism is relatively new. The draft ANSI C++ standard defines the
exceptions that should be thrown by the routines in the runtime library. However, these
''standard" exceptions are so new they are still being refined and updated. There are lots of
details still to be worked out.

Compiler makers need time to catch up to the standard. At the time of this writing, the currently
available C++ compilers generate few if any exceptions in their runtime library, and none
generates "standard" exceptions. This situation will change as the ANSI standard gets better
defined and compilers improve. About the best advice I can give you is to read your compiler's
reference manual and watch out!

Programming Exercises

Exercise 22-1: Add code to the queue class of Exercise 13-3 that will trigger an exception
when too many items are put in the queue.

Exercise 22-2: Take the fraction class from Exercise 18-3 and add code to generate an
exception when a divide by zero occurs. Also add code to generate an exception when a bad
number is read.

Exercise 22-3: Update the checkbook class of Exercise 13-2 so it generates an exception when
your balance goes below zero.

Page 411

Exercise 22-4: Write a function count_letter that takes a single character. This function
will count the number of consonants and vowels. If a nonletter is given to the function, it
generates an exception.

Page 413

23
Modular Programming

In This Chapter:

 •• Modules
 •• Public and Private
 •• The extern Modifier
 •• Headers
 •• The Body of the

Module
 •• A Program to Use

Infinite Arrays
 •• The Makefile for

Multiple Files
 •• Using the Infinite

Array

Many, hands make light work.
—John Heywood

So far, we have been dealing with small programs. As programs grow larger and larger, they
should be split into sections, or modules. C++ allows programs to be split into multiple files,
compiled separately, and then combined (linked) to form a single program.

In this chapter, we go through a programming example, discussing the C++ techniques needed
to create good modules. You also are shown how to use make to put these modules together to
form a program.

Modules

A module is a collection of functions or classes that perform related functions. For example,
there could be a module to handle database functions such as lookup, enter, and sort.
Another module could handle complex numbers, and so on.

Also, as programming problems get big, more and more programmers are needed to finish
them. An efficient way of splitting up a large project is to assign each programmer a different
module. That way each programmer only has to worry about the internal details of his or her
own code.

In this chapter, we discuss a module to handle infinite arrays. The functions in this package
allow the user to store data into an array without worrying about its size. The infinite array
grows as needed (limited only by the amount of memory in the computer). The infinite array
will be used to store data for a histogram but can also be used to store things such as line
numbers from a cross reference program or other types of data.

Page 414

Public and Private

Modules are divided into two parts, public and private. The public part tells the user how to
call the functions in the module and contains the definitions of data structures and functions that

are to be used from outside the module. The public definitions are put in a header file, which is
included in the user's program. In the infinite array example, we have put the public
declarations in the file ia.h (see listing on page 417).

Anything internal to the module is private. Everything that is not directly usable by the outside
world should be kept private.

The extern Modifier

The extern modifier is used to indicate that a variable or function is defined outside the
current file but is used in this file. Example 23-1 illustrates a simple use of the extern
modifier.

Example 23-1. main.cc and count.cc

File: main.cc
#include <iostream.h>
/* Number of times through the loop */
extern int counter;

/* Routine to increment the counter */
extern void inc_counter(void);

main()
{
 int index; /* Loop index */

 for (index = 0; index < 10; ++index)
 inc_counter ();
 cout << "Counter is << counter << '\n';
 return (0);
}
File: count.cc
/* Number of times through the loop */
int counter = 0;

/* Trivial example */
void inc_counter()
{
 ++counter;
}

The function main uses the variable counter. Because counter is not defined in main, it
is defined in the file counter.cc. The extern declaration is used by

Page 415

main.cc to indicate that counter is declared somewhere else, in this case the file counter.cc.
The modifier extern is not used in this file, because this is the "real" declaration of the
variable.

Actually, three modifiers can be used to indicate the files in which a variable is defined, as
shown in Table 23-1.

Table 23-1. Modifiers

Modifier Meaning

extern Variable/function is defined in another file.

<blank> Variable/function is defined in this file (public) and can be used in
other files.

static Variable/function is local to this file (private)

Notice that the keyword static has two meanings. (It is the most overworked modifier in the
C++ language. For a complete list of the meanings of static see Table 14-1.) For data
defined globally, static means "private to this file." For data defined inside a function, it
means "variable is allocated from static memory (instead of the temporary stack)."

C++ is very liberal in its use of the rules for static, extern, and <blank> modifiers. It is
possible to declare a variable as extern at the beginning of a program and later define it as
<blank>.

 extern sam;
 int sam = 1; // This is legal

This ability is useful when you have all your external variables defined in a header file. The
program includes the header file (and defines the variables as extern), and then defines the
variable for real.

Another problem concerns declaring a variable in two different files.

File: main.cc

 int flag = 0; // Flag is off

 main()
 {
 cout << "Flag is " << flag << '\n';
 }

File: sub. cc

 int flag = 1; // Flag is on

What happens in this case? There are several possibilities:

• flag could be initialized to 0 because main.cc is loaded first.

Page 416

• flag could be initialized to 1 because the entry in sub.cc overwrites the one in
main.cc.

• The compiler could very carefully analyze both programs, and then pick out the value that
is most likely to be wrong.

In this case, there is only one global variable called flag. It will be initialized to either 1 or 0
depending on the whims of the compiler. It is entirely possible for the program main to print
out:

 flag is 1

even though we initialized it to zero. To avoid the problem of hidden initializations, use the
keyword static to limit the scope of variables to the file in which they are declared.

If we had written:

File: main.cc

 static int flag = 0; // Flag is off

 main()
 {
 cout << "Flag is " << flag << '\n';
 }
File: sub. cc

 static int flag = 1; // Flag is on

then flag in main.cc is an entirely different variable from flag in sub.cc. However, you
should still give the variables different names to avoid confusion.

Headers

Information that is shared between modules should be put in a header file. By convention, all
header filenames end with ".h". In the infinite array example, we use the file ia.h.

The header should contain all the public information, such as:

• A comment section describing clearly what the module does and what is available to the
user

• Public class definitions

• Common constants

• Public structures

Page 417

• Prototypes of all the public functions

• extern declarations for public variables

In the infinite array example, more than half the file ia.h is devoted to comments. This
commenting is not excessive; the real guts of the coding is hidden in the program file ia.cc. The
ia.h file serves both as a program file and as documentation to the outside world.

Notice that there is no mention in the ia.h comments about how the infinite array is
implemented. At this level, we don't care how something is done. just what functions are

available.

Example 23-2. ia/ia h

/**
 * Definitions for the infinite array (ia) class *
 * *
 * An infinite array is an array whose size can grow *
 * as needed. Adding more elements to the array *
 * will just cause it to grow. *
 *--- *
 * class infinite_array *
 * Member functions *
 * infinite_array(void) -- default constructor *
 * -infinite_array(void) -- destructor *
 * int &operator [](int index) *
 * gets an element of the infinite array *
 **/

// Number of elements to store in each cell of the infinite array
const unsigned int BLOCK_SIZE = 100;

class infinite_array {
 private:
 // The data for this block
 int data[BLOCK_SIZE];

 // Pointer to the next array
 class infinite_array *next;
 public:
 // Default constructor
 infinite_array(void)
 {
 next = NULL;
 memset(data, '\0', sizeof(data));
 }

 // Default destructor
 -infinite_array(void);

 // Return a reference to an element of the array

Page 418

Example 23-2. ia/ia h (Continued)

 int &operator[] (const unsigned int index);
 };

A few things should be noted about this file. Everything in the file is a constant definition, a
data structure definition, or an external definition. Any code that is defined is inline. No actual
code or storage is defined in the header file.

The Body of the Module

The body of the module contains all the functions and data for that module. Private functions

that are not to be called from outside the module should be declared static. Variables
declared outside of a function that are not used outside the module are declared static.

A Program to Use Infinite Arrays

The infinite array module (ia.cc) is shown in Figure 23-1. The program uses a simple linked
list to store the elements of the array. A linked list can grow longer as needed (until you run out
of memory). Each list element, or bucket, can store 10 numbers. To find element 38, the
program starts at the beginning, skips past the first three buckets, and then extracts element 8
from the data in the current bucket.

Figure 23-1. Infinite array structure

Page 419

Example 23-3 contains the code for module ia.cc.

Example 23-3. ia/ia.cc

/**
 * infinite-array -- routines to handle infinite arrays *
 * *
 * An infinite array is an array that grows as needed. *
 * There is no index too large for an infinite array *
 * (unless you run out of memory). *
 **/
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

#include "ia.h" // Get common definitions

/**
 * operator [] -- find an element of an infinite array *
 * *
 * Parameters *
 * index -- index into the array *
 * *
 * Returns *
 * reference to the element in the array *
 **/

int &infinite_array::operator [] (const unsigned int index)
{
 // Pointer to the current bucket
 class infinite_array *current_ptr;

 int current_index; // Index we are working with

 current_ptr = this;
 current_index = index;

 while (current_index >= BLOCK_SIZE) {
 if (current_ptr->next == NULL) {
 current_ptr->next = new infinite_array;
 if (current_ptr->next == NULL) {
 cerr << "Error: Out of memory\n";
 exit(8);
 }
 }
 current_ptr = current_ptr->next;
 current_index -= BLOCK_SIZE;
 }
 return (current_ptr->data[current_index]);
}

/**
 * ~infinite_array -- destroy the infinite array *
 **/
infinite_array::-infinite_array(void)

Page 420

Example 23-3 ia/ai.cc (Continued)

{
 /*
 * Note: We use a cute trick here.
 *
 * Because each bucket in the infinite array is
 * an infinite array itself, when we destroy
 * next, it will destroy all that bucket's "next"s
 * and so on recursively clearing the entire array.
 */
 if (next != NULL)
 delete next;
 next = NULL;
 }
}

The Makefile for Multiple Files

The utility make is designed to aid the programmer in compiling and linking programs. Before
make, the user had to explicitly type compile commands each time there was a change in the
program:

 g++ -Wall -g -ohello hello.cc

NOTE

In this chapter we use the commands for the GNU g++ compiler. The
C++ compiler on your system may have a different name and a
slightly different syntax.

As programs grow, the number of commands needed to create them grows. Typing in a series
of 10 or 20 commands is tiresome and error-prone, so programmers started writing shell
scripts (or, in MS-DOS,.BAT files). Then all the programmer had to type was do-it and the
computer would compile everything. This was overkill, however, because all the files were
recompiled regardless of need.

As the number of files in a project grew, this recompiling became a significant problem.
Changing one small file, starting the compilation, and then having to wait until the next day
while the computer executed several hundred compile commands was frustrating—especially
when only one compile was really needed.

The program make was created to do intelligent compiles. Its purpose is to first decide what
commands need to be executed and then execute them.

The file Makefile (upper/lowercase is important in UNIX) contains the rules used by make to
decide how to build the program. The Makefile contains the following sections:

Page 421

• Comments

• Macros

• Explicit rules

• Default rules

Any line beginning with a # is a comment.

A macro has the format:

name = data

Name is any valid identifier. Data is the text that will be substituted whenever make sees
$(name).

Example:

Very simple Makefile

MACRO = Doing All

all:
 echo $(MACRO)

Explicit rules tell make what commands are needed to create the program. These rules can
take several forms. The most common is:

 target: source [source2] [source3]

 command
 [command]
 [command]
 . . .

Target is the name of a file to create. It is ''made," or created, out of the source file source. If
the target is created out of several files, they are all listed.

The command used to create the target is listed on the next line. Sometimes it takes more than
one command to create the target. Commands are listed one per line. Each is indented by a tab.

For example, the rule:

 hello: hello.cc
 g++ -Wall -g -o hello hello.cc

tells make to create the file hello from the file hello.cc using the command:

 g++ -Wall -g -o hello hello.cc

Page 422

Make will create hello only if necessary. The files used in the creation of hello, arranged in
chronological order (by modification times), are shown in Table 23-2.

Table 23-2 File Modification Times

UNIX MS-DOS/Windows Modification Time

hello.cc HELLO.CPP Oldest

hello o HELLO OBJ Old

hello HELLO.EXE Newest

If the programmer changes the source file hello.cc, the file's modification time will be out of
date with respect to the other files. make will sense this and re-create the other files.

Another form of the explicit rule is:

 source:
 command
 [command]

In this case, the commands are executed each time make is run, unconditionally.

If the commands are omitted from an explicit rule, make uses a set of built-in rules to
determine what command to execute.

For example, the rule:

hist.o: ia.h hist.cc

tells make to create hist.o from hist.cc and ia.h, using the standard rule for making <file>.o
from <file>.cc. This rule is:

 g++ $(CFLAGS) -c file.CC

(make predefines the macro $ (CFLAGS).)

We are going to create a main program hist.cc that calls the module ia.cc. Both files include
the header ia.h, so they depend on it. The UNIX Makefile that creates the program hist from
hist.cc and ia.cc is listed in Example 23-4.

Example 23-4 ia/Makefile

Make file needs debugging
CFLAGS = -g -Wall
SRC = ia.cc hist.cc
OBJ = ia.o hist.o

all: hist

hist: $(OBJ)
 g++ $(CFLAGS) -o hist $(OBJ)

Page 423

Example 23-4 ia/Makefile (Continued)

hist.o:ia.h hist.cc
 g++ $(CFLAGS) -c hist.cc

ia.o:ia.h ia.cc
 g++ $(CFLAGS) -c ia.cc

clean:
 rm hist io.o hist.o

The macro SRC is a list of all the C++ files. OBJ is a list of all the object (.o) files. The lines:

 hist: $(OBJ)
 g++ $(CFLAGS) -o hist $(OBJ)

tell make to create hist from the object files. If any of the object files are out of date, make
will re-create them.

The line:

 hist.o:ia.h

tells make to create hist.o from ia.h and hist.cc (hist.cc is implied). Because no command is
specified, the default is used.

Example 23-5 shows the Makefile for MS-DOS/Windows, using Turbo-C++.

Example 23-5. ia/Makefile.dos

Makefile for Borland's Turbo-C++ compiler

CC =tcc

Flags
-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings
-ml -- Large model
-A -- Force ANSI compliance

CFLAGS = -N -v -w -ml -A
#
SRCS = hist.c ia.c
OBJS = hist.obj ia.obj

ia: $(OBJS)
 $(CC) $(CFLAGS) -oia.exe $(OBJS)

hist.obj: hist.cpp ia.h
 $(CC) $(CFLAGS) -c hist.cpp

Page 424

Example 23-5 ia/Makefile.dos (Continued)

ia.obj: ia.c ia.h
 $(CC) $(CFLAGS) -c ia.cpp

This file is similar to the UNIX Makefile except that Turbo-C++ make does not provide any
default rules.

There is one big drawback with make. It only checks to see whether the files have changed,
not the rules. If you have compiled all your program with CFLAGS=-g for debugging and
need to produce the production version (CFLAGS = -0), make will not recompile.

The command touch changes the modification date of a file. (It doesn't change the file, it just
makes the operating system think it did.) If you touch a source file such as hello.cc and then
run make, the program will be re-created. This is useful if you have changed the compile-time
flags and want to force a re-compilation.

Make provides a rich set of commands for creating programs. Only a few have been discussed
here.*

Using the Infinite Array

The histogram program (hist) is designed to use the infinite array package. It takes one file as
its argument. The file contains a list of numbers between 0 and 99. Any number of entries may
be used. The program prints a histogram showing how many times each number appears. (A
histogram is a graphic representation of the frequency of data.)

This file contains a number of interesting programming techniques. The first one is: Let the
computer do the work whenever possible. For example, don't program like this:

const int LENGTH_X = 300; // Width of the box in dots
const int LENGTH_Y = 400; // Height of the box in dots
const int AREA = 12000; // Total box area in dots

In this case, the programmer has decided to multiply 300 x 400 to compute the area. He would

be better served by letting the computer do the multiplying:

const int LENGTH_X = 300; // Width of the box in dots
const int LENGTH_Y = 400; // Height of the box in dots

const int AREA = (LENGTH_X * LENGTH_Y); // Total box area in dots

* If you are going to create programs that require more than 10 or 20 source files, it is suggested you
read the hook Managing ProJects with make (O'Reilly & Associates, Inc)

Page 425

That way, if either LENGTH_X or LENGTH_Y is changed, AREA changes automatically. Also,
the computer is more accurate in its computations. (If you noticed, the programmer made an
error: his AREA is too small by a factor of 10.)

In the histogram program, the number of data points in each output line is computed by the
definition:

const float FACTOR =
 ((HIGH_BOUND - LOW_BOUND) / (float) (NUMBER_OF_LINES));

The user should be helped whenever possible. In the hist program, if the user does not type
the correct number of parameters on the command line, a message appears telling what is
wrong and how to correct it.

The program uses the library routine memset to initialize the counters array. This routine
is highly efficient for setting all values of an array to zero. The line:

 memset(counters, '\0', sizeof(counters));

zeros the entire array counters. sizeof(counters) makes sure that all the array is
zeroed. Example 23-6 contains a program that uses the infinite array for storing data used to
produce a histogram.

Example 23-6. ia/hist.cc

File: hist.cc
/**
 * hist -- generate a histogram of an array of numbers *
 * *
 * Usage *
 * hist <file> *
 * *
 * Where *
 * file is the name of the file to work on *
 **/
#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>

#include <stdlib.h>
#include <string.h>

#include "ia.h"

/*
 * The following definitions define the histogram
 */
const int NUMBER_OFLINES = 50; // # lines in the result
const int LOW_BOUND = 0; // Lowest number we record
const int HIGH_BOUND = 99; // Highest number we record
/*
 * if we have NUMBEROFLINES data to
 * output then each item must use

Page 426

Exampe 2-6. ia/hist cc (Continued)

 * the following factor
 */
const float FACTOR =
 ((HIGH_BOUND - LOW_BOUND) / (float)(NUMBER_OF_LINES);

// Number of characters wide to make the histogram
const int WIDTH = 60;

// Array to store the data in
static infinite_array data_array;
// Number of items in the array
static int data_items;

main(int argc, char *argv[])
{
 void read_data(char *name);// Get the data into the array
 void print_histogram(void);// Print the data

 if (argc != 2) {
 cerr << "Error: Wrong number of arguments\n";
 cerr << "Usage is:\n";
 cerr << " hist <data-file>\n";
 exit(8);
 }
 data_items = 0;

 read_data(argv[1]);
 print_histogram();
 return (0);
}
/**
 * read_data -- read data from the input file into *
 * the data array *
 * *
 * Parameters *
 * name -- the name of the file to read *
 **/
void read_data(char *name)
{
 ifstream in_file(name); // Input file
 int data; // Data from input

 if (infile.bad() {

 cerr << "Error: Unable to open " << name << '\n';
 exit(8);
 }
 while (!in_file.eof())
 in_file >> data;

 // If we get an eof we ran out of data in last read
 if (in_file.eof())
 break;

Page 427

Example 23-6 ia/hist.cc (Continued)

 data_array[data_items] = data;
 ++data_items;
 }
}
/**
 * print_histogram -- print the histogram output *
 **/
void print_histogram(void)
{
 // Upper bound for printout
 int counters[NUMBER_OF_LINES];
 int low; // Lower bound for printout
 int out_of_range = 0;// Number of items out of bounds
 int max_count = 0;// Biggest counter
 float scale; // Scale for outputting dots
 int index; // Index into the data

 memset(counters, '\0', sizeof(counters));

 for (index = 0; index < data_items; ++index)
 int data; // Data for this point

 data = data_array[index];

 if ((data < LOW_BOUND) || (data > HIGH_BOUND))
 ++outof_range;
 else {
 // Index into counters array
 int count_index;

 count_index = int (float(data - LOW_BOUND) / FACTOR);

 ++counters[count_index];
 if (counters[count_index] > max_count)
 max_count = counters[count_index];
 }
 }

 scale = float(max_count) / float(WIDTH);

 low = LOW_BOUND;

 for (index = 0; index < NUMBER_OF_LINES; ++index) {
 // Index for outputting the dots
 int char_index;
 int number_of_dots; // Number of * to output

 cout << setw(2) << index << ' ' <<
 setw(3) << low << "-" <<
 setw(3) << low + FACTOR - 1 << " (" <<
 setw(4) << counters[index] << "): ";

Page 428

Example 23-6 ia/hist cc (Continued)

 number_of_dots = int(float(counters[index]) / scale);
 for (char_index = 0; char_index < number_of_dots;
 ++char_index)
 cout << '*';
 cout << '\n';
 low += FACTOR;
 }
 cout << outofrange << " items out of range\n";
}

A sample run of this program produces:

 % hist test
 0: 0- 2 (100): ************************
 1: 2- 4 (200): **
 2: 4- 6 (100): ************************
 3: 6- 8 (100): ************************
 4: 8- 10 (0):
 5: 10- 12 (100): ************************
 6: 12- 14 (50): ************
 7: 14- 16 (150): ************************************
 8: 16- 18 (50): ************
 9: 18- 20 (50): ************
10: 20- 22 (100): ************************
11: 22- 24 (100): ************************
12: 24- 26 (50): *************
13: 26- 28 (100): ************************
14: 28- 30 (50): *************
15: 30- 32 (100): ************************
16: 32- 34 (50): ************
17: 34- 36 (0):
18: 36- 38 (100): ************************
19: 38- 40 (1):
20: 40- 42 (150): ************************************
21: 42- 44 (50): ************
22: 44- 46 (250):
**
23: 46- 48 (100): ************************
24: 48- 51 (150): ***********************************
25: 51- 53 (100): ************************
26: 53- 55 (50): ************
27: 55- 57 (200): **
28: 57- 59 (50): ************

29: 59- 61 (50): ************
30: 61- 63 (50): ************
31: 63- 65 (150): ***********************************
32: 65- 67 (100): ************************
33: 67- 69 (0):
34: 69- 71 (199): **
35: 71- 73 (200): **
36: 73- 75 (100): ************************
37: 75- 77 (50): ************
38: 77- 79 (100): ************************

Page 429

39: 79- 81 (100): ************************
40: 81- 83 (200): ***************************************
41: 83- 85 (100): ************************
42: 85- 87 (0):
43: 87- 89 (0):
44: 89- 91 (50): ***********
45: 91- 93 (150):************************************
46: 93- 95 (100):**********************
47: 95- 97 (50): ***********
48: 97- 99 (100): ************************
49: 99-101 (0):
500 items out of range

Dividing a Task into Modules

Unfortunately, computer programming is more of an art than a science. There are no hard and
fast rules that tell you how to divide a task into modules. Knowing what makes a good module
and what doesn't comes with experience and practice.

This section describes some general rules for module division and how they can be applied to
real-world programs. The techniques described here have worked well for me. You should use
whatever works for you.

Information is a vital part of any program. The key to a program is your decision about what
information you want to use and what processing you want to perform on it. Be sure to analyze
the information flow before you begin the design.

Design the modules to minimize the amount of information that has to pass between them. If you
look at the organization of the Army, you'll see that it is divided up into modules. There is the
infantry, artillery, tank corps, and so on. The amount of information that passes between these
modules is minimized. For example, if an infantry sergeant wants the artillery to bombard an
enemy position, he calls up artillery command and says, "There's a pillbox at location Y-94.
Get rid of it." The artillery command handles all the details of deciding which battery to use,
how much firepower to allocate based on the requirements of other fire missions, maintaining
supplies, and many more details.*

Programs should be organized the same way. Information that can be kept inside a module
should be. Minimizing the amount of intermodule communication cuts down on communication
errors as well as limiting maintenance problems that occur when a module is upgraded.

* This is a very general diagram of the division of an ideal army The system used by the United States
Army is more complex and so highly classified that even the generals don't know how it works

Page 430

Module Division Example: Text Editor

You are already familiar with using a text editor. It is a program that allows the user to display
and change text files. The main piece of information is the text file we are editing. Most editors
are display oriented and continually display about 24 lines of the current file on the screen.

Finally, one more piece of information is needed: the editing commands. The commands are
typed in by the user. This information must be parsed so the computer can understand it. Then it
can be executed. The individual commands are small and perform similar functions (delete
line is very much like delete character). Imposing a standard structure on the
command execution modules improves readability and reliability. A block diagram of the
editor can be seen in Figure 23-2.

Figure 23-2. Module division of the text editor

There is minimal communication between the modules. The display section needs to know only
two things: 1) where the cursor is and 2) what the file currently looks like. All the file module
needs to do is read the file, write the file, and keep track of changes. Even the way the changes
are made can be minimized. All

Page 431

editing commands, no matter how complex, can be broken down into a series of inserts and

deletes. It is the responsibility of the command module to take the complex user commands and
turn them into simple inserts and deletes that the file handler can process. Information passing
between the modules is minimal. No information passes between the command decoder and the
display module.

A word processor is just a fancy text editor. Where a simple editor only has to worry about
ASCII characters (one font, one size), a word processor must be able to handle many different
sizes and shapes.

Compiler Construction

In a compiler, the information being processed is C++ code. The job of the compiler is to
transform that information from C++ source to machine-dependent object code. There are
several stages in this process. First the code is run through the preprocessor to expand macros,
take care of conditional compilation, and read include files. Next the processed file is passed
to the first stage of the compiler, the lexical analyzer.

The lexical analyzer takes as its input a stream of characters and returns a series of tokens. A
token is a computer-science term meaning word or operator. For example, let's look at the
English command:

 Open the door.

There are 14 characters in this command. Lexical analysis would turn this into three words and
a period. These tokens are then passed to the parser where they are assembled into sentences.
At this stage a symbol table is started so that the parser can have some idea what variables are
being used by the program.

Now the compiler knows what the program is supposed to do. The optimizer looks at the
instructions and tries to figure out how to make them more efficient. This step is optional and is
omitted unless the -O flag is specified on the command line.

The code generator turns the high-level statements into machine-specific assembly code. In
assembly language, each assembly-language statement corresponds to one machine instruction.
The assembler turns assembly language into binary code that can be executed by the machine.
The general information flow of a compiler is diagrammed in Figure 23-3.

Lexical analysis and parsing are very common and used in a wide variety of programs. The
utility lex can generate the lexical analyzer module for a program, given a description of the
tokens used by the program. Another utility, yacc, can generate the parser module. These
programs are described in the book lex &-yacc (O'Reilly & Associates).

Page 432

Figure 23-3 Compiler modules

Spreadsheet

A simple spreadsheet takes a matrix of numbers and equations and displays the results on
screen. The information managed by this program is the equations and the data.

The core of a spreadsheet is the equations. To change the equations into numbers, we need to
go through lexical analysis and parsing, just like a compiler.

Page 433

But unlike a compiler, we don't generate machine code. Instead. we interpret the equations and
compute the results.

Results are passed off to the display manager, which puts them on the screen. Add to this an
input module that allows the user to edit and change the equations, and you have a spreadsheet,
as shown in Figure 23-4.

Figure 23-4 Spreadsheet layout

Module Design Guidelines

Although there are no hard and fast rules when it comes to laying out the modules for a
program, here are some general guidelines.

Page 434

• The number of public functions in a module should be small.

• The information passed between modules should be small.

• All the functions in a module should perform related jobs.

• Modules should contain no more than 1,500 lines. With more lines, they become difficult to
edit, print, and understand.

Programming Exercises

Exercise 23-1: Write a class that handles page formatting. It should contain the following
functions:

open_file(char *name)

Opens the print file.

define_header(char *heading)
Defines heading text.

print_line(char *line)
Sends a line to the file.

page(void)
Starts a new page.

close_file(void)
Closes the print file.

Exercise 23-2: Write a module called search_open that first receives an array of
filenames that it searches until it finds one that exists, and then it opens that file.

Exercise 23-3: Write a symbol table class containing the following functions:

void enter(char *name)
Enters a name into the symbol table.

int lookup(char *name)
Returns 1 if the name is in the table;
returns 0 otherwise.

void remove(char *name)
Removes a name from the symbol table.

Exercise 23-4: Take the words program from Chapter 20, Advanced Pointers, and combine it
with the infinite array module to create a cross-reference program. (As an added bonus, teach it
about C++ comments and strings to create a C++ crossreferencer.)

Page 435

24
Templates

In This Chapter:

 •• What Is a Template?
 •• Templates: The

Hard Way
 •• Function

Specialization
 •• Class Templates
 •• Class Specialization
 •• Implementation

Difficulties
 •• Summary
 •• Programming

Exercises

Thou cunning'st patten of excelling nature
—Shakespeare
Othello, Act V

What Is a Template?

Templates are a relatively new addition to C++. They allow you to write generic classes and
functions that work for several different data types.

Templates will be a very useful part of the C++ language, when they grow up. The problem is
that although the Draft ANSI C++ Standard specifies the complete syntax for templates, it says
nothing about how to implement them. The result is that each compiler maker has implemented
templates differently, so programs that use templates tend to be nonportable.

Templates: The Hard Way

Suppose we want to define a function max to return the maximum of two items. Actually, we
don't want to define just one max function, but a family of functions: one to find the maximum
of two ints, one for floats, one for chars, and so on.

We start by defining a parameterized macro to generate the code for the function. This is called
the definition stage. The macro looks like:

 #define define_max(type) type max(type dl, type d2) { \
 if (dl > d2) \
 return (dl); \
 return (d2); \
 }

Page 436

NOTE

Each line except the last one ends in a backslash (\). A #define
macro spans a single line, so the backslash turns our five lines into

one. By putting the backslashes in the same column we can easily
tell if we miss one.

This macro generates no code. It merely provides the definition that is used in the next phase to
generate the functions we want. This is called the generation phase.

 define_max(int);
 define_max(float);
 define_max(char);

Finally, somewhere in the code we use the functions we've just defined. (This is called the use
phase, of course.)

 main (void) {
 float f = max(3.5, 8.7);
 int i = max(100, 800);
 char ch = max('A', 'Q');

Figure 24-1 shows the source code for the #define style templates and the code generated by
them.

This method works adequately for simple functions like max. It doesn't work well for larger
functions. One drawback to this system is that we must invoke the macro define_max for
each data type we want to use. It would be nice if C++ would call define_max
automatically.

Templates allow you to define a generic function. C++ then uses this template to generate a
specific instance of the function as needed. For example, to define the function max as a
template, we write:

 template<class kind>
 kind max(kind dl, kind d2)
 if (dl > d2)
 return (dl);
 return (d2);
 }

NOTE

The construct <class kind> tells C++ that the word kind can be
replaced by any type. (Note: The keyword class is used in this context to
indicate that kind can be any type: not only classes, but simple types as well.)

The template declaration corresponds to the definition of the parameterized macro. Like the
parameterized macro, it generates no code: it merely provides a definition for the next phase

Page 437

Figure 24-1. Code generated by #define style templates

Now we can use the template, much like we used the functions defined by the parameterized
macro:

 main(void) {
 float f = max(3.5, 8.7);
 int i = max(100, 800);
 char ch = max('A', 'Q');
 int i2 = max(600, 200);

You may have noticed that we skipped the generation phase. That's because C++
automatically performs the generation for us. In other words, C++ looks at the line:

 float f = max(3.5, 8.7);

Page 438

and sees that it uses the function max (float, float). It then checks to see whether the
code for this function has been generated and generates it if necessary. In other words,
everything is automatic. (There are practical limits to what can be done automatically, as you
will see in the section on implementation.)

Figure 24-2 shows the code generated by the template implementation of max. From this
you can see that the first time max is used for a float it generates the floating point version
of max. Next we use max for int, and the int version of max is created. Note that the last

line:

 int i2 = max(600, 200);

does not generate any function. This is because we've already generated the integer version
max and don't need to do it again.

Figure 24-2 Template code generation

Page 439

Function Specialization

Templates go a bit further than simple code generation. They can handle special cases as well.

Suppose we want to use the function max to compare strings as well:

 char *namel = "Able";
 char *name2 = "Baker";

 cout << max(namel, name2) << '\n';

We have a problem, because strings are represented by a character pointer (char *). The
comparison:

 if (dl > d2)

compares the value of the pointers, not the data that's pointed to. What we want to do is tell

C++, ''Use the normal comparison except when the data type is a string, and then use
strcmp."

This is done through a process called specialization. We declare a special version of the max
function just for strings:

 char *max(char *dl, char *d2)
 if (strcmp(dl, d2) < 0)
 return (dl);
 return (d2);
 }

When C++ first sees the use of the function max it looks through the list of simple functions
before it looks through its list of templates. Thus when we have:

 cout << max(namel, name2) << '\n';

C++ will find the simple function max(char *, char *) before trying to expand the
template max(kind d1, kind d2).

Example 24-1 illustrates the use of template functions.

Example 24-1. max-t/max.cc

#include <iostream.h>
#include <string.h>

// A template for the "max" function

template<class kind>
kind max(kind dl, kind d2)
 if (dl > d2)
 return (d1);
 return (d2);
}

Page 440

Example 24-1 max-t/max.cc (Continued).

// A specialization for the "max" function
// because we handle char * a little differently
char *max(char *dl, char *d2) {
 if (strcmp(dl, d2) > 0)
 return (dl);
 return (d2);
}
main()
{
 // Let's test max
 cout << "max(1, 2) " << max(l, 2) << '\n';
 cout << "max(2, 1) " << max(2, 1) << '\n';

 cout << "max(\"able\", \"baker\") " << max("able", "baker") << '\n';
 cout << "max(\"baker\", \"able\") " << max("baker", "able") << '\n';
 return (0);
}

Class Templates

Class templates are a little more complex than function templates. Declaring them is easy. They
are defined just like function templates. Example 24-2 shows the stack class from Chapter
13, Simple Classes, written as a template.

Example 24-2 max-t/stack1 cc

#include <stdlib.h>
#include <iostream.h>

const int STACK_SIZE = 100; // Maximum size of a stack

/***
 * Stack class *
 * *
 * Member functions *
 * stack -- initialize the stack *
 * push -- put an item on the stack *
 * * pop -- remove an item from the stack *
 ***/
// The stack itself
template<class kind>
class stack {
 private:
 int count; // Number of items in the stack
 kind data[STACK_SIZE]; // The items themselves
 public:
 // Initialize the stack
 stack (void) {
 count = 0; // Zero the stack
 }

Page 441

Example 24-2. max-t/stack1.cc (Continued).

 // Push an item on the stack
 void push(const kind item) {
 data[count] = item;
 ++count;
 }

 // Pop an item from the stack
 kind pop(void) {
 // Stack goes down by one
 --count;

 // Then we return the top value
 return (data[count]);
 }
};

There is a problem, however. To use this class we need to declare an instance of this class. In
the past, we've been able to declare a stack with the statement:

 stack a_stack; // This won't work

The problem is that stack is now a generic template. The stack can now contain anything.
When C++ sees this declaration, it's going to ask, "A stack of what?" We must specify the type
of data we are storing. The new declaration is:

 stack<int> a_stack; // A stack of integers

The <int> tells C++ to use "int" for "kind" throughout the stack. We can now use the new
class variable:

 a_stack.push(l);
 x = a_stack.pop();

In the stack class, we defined all the member functions inside the class definition. We could
just as well have specified the procedures outside the class. To do so, we must put the template
clause template<class kind> in front of each procedure and put the template
parameter (<kind>) in the name of the class. For example, the push routine would look like:

 /***
 * stack::push -- push an item on the stack *
 * *
 * Warning: We do not check for overflow *
 * *
 * Parameters *
 * item -- item to put on the stack *
 ***/
 template<class kind>
 inline void stack<kind>::push(const kind item)
 {

Page 442

 data[count] = item;
 ++count;
 }

Class Specialization

You can think of a class template such as

 template <class kind>stack { ...

as instructions that tell C++ how to generate a set of classes named stack<int>,
stack<double>, stack<float>, and so on. C++ will also generate automatically the
member functions: stack<int>: :push, stack<double>: :push, and
stack<float>::push.

However, if you explicitly declare a member function yourself, C++ will use your definition
before generating its own. Suppose we want to have a stack store strings (char *). We don't
want to store the pointers; we want to store the actual strings. To do this, we need a special
version of the push function that duplicates the string before pushing it onto the stack:

 inline void stack<char *>::push(const char * item)
 {

 data[count] = strdup(item);
 ++count;
 }

Note that we didn't use template<class kind> at the beginning of the function. The
template keyword tells C++: "This is a generic class. Generate specific versions from it."
With no template, we are telling C++: "This is the real thing. Use it directly."

Implementation Difficulties

The Annotated C++ Reference Manual by Ellis and Stroustrup is considered the default
standard of the C++ language. It contains a complete definition of the syntax for templates.
However, it does not explain how compilers should implement them.

As you shall see, implementing templates is not easy. For example, suppose we put the
stack template in a module. The file stack.h defines the class and the file stack.cc defines the
member functions. (We will assume that none of the member functions are inline.)

Now we want to use the template for an integer stack (stack<int>) in the file main.cc.
Figure 24-3 shows the source-code layout.

This is where the compiler implementors start pulling their hair out.

Page 443

Figure 24-3. Source-code layout for using a stack template

We know that in main.cc, we're going to use stack<int>. As a matter of fact, the file
stack.h defined prototypes for the two member functions push and pop. So when the
compiler sees stack<int>, it should automatically generate the code for push and pop.

But how? The bodies of these two member functions are tucked away in the file stack.cc. The
compiler is working on main.cc. It doesn't know anything about any other file, so it doesn't
know how to generate push<int> and pop<int>.

But couldn't the compiler generate push<int> and pop<int> when it compiles stack.cc?
Yes, if it knew that someone had declared a stack<int> variable. But the only one who did
that is main.cc and the compiler isn't working on that file just now. Managers call this situation
"technically challenging." Programmers call it "a nightmare."

The problems associated with template generation are not simple to solve. Different compiler
makers have chosen different approaches. The problem is that all these approaches are not

compatible. Code written for one compiler may not work on another. In some cases, even code
written for one version of a compiler might not work in another version.

Templates are the leading edge of C++ compiler technology and, like all new programs, there
are just a few bugs to work out. In the following sections, we discuss the various ways
compiler makers have attempted to solve the problems associated with templates. Compiler
technology and standards are constantly evolving, so the information in this section may not be
up to date.

Microsoft's Implementation

As of this publication date, the Microsoft C++ and Visual C++ compilers do not

have templates. Although extremely simple, this form of "implementation" is very

Page 444

limited. On the other hand, I've never had any trouble with templates using a Microsoft
compiler.

Turbo-C++ and GNU g++ Templates

The Turbo-C++ and the GNU g++ compilers take a similar approach. If you plan to use
stack<float>, then you must have a stack<float> in the file that defines the member
functions: stack.cc. At the beginning of the stack.cc file, you will need the line:

 typedef stack<float> floating_point_stack;

Actually you never have to use the type floating_point_stack. The typedef is there
just to tell the compiler to generate the needed member functions.

Both compilers also have switches that tell the compiler what to do about inline functions that
can't be handled inline. Suppose you define the function:

 template<class kind>
 inline kind max(kind dl, kind d2) {
 if (dl > d2)
 return (dl);
 return (d2);
 }

in the header file max.h and then proceed to use the max<float> function in three different
files. Also suppose that the function is so complex that the compiler decided to ignore the
inline directive. (I know that's a lot of supposing, but it's the only way you get to this mess.)

When your three files are compiled, three copies of max<float> are generated. The
Turbo-C++ linker is smart enough to detect this fact and will throw two of them away. The
GNU g++ linker is not so smart, and you'll wind up with three copies of the same routine in
your code.

Both Turbo-C++ and GNU provide you with compiler options that help solve this problem. If
you put the line:

 #pragma interface // GNU g++ only option

in your code, it tells GNU: "Don't generate the body for any template functions found in this
header." Later, in one of your files, you must put the directive:

 #pragma implementation // GNU g++ only option

This tells GNU, "Here's where you generate the function bodies."

Turbo-C++ uses similar pragmas. However, the "interface" directive is:

 #pragma option -Jgx // Turbo-C++ only option

Page 445

and the "implementation" directive is:

 #pragma option -Jg // Turbo-C++ only option

The options are clunky, nonportable, and difficult to use. They are meant to solve an
implementation problem that has not been properly solved yet.

CFront-Based Compilers

CFront is the name of the AT&T C++ to C translator that was the basis of the first C++
compiler. Most C++ compiler makers consider themselves standard if they are compatible with
the latest version of CFront.

CFront handles the problem of template generation by putting it off until link time, so you only
compile and link the file main.cc. At link time, CFront notices that main.cc uses
stack<float>. It then looks for a file named stack.cc. (Note: Your file must be named
<class>.cc.) This file is used to generate the templates.

Although this method seems simple enough, there are a lot of details to take care of. For
example, the file stack.h is automatically included when the linker tries to compile stack.cc.
What's worse, if you include it yourself with a #include "stack.h", the compiler gets
confused.

The CFront approach is a good attempt at solving the template problem, but there are still many
bugs to work out.

Writing Portable Templates

How can you write a portable template? The simple answer is, "Don't use them." However, the
best way to create a truly portable template is to write everything as inline functions and put all
your functions in a single-header file. As far as I can tell, this method works for every compiler
that has templates. It may not be the most efficient way of doing things, but it is the most
portable.

Summary

Templates provide a convenient way of writing generic classes and functions. However,
implementation of templates is still undergoing refinement. As a practical matter, you may want
to wait until the language settles down a little before using them.

Programming Exercises

Exercise 24-1: Write a template min that returns the minimum of two values. Make sure you
handle strings correctly.

Page 446

Exercise 24-2: Write a template class to implement an array with bounds checking.

Exercise 24-3: Define a template class that implements a set. The class allows you to set,
clear, and test elements. (An integer version of this class was presented in Exercise 13-4.)

Page 447

25
Portability Problems

In This Chapter:

 •• Modularity
 •• Word Size
 •• Byte-Order Problem
 •• Alignment Problem
 •• NULL-Pointer

Problem
 •• Filename Problems
 •• File Types
 •• Summary
 •• Answers to Chapter

Questions

Wherein I spake of most disastrous changes,
Of moving accidents by flood and field,
Of hair-breadth 'scapes i' the
imminent deadly breadth
—Shakespeare on Program Porting
Othello, Act 1, Scene 3

You've just completed work on your great masterpiece, a ray-tracing program that renders
complex three-dimensional shaded graphics on a Cray supercomputer using 30MB of memory
and 5GB of disk space. What do you do when someone comes in and asks you to port this
program to an IBM PC with 640K of memory and 100MB of disk space? Killing him is out.
Not only is it illegal, but it also is considered unprofessional. Your only choice is to whimper
and start the port. It is during this process that you will find that your nice, working program
exhibits all sorts of strange and mysterious problems.

C++ programs are supposed to be portable. However, C++ contains many machine-dependent
features. Also, because of the vast difference between UNIX and MS-DOS/Windows, system
dependencies can frequently be found in many programs. This chapter discusses some of the
problems associated with writing truly portable programs as well as some of the traps you
might encounter.

Modularity

One of the tricks to writing portable programs is to put all the nonportable code into a separate
module. For example, screen handling differs greatly in MSDOS/Windows and UNIX. To design a
portable program, you'd have to write machine-specific screen-update modules.

Page 448

For example, the HP-98752A terminal has a set of function keys labeled F1-F8. The PC also
has a function-key set. The problem is that these keys don't send out the same set of codes. The
HP sends "<esc>p<return>" for F1 and the PC sends "<null>". In this case, you would
want to write a get_code routine that gets a character (or function key string) from the
keyboard and translates function keys. Because the translation is different for both machines, a
machine-dependent module is needed for each one. For the HP machine, you would put
together the program with main.cc and hp-tty.cc, while for the PC you would use main.cc and
pc-tty.cc.

Word Size

A long int is 32 bits, a short int is 16* bits, and a normal int can be 16 or 32 bits
depending on the machine. This can lead to unexpected problems. For example, the following
code works on a 32-bit UNIX system, but fails when ported to MS-DOS/Windows:

 int zip;

 zip = 92126;
 cout << "ip code " << zip << '\n';

The problem is that on MS-DOS/Windows, zip is only 16 bits—too small for 92126. To fix
the problem, we declare zip as a 32-bit integer:

 long int zip;

 zip = 92126;
 cout << Zip code" << zip << '\n';

Now zip is 32 bits and can hold 92126.

Byte-Order Problem

A short int consists of two bytes. Consider the number 0x1234. The two bytes have the
value 0x12 and 0x34. Which value is stored in the first byte? The answer is machine
dependent.

This can cause considerable trouble when you try to write portable binary files. Motorola
68000-series machines use one type of byte order (ABCD), while Intel and Digital Equipment

Corporation machines use another (BADC).

One solution to the problem of portable binary files is to avoid them. Put an option in your
program to read and write ASCII files. ASCII offers the twin advantages of being far more
portable as well as human readable.

* The draft ANSI standard does not specify the actual size of long int or short int
However, on every machine I know of, a long int is 32 bits and a short int is 16 bits.

Page 449

The disadvantage is that text files are larger. Some files may be too big for ASCII. In that case,
the magic number at the beginning of a file may be useful. Suppose the magic number is
0x11223344 (a bad magic number, but a good example). When the program reads the magic
number, it can check against the correct number as well as the byte-swapped version
(0x22114433). The program can automatically fix the file problem:

 const int MAGIC = 0x11223344; // File identification number
 const int SWAP_MAGIC = 0x22114433; // Magic number byte swapped

 ifstream in_file; // File containing binary data
 long int magic; // Magic number from file

 in_file.open("data");

 in_file.read((char *)&magic, sizeof(magic));

 switch (magic)
 case MAGIC:
 // No problem
 break;
 case SWAP_MAGIC:
 cout <<"Converting file, please wait\n";
 convert_file(in_file);
 break;
 default:
 cerr << "Error: Bad magic number " << magic << '\n';
 exit (8);
 }

Alignment Problem

Some computers limit the addresses that can be used for integers and other types of data. For
example, the 68000 series requires that all integers start on a two-byte boundary. If you attempt
to access an integer using an odd address, you generate an error. Some processors have no
alignment rules, while some are even more restrictive, requiring integers to be aligned on a
four-byte boundary.

Alignment restrictions are not limited to integers. Floating point numbers and pointers also
must be aligned correctly.

C++ hides the alignment restrictions from you. For example, if you declare the following
structure on a 68000:

 struct funny {
 char flag; // Type of data following
 long int value; // Value of the parameter
 };

C++ allocates storage for this structure as shown on the left in Figure 25-1.

Page 450

Figure 25-1. Structure on 68000 and 8086 architectures

On an 8086-class machine with no alignment restrictions, this is allocated as shown on the
right in Figure 25-1.

The problem is that the size of the structure changes from machine to machine. On a 68000, the
structure size is six bytes and on the 8086, it is five. So if you write a binary file containing
100 records on a 68000, it will be 600 bytes long, while on an 8086 it will be only 500 bytes
long. Obviously the file is not written the same way on both machines.

One way around this problem is to use ASCII files. As we have said before, there are many
problems with binary files. Another solution is to explicitly declare a pad byte:

struct new_funny {
 char flag; // Type of data following
 char pad; // Not used
 long int value; // Value of the parameter
};

The pad character makes the field value align correctly on a 68000 machine while making the
structure the correct size on an 8086-class machine.

Using pad characters is difficult and error-prone. For example, although new_funny is
portable between machines with one- and two-byte alignment for 32-bit integers, it is not
portable to any machine with a four-byte integer alignment.

NULL-Pointer Problem

Many programs and utilities were written using UNIX on VAX computers. On this computer, the
first byte of any program is 0. Many programs written on this computer contain a bug: They use

the null pointer as a string.

Page 451

Example:

 #define NULL 0

 char *string;

 string = NULL;
 cout << "String is '" << string "'\n";

This is actually an illegal use of string. Null pointers should never be dereferenced. On the
VAX, this error causes no problems. Because byte zero of the program is zero, string points
to a null string. This is due to luck, not design.

On a VAX, this will print:

 String is ''

On an old Celerity, the first byte of the program is a ''Q." When this program is run on a
Celerity, it will print:

 String is 'Q'

On other computers, this type of code can generate unexpected results. Many of the utilities
ported from a VAX to a Celerity exhibited the "Q" bug.

Filename Problems

UNIX specifies files as /root/sub/file while MS-DOS/Windows uses
\root\sub\file. When porting from UNIX to MS-DOS/Windows, file names must be
changed. For example:

#ifndef __MSDOS
#include <sys/stat.h> /* UNIX version of the file */
#else _MSDOS_
#include <sys\stat.h> /* DOS version of the file */
#endif __MSDOS_

Question 25-1: Why does Example 25-1 work on UNIX, but when we run it in
MSDOS/Windows we get the message:

oot
 ew able: file not found

Example 25-1. ifstream in_file

#ifndef __MSDOS_
#define NAME "/root/new/table"
#else __MSDOS_
#define NAME "\root\new\table"
#endif __MSDOS_

in_file.open(NAME);
if (in_file.bad) {

 cout << NAME << ": file not found\n";
 exit (8);
}

Page 452

File Types

In UNIX there is only one file type. In MS-DOS/Windows there are two, text and binary. The flags
O_BINARY and O_TEXT are used in MS-DOS/Windows to indicate file type. Older versions of
UNIX have no such flags.

One way of handling this problem is to write different open calls for each system:

#ifndef _MSDOS_
file_descriptor = open("file", O_RDONLY);
#else _MSDOS_
file_descriptor = open("file", O_RDONLY|O_BINARY);
#endif _MSDOS_

This is messy. A far better way is to define dummy O_BINARY and O_TEXT flags:

#ifndef O_BINARY /* Do we have an O_BINARY? */
#define O_BINARY 0 /* If not define one (BINARY and TEXT)*/
#define O_TEXT 0 /* so they don't get in the way */
#endif O_BINARY

. . .
file_descriptor = open("file", O_RDONLY|OBINARY);

Summary

It is possible to write portable programs in C++. Because C++ runs on many different types of
machines that use different operating systems, it is not easy. However, if you keep portability in
mind when creating the code, you can minimize the problems.

Porting four-letter words

Portability problems are not limited to programming. When
Practical C Programming was translated to Japanese, the
translator had a problem with one exercise: "Write a program that
removes four-latter words from a file and replaces them with more
acceptable equivalents."

The problem was, in Japanese, everything is a one-letter word.
When the translator came to a phrase he couldn't directly translate,
he did his best and also put in the English. But for the four-letter
words, he decided to include the English as well as some
additional help (Stars added. I don't use words like that.):

additional help (Stars added. I don't use words like that.):

Page 453

Answers to Chapter Questions

Answer 25-1: The problem is that C++ uses the backslash (\) as an escape character. The
character \r is <return>, \n is <new line>, and \t is <tab>. What we really have for a name
is:

<return>oot<new line>ew<tab>able

The name should be specified as:

#define NAME "\\root\\new\\table"

NOTE

The #include uses a filename, not a C++ string. While you must
use double backslashes (\\) in a C++ string, you use single
backslashes in an #include. The following two lines are both
correct:

 #define NAME "\\root\\new\\table"
 #include "\root\new\defs.h"

Page 455

26
Putting It All Together

In This Chapter:

 •• Requirements
 •• Code Design
 •• Coding
 •• Functional

Description
 •• Testing
 •• Revisions
 •• A Final Warning
 •• Program Files
 •• Programming

Exercises

Exercises

For there isn 't a job on the top of the earth
the beggar don't know, nor do
—Kipling

In this chapter we create a complete program. Every step of the process is covered, from
setting forth the requirements to testing the result.

Requirements

Before we start, we need to decide what it is we are going to do. This is a very important step
and is left out of far too many programming cycles.

This chapter's program must fulfill several requirements. First, it must be long enough to
demonstrate modular programming, but at the same time be short enough to fit inside a single
chapter. Second, it must be complex enough to demonstrate a wide range of C++ features, but
be simple enough for a novice C++ programmer to understand.

Finally, it must be useful. This is not so simple to define. What's useful to one person might not
be useful to another. We decided to refine this requirement and restate it as "It must be useful to
C++ programmers." The program we have selected reads C++ source files and generates
simple statistics on the nesting of parentheses, and the ratio of comments to code lines.

The specification for our statistics program is:

Preliminary Specification for a C++ Statistics Gathering Program
Steve Oualline
February 10, 1995

Page 456

The program stat gathers statistics about C++ source files and prints them. The command
line is:

 stat files

where files is a list of source files. The following shows the output of the program on a
short test file.

Example 26-1. stat/stat.out.

 1 (0 {0 #include <iostream.h>
 2 (0 {0 /***
 3 (0 {0 * calc -- a simple 4-function calculator *
 4 (0 {0 ***/
 5 (0 {0 int result; // The result of the calculations
 6 (0 {0 char oper_char; // User-specified operator
 7 (0 {0 int value; // Value specified after the operator
 8 (0 {0 main()
 9 (0 {1 {
10 (0 {1 result = 0; // Initialize the result
11 (0 {1
12 (0 {1 while (1) {

14 (0 {2 cout << "Result: " << result << '\n';
15 (0 {2 cout << "Enter operator and number: ";
16 (0 {2
17 (0 {2 cin >> oper_char >> value;
18 (0 {2
19 (1 {2 if ((oper_char == 'q') ||
20 (0 {2 (oper_char == 'Q'))
21 (0 {2 break;
22 (0 {2
23 (0 {3 switch (oper_char) {
24 (0 {3 case '+':
25 (0 {3 result += value;
26 (0 {3 break;
27 (0 {3 case '-':
28 (0 {3 result -= value;
29 (0 {3 break;
30 (0 {3 case '*':
31 (0 {3 result *= value;
32 (0 {3 break;
33 (0 {3 case '/':
34 (0 {4 if (value == 0) {
35 (0 {4 cout << "Error: Divide by zero\n";
36 (0 {4 cout << " operation ignored\n";
37 (0 {3 } else
38 (0 {3 result /= value;
39 (0 {3 break;
40 (0 {3 default:
41 (0 {3 cout << "Unknown operator" <<
42 (0 {3 oper_char << '\n';
43 (0 {3 break;
44 (0 {2 }
45 (0 {1 }

Page 457

Example 26-1. stat/stat.out (Continued).

 46 (0 {1 return (0);
 47 (0 {0 }
Total number of lines: 47
Maximum nesting of () : 2
Maximum nesting of {} : 4
Number of blank lines4
Number of comment only lines4
Number of code only lines36
Number of lines with code and comments 4
Comment to code ratio 20.5%

Code Design

There are several schools of code design. In structured programming, you divide the code up
into modules and then divide the module into submodules, divide the sub-modules into
sub-submodules, and so on. This is also known as procedure- oriented programming. In
object-oriented programming, you try to think of the problem as a collection of data that you
manipulate through member functions.

There also are other approaches, such as state tables and transition diagrams. All of these have
the same basic principle at heart: "Arrange the program's information in the clearest and
simplest way possible and then try to turn it into C++ code."

Our program breaks down into several logical modules. First, there is a token scanner, which
reads raw C++ code and turns it into tokens. Actually, this function sub-divides into two
smaller modules. The first reads the input stream and determines what type of character we
have. The second takes in character-type information and uses it to assemble tokens. The other
module contains the statistics gathering and a small main program.

Token Module

Our program scans C++ source code and uses the tokens to generate statistics. A token is a
group of characters that form a single word, number, or symbol. For example, the line:

 answer = (123 + 456) / 89; // Compute some sort of result

consists of the tokens:

 T_ID The word "answer"
 T_OPERATOR The character "="
 T_L_PAREN Left Parenthesis
 T_NUMBER The number 123
 T_OPERATOR The character "+"

Page 458

 T_NUMBER The number 456
 T_R_PAREN Right parenthesis
 T_OPERATOR The divide operator
 T_NUMBER The number 89
 T_OPERATOR The semicolon
 T_COMMENT The // comment
 T_NEWLINE The end-of-line character

Our token module needs to identify groups of characters. For example, an identifier is defined
as a letter or underscore, followed by any number of letters or digits. So our tokenizer needs to
contain the pseudocode:

 If the current character is a letter then
 scan until we get a character that's not a letter or digit

As you can see from the pseudocode, our tokenizer depends a great deal on character types, so
we need a module to help us with the type information.

Character-type Module

The purpose of the character-type module is to read characters and decode their types. Some
types overlap. For example, C_ALPHA_NUMERIC includes the C_ NUMERIC character set.
This module stores most of the type information in an array and requires only a little logic to
handle the special types like C_ALPHA_NUMERIC.

Statistics Class

In this program, a statistic is an object that consumes tokens and outputs statistics. We start by
defining an abstract class for our statistics. This class is used as the basis for the statistics we
are collecting. The class diagram can be seen in Figure 26-1.

Figure 26-1 Statistics class hierarchy

Our definition of a statistic is "something that uses tokens to collect statistics." These statistics
may be printed at the beginning of each line or at the end of the file.

Page 459

Our four statistics are more specific. For example, the class paren_counter counts the
nesting of parenthesis as well as the maximum nesting. The current nesting is printed at the
beginning of each line (the "(" number). The maximum nesting level is written out at the end of
the file.

The other classes are defined in a similar manner. The only trick used here is that we've made
the line numbering a statistic. It counts the number of T_NEW_LINE tokens and outputs that
count at the start of each line.

Coding

The coding process was fairly simple. The only problem that came up was getting the
end-of-line correct.

Functional Description

This section describes all the classes and major functions in our program. For a more complete
and detailed description, take a look at the listings at the end of this chapter.

char_type Class

The char_type class sets the type of a character. For the most part, this is done through a
table named type_info. Some types, such as C_ALPHA_NUMERIC, include two different
types of characters, C_ALPHA and C_DIGIT. Therefore, in addition to our table, we need a
little code for the special cases.

in_putfile Class

This class reads data from the input file one character at a time. It buffers up a line and on
command writes the line to the output.

token Class

We want an input stream of tokens. We have an input stream consisting of characters. The main
function of this class, next_token, turns characters into tokens. Actually, our tokenizer is
rather simple, because we don't have to deal with most of the details that a full C++ tokenizer
must handle.

The coding for this function is fairly straightforward, except for the fact that it breaks up
multiline comments into a series of T_COMMENT and T_NEW_LINE tokens.

Page 460

One clever trick is used in this section. The TOKEN_LIST macro is used to generate an
enumerated list of token types as well as a string array containing the names of each of the
tokens. Let's examine how this is done in more detail.

The definition of the TOKEN_LIST class is:

 #define TOKEN_LIST \
 T(T_NUMBER), /* Simple number (floating point or integer) */ \
 T(T_STRING), /* String or character constant */ \
 T(TCOMMENT), /* Comment */ \
 T(T_NEWLINE), /* Newline character */ \
 T(T_OPERATOR), /* Arithmetic operator */ \
 T(T_L_PAREN), /* Character "(" */ \
 T(T_R_PAREN), /* Character ")" */ \
 T(T_L_CURLY), /* Character "{" */ \
 T(T_R_CURLY), /* Character "}" */ \
 T(T_ID), /* Identifier */ \
 T(T_EOF) /* End of File */

When invoked, this macro will generate the code:

 T(T_NUMBER),
 T(T_STRING),
 // .. and so on

If we define a T macro, it will be expanded when the TOKEN_LIST macro is expanded. We
would like to use the TOKEN_LIST macro to generate a list of names, so we define the T
macro as:

 #define T(x) x // Define T() as the name

Now, our TOKEN_LIST macro will generate:

 T_NUMBER,
 T_STRING,
 // .. and so on

Putting all this together with a little more code, we get a way to generate a TOKEN_TYPE
enum list:

 #define T(x) x // Define T() as the name
 enum TOKEN_TYPE {
 TOKEN_LIST
 };
 #undef T // Remove old temporary macro

Later we redefine T so it generates a string:

 #define T(x) #x // Define x as a string

This allows us to use TOKEN_LIST to generate a list of strings containing the names of the
tokens:

 #define T(x) #x // Define x as a string
 const char *const TOKEN_NAMES[] = {

Page 461

 TOKEN_LIST
 };
 #undef T // Remove old temporary macro

When expanded, this macro generates:

 const char *const TOKEN_NAMES[] = {
 "T_NUMBER",
 "T_STRING",
 //....

Using tricks like this is acceptable in limited cases. However, such tricks should be
extensively commented so the maintenance programmer who has to fix your code can
understand what you did.

stat Class

stat class is an abstract class that is used as a basis for the four real statistics we are
collecting. It starts with a member function to consume tokens. This function is a pure virtual
function, which means that any derived classes must define the function take_token.

class stat {
 public:
 virtual void take_token(TOKEN_TYPE token) = 0;

The function take_token generates statistics from tokens. We need some way of printing
them. We print statistics in two places. The first is at the beginning of each line and the second
is at the end of the file. Our abstract class contains two virtual functions to handle these two
cases:

 virtual void line_start(void) {};
 virtual void eof(void) {};
};

Unlike take_token, these functions have default bodies-empty bodies, but bodies just the
same. What does this mean? Our derived classes must define take_token. They don't have
to define line_start or eof.

line_counter class

The simplest statistic we collect is a count of the number of lines processed so far. This
counting is done through the line_counter class. The only token it cares about is
T_NEW_LINE. At the beginning of each line it outputs the line number (the current count of the

T_NEW_LINE tokens). At the end of file, this class outputs nothing. As a matter of fact, the
line_counter class doesn't even define an eof function. Instead, we let the default in the
base class (stat) do the "work."

Page 462

brace_counter class

This class keeps track of the nesting level of the curly braces {}. We feed the class a stream
of tokens through the take_token member function. This function keeps track of the left and
right curly braces and ignores everything else.

 // Consume tokens, count the nesting of {}
 void brace_counter::take_token(TOKEN_TYPE token)
 switch (token) {
 case T_L_CURLY:
 ++cur_level;
 if (cur_level > max_level)
 max_level = cur_level;
 break;
 case T_R_CURLY:
 --cur_level;
 break;
 default:
 // Ignore
 break;
 }
 }

The results of this statistic are printed in two places. The first is at the beginning of each line.
The second is at the end of file. We define two member functions to print these statistics:

 // Output start of line statistics
 // namely the current line number
 void brace_counter::line_start(void) {
 cout.setf(ios::left);
 cout.width(2);

 cout << '{' << cur_level << ' ';

 cout.unsetf(ios::left);
 cout.width();
 }

 // Output eof statistics
 // namely the total number of lines
 void brace_counter::eof(void)
 cout << "Maximum nesting of {} : "<< max_level << '\n';
 }

paren_counter class

This class is very similar to the brace_counter class. As a matter of fact, it was created
by copying the brace_counter class and performing a few simple edits.

We probably should combine the paren_counter class and the brace_counter class

into one class that uses a parameter to tell it what to count. Oh well, something for the next
version.

Page 463

comment_counter class

In this class, we keep track of lines with comments in them, lines with code in them, lines with
both, and lines with none. The results are printed at the end of file.

dofile procedure

The do_file procedure reads each file one token at a time, and sends them to the
take_token routine for every statistic class. But how does it know what statistics classes to
use? There is a list:

 static line_counter line_count; // Counter of lines
 static paren_counter paren_count; // Counter of () levels
 static brace_counter brace_count; // Counter of {} levels
 static comment_counter comment_count; // Counter of comment info

 // A list of the statistics we are collecting
 static stat *stat_list[] = {
 &line_count,
 &paren_count,
 &brace_count,
 &comment_count,
 NULL
 };

A couple of things should be noted about this list. Even though line_count,
paren_count, brace_count, and comment_count are all different types, they are all
based on the type stat. This means that we can put them in an array called stat_list. This
design also makes it easy to add another statistic to the list. All we have to do is define a new
class and put a new entry in the stat_list.

Testing

To test this program, we came up with a small C++ program that contains every different type
of possible token. The results are shown in Example 26-2.

Example 26-2. stat/test.cc

/**
 * This is a multi-line comment *
 * T_COMMENT, T_NEWLINE *
 **/
const int LINE_MAX = 500; // T_ID, TOPERATOR, T_NUMBER

// T_L_PAREN, T_R_PAREN
static void do_file(const char *const name)
{

Page 464

Example 26-2 stat/test cc (Continued)

 // T_L_CURLY
 char *name = "Test" // T_STRING

 // T_R_CURLY
}
// T_EOF

Revisions

As it stands, the program collects a very limited set of statistics. It might be nice to add things
like average identifier size, per-procedure statistic, and pre-class statistics. One thing we kept
in mind when we designed our program is the need for expendability.

We stopped our statistics collection at four types of statistics because we had fulfilled our
mission to demonstrate a reasonable advanced set of C++ constructs. We didn't add more
because it would make the program too complex to fit in the chapter. On the whole, the
program does its job well.

A Final Warning

Just because you can generate a statistic doesn't mean that it's useful.

Program Files

The ch_type.h file

Example 26-3 stat/ch_type.h

/***
 * char_type -- Character type class *
 * *
 * Member functions: *
 * type -- returns the type of a character. *
 * (Limited to simple types) *
 * is(ch, char_type) -- check to see if ch is *
 * a member of the given type. *
 * (Works for derrived types as well.) *
 ***/
class char_type {
 public:
 enum CHAR_TYPE {
 C_EOF, // End of file character
 C_WHITE, // Whitespace or control character
 C_NEWLINE, // A newline character

Page 465

Example 26-3. stat/ch_type.h (Continued)

 C_ALPHA, // A letter (includes _)
 C_DIGIT, // A number

 C_OPERATOR, // Random operator
 C_SLASH, // The character '/'
 C_L_PAREN, // The character '('
 C_R_PAREN, // The character ')'
 C_L_CURLY, // The character '{'
 C_R_CURLY, // The character '}'
 C_SINGLE, // The character '\'
 C_DOUBLE, // The character '"'
 // End of simple types, more complex, derived types follow
 C_HEX_DIGIT,// Hexadecimal digit
 C_ALPHA_NUMERIC // Alpha numeric
 };
 private:
 static enum CHAR_TYPE type_
 info[256]; // Information on each character

 // Fill in a range of type info stuff
 void fill_range(int start, int end, CHAR_TYPE type);
 public:
 char_type(); // Initialize the data
 // ~char_type -- default destructor

 // Returns true if character is a given type
 int is(int ch, CHAR_TYPE kind);

 CHAR_TYPE type(int ch);
};

The ch_type.ccfile

Example 26-4. stat/chtype.cc

/***
 * ch_type package *
 * *
 * The class ch_type is used to tell the type of *
 * various characters. *
 * *
 * The main member functions are: *
 * is -- True if the character is the indicated *
 * type. *
 * type -- Return type of character. *
 ***/
#include <iostream.h>

#include "ch_type.h"

// Define the type information array
char_type::CHAR_TYPE char_type::type_info[256];

 * fill_range -- fill in a range of types for the *

Page 466

Example 26-4. stat/chtype cc (Continued)

 * character type class *

 * *
 * Parameters *
 * start, end -- range of items to fill in *
 * type -- type to use for filling *
 ***/
void char_type::fill_range(int start, int end, CHARTYPE type)
{
 int cur_ch;

 for (cur_ch = start; cur_ch <= end; ++cur_ch) {
 type_info[cur_ch] = type;
 }
}

/***
 * char_type::char_type -- initialize the char type table*
 ***/
char_type::char_type()
{
 fill_range(0, 255, C_WHITE);

 fill_range('A', 'Z', C_ALPHA);
 fill_range('a', 'z', C_ALPHA);
 type_info['_'] = C_ALPHA;

 fill_range('0', '9', C_DIGIT);

 type_info['!'] = C_OPERATOR;
 type_info['#'] = C_OPERATOR;
 type_info['$'] = C_OPERATOR;
 type_info['%'] = C_OPERATOR;
 type_info['^'] = C_OPERATOR;
 type_info['&'] = C_OPERATOR;
 type_info['*'] = C_OPERATOR;
 type_info['-'] = C_OPERATOR;
 type_info['+'] = C_OPERATOR;
 type_info['='] = C_OPERATOR;
 type_info['|'] = C_OPERATOR;
 type_info['~'] = C_OPERATOR;
 type_info[','] = C_OPERATOR;
 type_info[':'] = C_OPERATOR;
 type_info['?'] = C_OPERATOR;
 type_info['.'] = C_OPERATOR;
 type_info['<'] = C_OPERATOR;
 type_info['>'] = C_OPERATOR;

 type_info['/'] = C_SLASH;
 type_info['\n'] = C_NEWLINE;

 type_info['('] = C_L_PAREN;
 type_info[')'] = C_R_PAREN;

Page 467

Example 26-4. stat/ch_type.cc (Continued)

 type_info['{'] = C_L_CURLY;

 type_info['}'] = C_R_CURLY;

 type_info['"'] = C_DOUBLE;
 type_info['\''] = C_SINGLE;
}

int char_type::is(int ch, CHAR_TYPE kind)
{
 if (ch == EOF) return (kind == C_EOF);

 switch (kind) {
 case C_HEX_DIGIT:
 if (type_info[ch] == C_DIGIT)
 return (1);
 if ((ch >= 'A') && (ch <= 'F'))
 return (1);
 if ((ch >= 'a') && (ch <= 'f'))
 return (1);
 return (0);
 case C_ALPHA_NUMERIC:
 return ((type_info[ch] == C_ALPHA) ||
 (type_info[ch] == C_DIGIT));
 default:
 return (type_info[ch] == kind);
 }
};

char_type::CHAR_TYPE char_type::type(int ch)
 if (ch == EOF) return (C_EOF);
 return (type_info[ch]);
}

The token. file

Example 26-5. stat/token.h

/**
 * token -- token handling module *
 * *
 * Functions: *
 * next_token -- get the next token from the input *
 **/

/*
 * A list of tokens
 * Note, how this list is used depends on defining the macro T.
 * This macro is used for defining the tokens types themselves
 * as well as the string version of the tokens.
 */
#define TOKEN_LIST \

Page 468

Example 26-5. stat/token.h (Continued)

 T(T_NUMBER), /* Simple number (floating point or integer) */ \
 T(T_STRING), /* String or character constant */ \

 T(T_COMMENT), /* Comment */ \
 T(T_NEWLINE), /* Newline character */ \
 T(TOPERATOR), /* Arithmetic operator */ \
 T(T_L_PAREN), /* Character "(" */ \
 T(T_R_PAREN), /* Character ") */ \
 T(T_L_CURLY), /* Character "{" */ \
 T(T_R_CURLY), /* Character "}" */ \
 T(T_ID), /* Identifier */ \
 T(T_EOF) /* End of File */

/*
 * Define the enumerated list of tokens.
 * This makes use of a trick using the T macro
 * and our TOKEN_LIST
 */
#define T(x) x // Define T() as the name
enum TOKEN_TYPE {
 TOKENLIST
};
#undef T // Remove old temporary macro

// A list of the names of the tokens
extern const char *const TOKEN_NAMES[];

const int LINE_MAX = 500; // Longest possible line

/ ***
 * input_file -- data from the input file *
 * *
 * The current two characters are stored in *
 * curchar and next_char *
 * *
 * The member function read_char moves everyone up *
 * one character. *
 * *
 * The line is buffered and output everytime a newline *
 * is passed. *
 **/
class input_file: public ifstream {
 private:
 char line[LINE_MAX]; // Current line
 char *char_ptr; // Current character on the line
 public:
 int cur_char; // Current character (can be EOF)
 int next_char; // Next character (can be EOF)

 /*
 * Initialize the input file and read the first 2
 * characters.
 */

Page 469

Example 26-5. stat/token.h (Continued)

 input_file(const char *const name) : ifstream(name) {

 if (bad())
 return;
 cur_char = get();
 next_char = get();
 char_ptr = line;
 }

 /*
 * Write the line to the screen
 */
 void flushline()
 *char_ptr = '\0';
 cout << line;
 cout.flush();
 char_ptr = line;
 }
 /*
 * Advance one character
 */
 void read_char(void) {
 *charptr = cur_char;
 ++char_ptr;

 cur_char = next_char;
 next_char = get();
 }
};

#ifndef TRUE
#define TRUE 1 // Define a simple TRUE/FALSE value
#define FALSE 0
#endif /* TRUE */

/**
 * token class *
 * *
 * Reads the next token in the input stream *
 * and returns its type. *
 **/
class token {
 private:
 // True if we are in the middle of a comment
 int in_comment;

 // True if we need to read a character
 // (This hack is designed to get the new lines right)
 int need_to_read_one;

 // Read a /* */ style comment
 TOKEN_TYPE read_comment(input_file &in_file);
 public:

Page 470

Example 26-5 stat/token h (Continued)

 token(void) {

 in_comment = FALSE;
 need_to_read_one = 0;
 }

 // Return the next token in the stream
 TOKEN_TYPE next_token(input_file &in_file);
};

The token.ccfile

Example 26-6 stat/token.cc

/**
 * token -- token handling module *
 * *
 * Functions: *
 * next_token -- get the next token from the input *
 **/
#include <fstream.h>
#include <stdlib.h>

#include "ch_type.h"
#include "token.h"

/*
 * Define the token name list
 * This makes use of a trick using the T macro
 * and our TOKENLIST
 */
#define T(x) #x // Define x as a string
const char *const TOKEN_NAMES[] = {
 TOKENLIST
};
#undef T // Remove old temporary macro

static char_type char_type; // Character type information
/***
 * read_comment -- read in a comment *
 * *
 * Parameters *
 * infile -- file to read *
 * *
 * Returns *
 * Token read. Can be a T_COMMENT or TNEW_LINE *
 * depending on what we read. *
 * *
 * Multi-line comments are split into multiple *
 * tokens. *
 ***/
TOKEN_TYPE token::read_comment(input_file &in_file)
{

Page 471

Example 26-6 stat/token.cc (Continued)

 if (in_file.cur_char == '\n') {
 in_file.read_char();
 return (T_NEWLINE);
 }
 while (1)
 in_comment = TRUE;
 if (in_file.cur_char == EOF)
 cerr << "Error: EOF inside comment\n";
 return (T_EOF);
 }
 if (in_file.cur_char == '\n')
 return (T_COMMENT);
 if ((in_file.cur_char == '*') &&
 (in_file.next_char == '/'))
 in_comment = FALSE;
 // Skip past the ending */
 in_file.read_char();
 in_file.read_char();
 return (T_COMMENT);
 }
 in_file.read_char();
 }
}
/**
 * next_token -- read the next token in an input stream *
 * *
 * Parameters *
 * infile -- file to read *
 * *
 * Returns *
 * next token *
 **
TOKEN_TYPE token::next_token(input_file &in_file)
{

 if (need_to_readone)
 in_file.read_char();

 need_to_read_one = 0;

 if (in_comment)
 return (read_comment(in_file));

 while (char_type.is(in_file.cur_char, char_type::C_WHITE)) {
 in_file.read_char();
 }
 if (in_file.cur_char == EOF)
 return (T_EOF);

 switch (char_type.type(in_file.cur_char)) {
 case char_type::C_NEWLINE:
 in_file.read_char();

Page 472

Example 26-6 stat/token.cc (Continued)

 return (TNEWLINE);
 case char_type::C_ALPHA:
 while (chartype. is (in_file.cur_char,
 char_type::C_ALPHA_NUMERIC))
 in_file.read_char();
 return (TID);
 case char_type::C_DIGIT:
 in_file.read_char();
 if ((in_file.cur_char == 'X') || (in_file.cur_char == 'x')) {
 in_file.read_char();
 while (char_type.is(in_file.cur_char, char_type::C_HEX_
 in_file.read_char();
 return (T_NUMBER);
 }
 while (char_type.is(in_file.cur_char, char_type::CDIGIT))
 in_file.read_char();
 return (T_NUMBER);
 case char_type::C_SLASH:
 // Check for /* characters
 if (in_file.next_char == '*') {
 return (read_comment(in_file));
 }
 // Now check for double slash comments
 if (in_file.next_char == '/')
 while (1) {
 // Comment starting with // and ending with EOF is
lega
 if (in_file.cur_char == EOF)
 return (T_COMMENT);
 if (in_file.cur_char == '\n')
 return (T_COMMENT);
 in_file.read_char();
 }
 }
 // Fall through
 case char_type::C_OPERATOR:
 in_file.read_char();
 return (TOPERATOR);
 case char_type::C_L_PAREN:
 in_file.read_char();
 return (T_L_PAREN);
 case char_type::C_R_PAREN:
 in_file.readchar();
 return (TR_PAREN);
 case char_type::C_L_CURLY:
 in_file.read_char();
 return (T_L_CURLY);
 case char_type::C_R_CURLY:
 in_file.readchar();
 return (TR_CURLY);
 case char_type::C_DOUBLE:
 while (1) {
 in_file.read_char();

Page 473

Example 26-6. stat/token.cc (Continued)

 // Check for end of string
 if (in_file.cur_char == '"')
 break;

 // Escape character, then skip the next character
 if (in_file.cur_char == '\\')
 in_file.read_char();
 }
 in_file.read_char();
 return (T_STRING);
 case char_type::C_SINGLE:
 while (1) {
 in_file.read_char();
 // Check for end of character
 if (in_file.cur_char == '\')
 break;

 // Escape character, then skip the next character
 if (in_file.cur_char == '\\')
 in_file.read_char();
 }
 in_file.read_char();
 return (T_STRING);
 default:
 cerr << "Internal error: Very strange character\n";
 abort();
 }
 cerr << "Internal error: We should never get here\n";
 abort();
 return (T_EOF); // Should never get here either
 }

The stat.ccfile

Example 26-7 stat/stat.cc

/**
 * stat *
 * Produce statistics about a program *
 * *
 * Usage: *
 * stat [options] <file-list> *
 * *
 **/
#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <memory.h>

#include "chtype.h"
#include "token.h"

Page 474

Example 26-7. stat/stat.cc (Continued)

/**
 * stat -- general purpose statistic *
 * *
 * Member functions: *
 * take_token -- receives token and uses it to *
 * compute statistic *
 * line_start -- output stat at the beginning of *
 * a line *
 * eof -- output stat at the end of the file *
 **/
class stat {
 public:
 virtual void take_token(TOKEN_TYPE token) = 0;
 virtual void line_start(void) {};
 virtual void eof(void) {};
 // Default constructor
 // Default destructor
 // Copy constructor defaults as well (probably not used)
};

/**
 * line_counter -- handle line number / line count *
 * stat. *
 * *
 * Counts the number of T_NEW_LINE tokens seen and *
 * outputs the current line number at the beginning *
 * of the line. *
 * *
 * At EOF it will output the total number of lines *
 **/
class line_counter: public stat {
 private:
 int cur_line; // Line number for the current line
 public:
 // Initialize the line counter -- to zero
 line_counter(void) {
 cur_line = 0;
 };
 // Default destructor
 // Default copy constructor (probably never called)

 // Consume tokens, count the number of new line tokens
 void take_token(TOKEN_TYPE token)
 if (token == T_NEWLINE)
 ++cur_line;
 }

 // Output start of line statistics
 // namely the current line_number
 void line_start(void) {
 cout << setw(4) << cur_line << ' ' << setw(0);

Page 475

Example 26- 7. stat/stat.cc (Continued)

 }

 // Output eof statistics
 // namely the total number of lines
 void eof(void) {
 cout << "Total number of lines: " << cur_line << \n';
 }
};

/**
 * paren_counter -- count the nesting level of () *
 * *
 * Counts the number of T_LPAREN vs T_R_PAREN tokens *
 * and writes the current nesting level at the beginning*
 * of each line. *
 * *
 * Also keeps track of the maximum nesting level. *
 **/
class paren_counter: public stat {
 private:
 int cur_level; // Current nesting level
 int max_level; // Maximum nesting level
 public:
 // Initialize the counter
 paren_counter(void) {
 cur_level = 0;
 max_level = 0;
 };
 // Default destructor
 // Default copy constructor (probably never called)

 // Consume tokens, count the nesting of ()
 void take_token(TOKEN_TYPE token)
 switch (token) {
 case T_L_PAREN:
 ++cur_level;
 if (cur_level > max_level)
 max_level = cur_level;
 break;
 case T_R_PAREN:
 --cur_level;
 break;
 default:
 // Ignore
 break;
 }
 }
 }
 // Output start of line statistics
 // namely the current line number
 void line_start(void) {
 cout.setf(ios::left);

Page 476

Example 26-7. stat/stat.cc (Continued)

 cout.width(2);

 cout << '(' << cur_level << ' ';

 cout.unsetf(ios::left);
 cout.width();
 }

 // Output eof statistics
 // namely the total number of lines
 void eof(void) {
 cout << "Maximum nesting of () : " << max_level << '\n';
 }
};

/**
 * brace_counter -- count the nesting level of {} *
 * *
 * Counts the number of T_L_CURLY vs T_R_CURLY tokens *
 * and writes the current nesting level at the beginning*
 * of each line. *
 * *
 * Also keeps track of the maximum nesting level. *
 * *
 * Note: brace_counter and paren_counter should *
 * probably be combined. *
 **/
class brace_counter: public stat {
 private:
 int cur_level; // Current nesting level
 int max_level; // Maximum nesting level
 public:
 // Initialize the counter
 brace_counter(void)
 cur_level = 0;
 max_level = 0;
 };
 // Default destructor
 // Default copy constructor (probably never called)

 // Consume tokens, count the nesting of {}
 void take_token(TOKEN_TYPE token) {
 switch (token) {
 case T_L_CURLY:
 ++cur_level;
 if (cur_level > max_level)
 max_level = cur_level;
 break;
 case T_R_CURLY:
 --cur_level;
 break;
 default:

Page 477

Example 26-7 stat/stat.cc (Continued)

 // Ignore
 break;
 }
 }

 // Output start of line statistics
 // namely the current line number
 void line_start(void) {
 cout.setf(ios::left);
 cout.width(2);

 cout << '{' << cur_level << ' ';

 cout.unsetf(ios: :left);
 cout.width();
 }

 // Output eof statistics
 // namely the total number of lines
 void eof(void) {
 cout << "Maximum nesting of {} : "<< max_level << '\n';
 }
};

/**
 * comment_counter -- counts the number of lines *
 * with and without comments. *
 * *
 * Outputs nothing at the beginning of each line, but *
 * will output a ratio at the end of file *
 * *
 * Note: This class makes use of two bits: *
 * CF_COMMENT -- a comment was seen *
 * CF_CODE -- code was seen *
 * to collect statistics. *
 * *
 * These are combined to form an index into the counter *
 * array, so the value of these two bits is very *
 * important. *
 **/
static const int CFCOMMENT = (1<<0); // Line contains comment
static const int CF_CODE = (1<<1); // Line contains code
// These bits are combined to form the statistics
//
// 0 -- [0] Blank line
// CF_COMMENT -- [1] Comment only line
// CF_CODE -- [2] Code only line
// CF_COMMENTICF_CODE -- [3] Comments and code on this line

class comment_counter: public stat {
 private:
 int counters[4]; // Count of various types of stats

Page 478

Example 26-7. stat/stat.cc (Continued)

 int flags; // Flags for the current line
 public:
 // Initialize the counters
 comment_counter(void) {
 memset(counters, '\0', sizeof(counters));
 flags = 0;
 };
 // Default destructor
 // Default copy constructor (probably never called)

 // Consume tokens, count the proper item
 void take_token(TOKEN_TYPE token)
 switch (token) {
 case T_COMMENT:
 flags |= CF_COMMENT;
 break;
 default:
 flags |= CF_CODE;
 break;
 case T_NEWLINE:
 ++counters[flags];
 flags = 0;
 break;
 }
 }

 // void line_start(void) -- defaults to base

 // Output eof statistics
 // namely the total number of lines
 void eof(void) {
 cout << "Number of blank lines" <<
 counters[0] << '\n';
 cout << "Number of comment only lines" <<
 counters[1] << '\n';
 cout << "Number of code only lines" <<
 counters[2] << '\n';
 cout << "Number of lines with code and comments " <<
 counters[3] << '\n';
 cout.setf(ios::fixed);
 cout.precision(1);
 cout << "Comment to code ratio" <<
 float(counters[l] + counters[3]) /
 float(counters[2] + counters[3]) * 100.0 << "%\n";
 };
};

static line_counter line_count; // Counter of lines
static parencounter paren_count; // Counter of () levels
static brace_counter brace_count; // Counter of {} levels
static comment_counter comment_count; // Counter of comment info

Page 479

Example 26-7. stat/stat.cc (Continued)

// A list of the statistics we are collecting
static stat stat_list[] = {
 &line_count,
 &paren_count,
 &brace_count,
 &comment_count,
 NULL
};

/***
 * do_file -- process a single file *
 * *
 * Parameters *
 * name -- the name of the file to process *
 ***/
static void do_file(const char *const name)
{
 input_file in_file(name); // File to read
 token token; // Token reader/parser
 TOKEN_TYPE cur_token; // Current token type
 class stat **cur_stat; // Pointer to stat for collection/writing

 if (in_file.bad() {
 cerr << "Error: Could not open file << name << " for reading\n";
 return;
 }
 while (1)
 cur_token = token.next_token(in_file);
 for (cur_stat = stat_list; *cur_stat != NULL; ++cur_stat)
 (*cur_stat)->take_token(cur_token);
#ifdef DEBUG
 cout << " " << TOKEN_NAMES[cur_token] << '\n';
#endif /* DEBUG */

 switch (cur_token)
 case TNEWLINE:
 for (cur_stat = stat_list; *cur_stat != NULL; ++cur_stat)
 (*cur_stat)->line_start();
 in_file.flush_line();
 break;
 case TEOF:
 for (cur_stat = stat_list; *cur_stat != NULL; ++cur_stat)
 (*cur_stat)->eof();
 return;
 default:
 // Do nothing
 break;
 }
 }
}

Page 480

Example 26—7. stat/stat cc (Continued)

main(int argc, char *argv[])
{
 char *prog_name = argv[0]; // Name of the program

 if (argc == 1)
 cerr << "Usage is " << prog_name << "[options] <file-list>\n";
 exit (8);
 }

 for (/* argc set */; argc > 1; --argc)
 do_file(argv[1]);
 ++argv;
 }
 return (0);
}

UNIX Makefile for CC (Generic Unix)

Example 26-8 stat/makefile.unx

Makefile for many UNIX compilers using the
"standard" command name CC

CC=CC
CFLAGS=-g
OBJS= stat.o ch_type.o token.o

all: stat.out stat

stat.out: stat
 stat ../calc3/calc3.cc >stat.out

stat: $(OBJS)
 $(CC) $(CCFLAGS) -o stat $(OBJS)

stat.o: stat.cc token.h
 $(CC) $(CCFLAGS) -c stat.cc

ch_type.o: ch_type.cc ch_type.h
 $(CC) $(CCFLAGS) -c ch_type.cc

token.o: token.cc token.h ch_type.h
 $(CC) $(CCFLAGS) -c token.cc

clean:
 rm stat stat.o ch_type.o token.o

Page 481

UNIX Makefile for g++

Example 26-9. stat/makefile.gnu

Makefile for the Free Software Foundation's g++ compiler

CC=g++
CFLAGS=-g -Wall
OBJS= stat.o ch_type.o token.o

all: stat.out stat

stat.out: stat
 stat ../calc3/calc3.cc >stat.out

stat: $(OBJS)
 $(CC) $(CCFLAGS) -o stat $(OBJS)

stat.o: stat.cc token.h
 $(CC) $(CCFLAGS) -c stat.cc

ch_type.o: ch_type.cc ch_type.h
 $(CC) $(CCFLAGS) -c ch_type.cc

token.o: token.cc token.h chtype.h
 $(CC) $(CCFLAGS) -c token.cc

clean:
 rm stat stat.o ch_type.o token.o

Turbo C++ Makefile

Example 26-10. stat/makefile.tcc

Makefile for Borland's Turbo-C++ compiler

CC=tcc

Flags
-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings
-ml -- Large model

CFLAGS=-N -v -w -ml
OBJS= stat.obj ch_type.obj token.obj

all: stat.out stat.exe

stat.out: stat.exe

Page 482

Example 26-10. stat/makefile.tcc (Continued)

 stat ..\calc3\calc3.cpp >stat.out

stat.exe: $(OBJS)
 $(CC) $(CCFLAGS) -estat $(OBJS)

stat.obj: stat.cpp token.h
 $(CC) $(CCFLAGS) -c stat.cpp

ch_type.obj: ch_type.cpp ch_type.h
 $(CC) $(CCFLAGS) -c ch_type.cpp

token.obj: token.cpp token.h ch_type.h
 $(CC) $(CCFLAGS) -c token.cpp

clean:
 erase stat.exe stat.obj ch_type.obj token.obj

Borland-C++ Makefile

Example 26-11 stat/makefile.bcc

Makefile for Borland's Borland-C++ compiler

CC=bcc

Flags
-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings
-ml -- Large model

CFLAGS=-N -v -w -ml
OBJS= stat.obj ch_type.obj token.obj

all: stat.out stat.exe

stat.out: stat.exe
 stat ..\calc3\calc3.cpp >stat.out

stat.exe: $(OBJS)
 $(CC) $(CCFLAGS) -estat $(OBJS)

stat.obj: stat.cpp token.h
 $(CC) $(CCFLAGS) -c stat.cpp

ch_type.obj: ch_type.cpp ch_type.h
 $(CC) $(CCFLAGS) -c ch_type.cpp

token.obj: token.cpp token.h ch_type.h
 $(CC) $(CCFLAGS) -c token.cpp

Page 483

Example 26-11 stat/makefile.bcc (Continued)

clean:

 erase stat.exe stat.obj ch_type.obj token.obj

Microsoft Visual C++ Makefile

Example 26-12 stat/makefile.msc

Makefile for Microsoft Visual C++

CC=cl

Flags
AL -- Compile for large model
Zi -- Enable debugging
W1 -- Turn on warnings

CFLAGS=/AL /Zi /W1
OBJS= stat.obj ch_type.obj token.obj

all: stat.out stat.exe

stat.out: stat.exe
 stat ..\calc3\calc3.cpp >stat.out

stat.exe: $(OBJS)
 $(CC) $(CCFLAGS) $(OBJS)

stat.obj: stat.cpp token.h
 $(CC) $(CCFLAGS) -c stat.cpp

ch_type.obj: ch_type.cpp ch_type.h
 $(CC) $(CCFLAGS) -c ch_type.cpp

token.obj: token.cpp token.h ch_type.h
 $(CC) $(CCFLAGS) -c token.cpp

clean:
 erase stat.exe stat.obj ch_type.obj token.obj

Programming Exercises

Exercise 26-1: Write a program that checks a text file for doubled words.

Exercise 26-2: Write a program that removes four-letter words from a file and replaces them
with more acceptable equivalents.

Page 484

Exercise 26-3: Write a mailing list program. This program will read, write, sort and print
mailing labels.

Exercise 26-4: Update the statistics program presented in this chapter to add a cross-reference
capability.

Exercise 26-5: Write a program that takes a text file and splits each long line into two smaller

lines. The split point should be at the end of a sentence if possible, or at the end of a word if a
sentence is too long.

Page 485

27
From C to C++

In This Chapter:

 •• Overview
 •• K & R-Functions
 •• struct
 •• malloc and free
 •• Turning Structures

into Classes
 •• setjmp and longmp
 •• Summary
 •• Programming

Exercise

No distinction so little excites envl as that which is
derived from ancestors by a long descent.
—Françios De Salignac De La Mothe Fénclon

Overview

C++ was built on the older language C, and there's a lot of C code still around. That's both a
blessing and a curse. It's a curse because it means you'll probably have to deal with a lot of
ancient code. On the other hand, there will always be work for you. This chapter describes
some of the differences between C and C++ as well as how to migrate from one to the other.

K&R-Style Functions

Classic C (also called K&R C after its authors, Brian Kernighan and Dennis Ritchie) uses a
function header that's different from the one used in C++. In C++ the parameter types and names
are included inside the () defining the function. In Classic C, only the names appear. Type
information comes later:

 int do_it(char *name, int function) // C++ function definition
 {
 // Body of the function

 int do_it(name, function) // Classic C definition
 char *name;
 int function;
 {
 // Body of the function

Page 486

When C++ came along, the ANSI C committee decided it would be a good idea if C used the
new function definitions. However, because there was a lot of code out there using the old
method, C++ accepts both types of functions. Classic C does not require prototypes. In many
cases, prototypes are missing from

C programs. A function that does not have a prototype has an implied prototype of:

 int funct(...); // Default prototype for Classic C functions

Also, Classic C prototypes have no parameter lists. They merely consist of ''()," such as

 int do_it(); // Classic C function prototype

This tells C that do_it returns an int and takes any number of parameters. C does not
type-check parameters, so the following are legal calls to do_it:

 i = do_it();
 i = doit(1, 2, 3);
 i = do_it("Test", 'a');

C++ requires function prototypes, so you have to put them in. There are tools out there such as
the GNU prototize utility that help you by reading your code and generating function
prototypes. Otherwise, you will have to do it manually.

struct

In C++, when you declare a struct, you can use the structure as a type name. For example:

 struct sample {
 int i, j; // Data for the sample
 };
 sample sample_var; // Last sample seen

C is more strict. You must put the keyword struct before each variable declaration:

 struct sample sample_var; // Legal in C
 sample sample_var; // Illegal in C

malloc and free

In C++, you use the new operator to get memory from the heap and use delete to return the
memory. C has no built-in memory-handling operations. Instead, it makes use of two library
routines: malloc and free.

The function malloc takes a single parameter—the number of bytes to allocate—and returns a
pointer to them (as a char * or void *). But how do we know

Page 487

how big a structure is? That's where the sizeof operator comes in. It returns the number of
bytes in the structure. So to allocate a new variable of type struct foo we use the code:

 foo_var = (struct foo *)malloc(sizeof(struct foo));

Note that we must use a cast to turn the pointer returned by malloc into something useful. The
C++ syntax for the same operator is much cleaner:

 foo_var = new foo;

Suppose we want to allocate an array of three structures. Then we need to multiply our
allocation size by 3, resulting in:

 foo_var = (struct foo *)malloc(sizeof(struct foo) * 3);

The C++ equivalent is:

 foo_var = new foo[3];

The function calloc is similar to malloc except that it takes two parameters: the number of
elements in the array of objects and the size of a single element. Using our array of three foos
example, we get:

 foo_var = (struct foo*)calloc(3, sizeof(foo));

The other difference is that calloc initializes the structure to zero. Thus the C++ equivalent
is:

 foo_var = new foo[3];
 memset(foo_var, '\0', sizeof(foo) * 3);

Programs can freely mix C-style mallocs and C++ new calls. The C memory allocators are
messy, however, and should be converted to C++ whenever possible.

There are a number of traps concerning C-style memory allocation. Suppose we take our
structure foo and turn it into a class. We can but shouldn't use the C memory routines to
allocate space for the class:

 class foo {...};
 foo_var = (struct foo *)malloc(sizeof(struct foo)); // Don't code like
 this

Because C++ treats struct as a special form of class most compilers won't complain
about this code. The problem is that our malloc statement allocates space for foo and that's
all. No constructor is called, so it's quite possible that the class will not get set up correctly.

C uses the function free to return memory to the heap. The function free takes a single
character pointer as a parameter (thus making a lot of casting necessary):

 free((char *)foo_var);
 foo_var = NULL;

Page 488

In C++ this would be:

 delete foovar;
 foo_var = NULL;

for a simple variable and:

 delete []foo_array;
 foo_array = NULL;

when foo_array points to an array. Again, you must be careful when turning foo into a
class. The free function just returns the memory to the heap. It does not call the destructor for
foo.

C-style memory allocation is messy and risky. When converting to C++ you probably should
get rid of all malloc, calloc, and free calls whenever possible.

WARNING

According to the ANSI C draft standard, memory allocated by
malloc must be deallocated by free. Similarly, memory
allocated by new must be deallocated by delete. However, most
of the compilers I've seen implement new as a call to malloc and
delete as a call to free. In other words, mixing new/free or
malloc/free calls will usually work. To avoid errors, you
should follow the rules and avoid mixing C and C++ operations.

Turning Structures into Classes

Frequently when examining C code you may find a number of struct statements that look like
they should be classes. Actually, a structure is really just a data-only class with all the
members public.

C programmers frequently take advantage of the fact that a structure only contains data. One
example of this is reading and writing a structure to a binary file. For example:

 a_struct struct_var; // A structure variable

 // Perform a raw read to read in the structure
 read_size = read(fd, (char *)&struct_var, sizeof(struct_var));

 // Perform a raw write to send the data to a file
 write_size = write(fd, (char *)&struct_var, sizeof(struct_var));

Turning this structure into a class can cause problems. C++ keeps extra information, such as
virtual function pointers, in a class. When you write the class to disk using a raw write, you are
outputting all that information. What's worse, when you read the class in you overwrite this
bookkeeping data.

Page 489

For example, suppose we have the class:

 class sample {
 public:
 const int sample_size; // Number of samples
 int cur_sample; // Current sample number
 sample(void) : sample_size(100) {} // Set up class

 virtual void get_sample(); // Routine to get a sample
 };

Internally, this class consists of three member variables: a constant, sample_size (which
C++ won't allow you to change); a simple variable, cur_sample; and a pointer to the real
function to be used when get_sample is called. All three of these are written to disk by the
call:

 sample a_sample;
 // ...
 write_size = write(fd, (char *)&a_sample, sizeof(a_sample));

When this class is read, all three members are changed. That includes the constant (which we
aren't supposed to change) and the function pointer (which now probably points to something
strange).

C programmers also make use of the memset function to set all the members of a structure to
zero. For example:

 struct a_struct { ... }
 a_struct struct_var;
 // ...
 memset(&struct_var, '\0', sizeof(struct_var));

Again, be careful when turning a structure into a class. If we had used the class a_sample
instead of the structure struct_var, we would have zeroed the constant sample_size as
well as the virtual function pointer. The result would probably be a crash if we ever tried to
call get_sample.

setjmp and longjmp

C has its own way of handling exceptions through the use of setjmp and longjmp. The
setjmp function marks a place in a program. The longjmp function jumps to the place
marked by setjmp.

Normally setjmp returns a zero. This tells the program to execute normal code. When an
exception occurs, the longjmp call returns to the location of the setjmp function. The only
difference the program can see between a real setjmp call and a fake setjmp call caused
by a longjmp is that a normally setjmp returns a zero. When setjmp is "called" by
longjmp, the return value is controlled by a parameter to longjmp.

Page 490

The definition of the setjmp function is:

 #include <setjmp.h>

 int setjmp(jmp_buf env);

where:

env
is the place where setjmp saves the current environment for later use by longjmp

Returns

0

Normal call

Nonzero
Non-zero return codes are the result of a longjmp call.

The definition of the longjmp call is:
 void longjmp(jmp_buf env, int return_code);

where:

env
is the environment initialized by a previous setjmp call

return_code
is the return code that will be returned by the setjmp call

Figure 27-1 illustrates the control flow when using setjmp and longjmp

There is one problem here, however. The longjmp call returns control to the corresponding
setjmp. It does not call the destructors of any classes that are "destroyed" in the process.

In Figure 27-1 we can see that in the subroutine we define a class named a_list.
Normally we would call the destructor for a_list at the end of the function or at a return
statement. However, in this case we use longjmp to exit the function. Since longjmp is a C
function it knows nothing about classes and destructors and does not call the destructor for
a_list. So we now have a situation where a variable has disappeared but the destructor has
not been called. The technical name for this situation is a "foul-up."

When converting C to C++, change all setjmp/longjmp combinations into exceptions.

Page 491

Figure 27-1. setjmp/longjmp control flow

Summary

What you must do to get C to compile with a C++ compiler:

1. Change K&R-style function headers into standard C++ headers.

2. Add prototypes.

3. Change setjmp/longjmp calls into catch/throw operations.

Following these three steps you have a C+½ program. It works, but it's really a C program in
C++'s clothing. To convert it to a real C++ program you need to do the following:

4. Change malloc into new.

5. Change free into delete or delete [] calls.

6. Turn printf and scanf calls into cout and cin.

7. When turning struct declarations into class variables, be careful of read, write,
and memset functions that use the entire structure or class.

Programming Exercise

Exercise 27-1: There are a lot of C programs out there. Turn one into C++.

Page 493

28

C++'s Dustier Corners

In This Chapter:

 •• do/while
 •• goto
 •• The ?: Construct
 •• The Comma

Operator
 •• Overloading the ()

Operator
 •• Pointers to Members
 •• Vampire Features
 •• Answers to Chapter

Questions

There be of them that have left
a name behind them.
—Ecclesiasticus XLIV, 1

This chapter describes the few remaining features of C++ that are not described in any of the
previous chapters. It is titled C++'s Dustier Corners because these statements are hardly ever
used in real programming.

do/while

The do/while statement has the following syntax:

 do {
 statement;
 statement;
 } while (expression);

The program loops, tests the expression, and stops if the expression is false (0).

NOTE

This construct always executes at least once.

do/while is not frequently used in C++ because most programmers prefer to use a
while/break combination.

goto

All the sample programs in this book were coded without using a single goto. In actual
practice I find I use a goto statement about once every other year. For those rare times that a
goto is necessary, its syntax is:

goto label;

Page 494

where label is a statement label. Statement labels follow the same naming convention as
variable names. Labeling a statement is done as follows:

 label: statement;

For example:

 for (x = 0; x < X_LIMIT; ++x) {
 for (y = 0; y < Y_LIMIT; ++y) {
 if (data[x][y] == 0)
 goto found;
 }
 }
 cout << "Not found\n";
 exit(8);

 found:
 cout << Found at (" << x << ', << y << ")\n";

Question 28-1: Why does Example 28-1 not print an error message when an incorrect
command is entered? Hint: There is a reason I put this in the goto section.

Example 28-1. def/def.cc

#include <iostream.h>
#include <stdlib.h>

main()
{
 char line[10];

 while (1) {
 cout << "Enter add(a), delete(d), quit(q): ";
 cin.getline(line, sizeof(line));

 switch (line[0]) {
 case 'a':
 cout << "Add\n";
 break;
 case 'd':
 cout << "Delete\n";
 break;
 case 'q':
 cout << "Quit\n";
 exit(0);
 defualt:
 cout << Error: Bad command << line[0] << '\n';
 break;
 }
 }
 return (0);
}

Page 495

The ?: Construct

The ? and : operators work much the same as if/then/else. Unlike
if/then/else, the ?: operators can be used inside of an expression. The general form of
?: is:

 (expression) ? expr1 : expr2;

For example, the following assigns to amount_owed the value of the balance or zero,
depending on the amount of the balance:

 amount_owed = (balance < 0) ? 0 : balance;

The following macro returns the minimum of its two arguments:

 #define min(x, y) ((x) < (y) ? (x) : (y))

NOTE

It is better to define min as an inline function instead of as a
parameterized macro. See Chapter 10, The C++ Preprocessor, for
details.

The Comma Operator

The comma operator (,) can be used to group statements. For example:

 if (total < 0) {
 cout << "You owe nothing\n";
 total = 0;
 }

can be written as:

 if (total < 0)
 cout << "You owe nothing\n", total = 0;

In most cases, {} should be used instead of a comma. About the only place the comma operator
is useful is in a for statement. The following for loop increments two counters, two and
three, by 2 and 3:

 for (two = 0, three = 0;
 two < 10;
 two += 2, three += 3)
 cout << two << ' ' << three << '\n';

Overloading the () Operator

The "()" operator can be overloaded for a class to give the class a "default" function. For
example:

 class example {
 public:

Page 496

 int operator () (int i) {

 return (i * 2);
 }
 };
 //
 example example_var;

 j = example_var(3); // j is assigned the value 6 (3 * 2)

Overloading the () operator is rarely done. Normal member functions can easily be used for
the same purpose but have the advantage of providing the user with a function name.

Pointers to Members

The operator :: * is used to point to a member of a class. For example, in the following code
we declare data_ptr as a "pointer to an integer in sample":

 class sample {
 public:
 int i; // A couple of member variables
 int j;
 };

 int sample::* data_ptr;

Now data_ptr can point to either the i or the j member of sample. (After all, they are the
only integer members of sample.)

Let's set data_ptr so it points to the member i:

 data_ptr = &sample::i;

An ordinary pointer identifies a single item. A member pointer identifies a member but does
not identify an individual variable. All we've done is set data_ptr to a member of sample.
data_ptr does not point to a particular integer.

To use data_ptr you need to tell it which class you want:

 sample a_sample; // A typical sample
 sample b_sample;

 cout << a_sample.*data_ptr << '\n';
 cout << b_sample.*data_ptr << '\n'

The line:

 cout << a_sample.*data_ptr << '\n';

tells C++ that we want to print an element of the variable a_sample. The variable
data_ptr points to an integer member of sample. (The members i and j are our only
two integer members.)

Page 497

There is a shorthand notation for use with class pointers as well:

 sample *sample_ptr = &samplel;

 cout << sample_ptr->*data_ptr << '\n';

The syntax for pointers to members is a little convoluted and not terribly useful. I've only seen
it used once by an extremely clever programmer. (The first maintenance programmer who got
the code immediately ripped it out anyway.)

Vampire Features

This section discusses features that have been defined in the draft C++ standard* but have not
yet been implemented in any of the currently available compilers.** ''Vampire features" are
those features of a language that have yet to see the light of day.

Because I've been unable to actually use these features, the information presented here is a bit
sketchy.

bool
Boolean type that can be either true or false

const_cast
A new version of a cast that makes the result constant

dynamic_cast
A new casting operator that makes use of runtime-type information to allow safe casting
between types

false
New constant for use with the bool type

mutable
Modifier that indicates that a member of a constant instance of a class can be changed

namespace
This keyword allows the programmer to better divide up the program into different name
spaces or sorts of modules

reinterpret_cast
A cast that helps the programmer safely cast from a base class to a derived class

* Working Paper for Draft Proposed International Standard for information Systems—Programming
Language C++ (20 September 1994), American National Standards Institute.

** Turbo-C++, Borland C++ Version 4 5, SunPro CC Version 4.0, g++ Version 2.5.8

Page 498

static_cast
Another new casting operator

true
New constant for use with the bool type

typeid
Allows the programmer to get type information from inside the program at runtime

NOTE

Many header files define macros for "bool," "true," and "false." This
does not present a problem with compilers that have not yet
implemented the bool type. However, as soon as the compiler
makers catch up with the standard, such macros will cause
problems.

Answers to Chapter Questions

Answer 28-1: The compiler didn't see our default line because we misspelled "default" as
"defualt." This was not flagged as an error because "defualt" is a valid goto label. That's why
when we compile the program we get the warning:

def.c(26): warning: defualt unused in function main

which means we defined a label for a goto, but never used it.

Page 499

29
Programming Adages

In This Chapter:

 •• General
 •• Design
 •• Declarations
 •• switch Statement
 •• Preprocessor
 •• Style
 •• Compiling
 •• The Ten Command-

ments for C++
Programmers

 •• Final Note
 •• Answers to Chapter

Questions

Second thoughts are ever wiser
—Euripides

General

• Comment, comment, comment. Put a lot of comments in your program. They tell other
programmers what you did. They also tell you what you did.

• Use the "KISS" principle (Keep It Simple, Stupid). Clear and simple is better than complex
and wonderful.

• Avoid side effects. Use ++ and -- on lines by themselves.

• Never put an assignment inside a conditional. Never put an assignment inside any other
statement.

• Know the difference between = and ==. Using = for == is a very common mistake and is
difficult to find.

• Never do "nothing" silently.

 // Don't program like this
 for (index = 0; data[index] < key; ++index);
 // Did you see the semicolon at the end of the last line?

Always put in a comment.

 for (index = 0; data[index] < key; ++index)
 /* Do nothing */;

• Practice coding. Practice is crucial for people involved in almost every other profession
that requires a significant level of skill and creativity (e.g., artists, athletes). Help others
learn to program. It makes good practice for you to go over what you already know, or
think you know.

Page 500

Design

• If you come to a choice between a relatively "quick hack" or a somewhat more involved
but more flexible solution, always go for the more flexible solution. You're more likely to
reuse it or learn from it. You're also more likely to be thankful later on when requirements
shift a little and your code is ready for it.

• Never trust any user input to be what you expect. What would your program do at any given
point if a cat walked across the keyboard, several times?

• Watch out for signed-unsigned conversions and over/underflow conditions.

Declarations

• Put variable declarations one per line and comment them.

• Make variable names long enough to be easily understood, but not so long that they are
difficult to type in. (Two or three words is usually enough.)

• Never use default return declarations. If a function returns an integer, declare it as type
int.

switch Statement

• Always put a default case in a switch statement. Even if it does nothing, put it in:

 switch (expression)
 default:
 /* Do nothing */;
 break;
 }

• Every case in a switch should end with a break or a /* fall through */
statement.

Preprocessor

• Always put parentheses, (), around each constant expression defined by a pre-processor
#define directive:

 #define BOX_SIZE (3 * 10) /* Size of the box in pixels */

• Put () around each argument of a parameterized macro:

 #define SQUARE(x) ((x) * (x))

• Surround macros that contain complete statements with curly braces:

 // A fatal error has occurred. Tell user and abort
 #define DIE(msg) {(void)printf(msg);exit(8);}

Page 501

• When using the #ifdef/#endif construct for conditional compilation, put the
#define and #undef statements near the top of the program and comment them.

• Whenever possible, use const instead of #define.

• The use of inline functions is preferred over the use of parameterized macros.

Style

• A single block of code enclosed in {} should not span more than a couple of pages. Split
up any bigger blocks into several smaller, simpler procedures.

• When your code starts to run into the right margin, it's about time to split the procedure into
several smaller, simpler procedures.

• Always define a constructor, destructor, and copy constructor for a class. If using the C++
defaults, "define" these routines with a comment such as:

 class example {
 public:
 // Example -- default constructor

Compiling

• Always create a Makefile so others will know how to compile your program.

• When compiling, turn on all the warning flags. You never know what the compiler might
find.

The Ten Commandments for C++ Programmers

By Phin Straite

1. Thou shalt not rely on the compiler default methods for construction, destruction, copy
construction, or assignment for any but the simplest of classes. Thou shalt forget these "big
four" methods for any nontrivial class.

2. Thou shalt declare and define thy destructor as virtual such that others may become heir to
the fruits of your labors.

3. Thou shalt not violate the "is-a" rule by abusing the inheritance mechanism for thine own
twisted perversions.

4. Thou shalt not rely on any implementation-dependent behavior of a compiler, operating
system, or hardware environment, lest thy code be forever caged within that dungeon.

Page 502

5. Thou shalt not augment the interface of a class at the lowest level without most prudent
deliberation. Such ill-begotten practices imprison thy clients unjustly into thy classes and
create unrest when code maintenance and extension are required.

6. Thou shalt restrict thy friendship to truly worthy contemporaries. Beware, for thou art
exposing thyself rudely as from a trenchcoat.

7. Thou shalt not abuse thy implementation data by making it public or static except in the
rarest of circumstances. Thy data are thine own; share it not with others.

8. Thou shalt not suffer dangling pointers or references to be harbored within thy objects.
These are nefarious and precarious agents of random and wanton destruction.

9. Thou shalt make use of available class libraries as conscientiously as possible. Code
reuse, not just thine own but that of thy clients as well, is the holy grail of OO.

10. Thou shalt forever forswear the use of the vile printf/scanf, rather favoring the
flowing streams. Cast off thy vile C cloak and partake of the wondrous fruit of
flexible and extensible I/O.

Final Note

Just when you think you've discovered all the things C++ can do to you—think again. There are
still more surprises in store.

Question 29-1: Why does Example 29-1 think everything is two? (This inspired the last
adage)

Example 29-1 not2/not2.cc

#include <iostream.h>

main()
{
 int number;

 cout << "Enter a number: ";

 cin >> number;

 if (number =! 2)
 cout << "Number is not two\n";
 else
 cout << "Number is two\n";

 return (0);
}

Page 503

Answers to Chapter Questions

Answer 29-1: The statement (number =! 2) is not a relational equation, but an assignment
statement. It is equivalent to:

 number = (!2);

(Because 2 is nonzero, !2 is zero.)

The programmer accidently reversed the not equals != so it became =!. The statement should
read:

 if (number != 2)

 Page 505

VI
Appendixes

Page 507

A
ASCII Table

Table A-1. ASCII Character Chart

Dec. Oct. Hex. Char. Dec. Oct. Hex. Char.

0 000 00 NUL 23 027 17 ETB

1 001 01 SOH 24 030 18 CAN

2 002 02 STX 25 031 19 EM

3 003 03 ETX 26 032 1A SUB

4 004 04 EOT 27 033 B ESC

5 005 05 ENQ 28 034 C FS

6 006 06 ACK 29 035 1D GS

7 007 07 BEL 30 036 E RS

8 010 08 BS 31 037 1F US

9 011 09 HT 32 040 20 SP

10 012 OA NL 33 041 21 '

11 013 OB VT 34 042 22 "

12 014 0C NP 35 043 23 #

13 015 0D CR 36 044 24 $

14 016 0E SO 37 045 25 %

15 017 0F SI 38 046 26 &

16 020 10 DLE 39 047 27 .

17 021 11 DC1 40 050 28 (

18 022 12 DC2 41 051 29)

19 023 13 DC3 42 052 2A *

20 024 14 DC4 43 053 2B +

21 025 15 NAK 44 054 2C '

22 026 16 SYN 45 055 2D -

Page 508

Table A-1. ASCII Character Chart (Continued)

Dec. Oct. Hex. Char. Dec. Oct. Hex. Char.

46 056 2E . 82 122 52 R

47 057 2F / 83 123 53 S

48 060 30 0 84 124 54 T

49 061 31 1 85 125 55 U

50 062 32 2 86 126 56 V

51 063 33 3 87 127 57 W

52 064 34 4 88 130 58 X

53 065 35 5 89 131 59 Y

54 066 36 6 90 132 5A Z

55 067 37 7 91 133 5B [

56 070 38 8 92 134 5C \

57 071 39 9 93 135 5D]

58 072 3A : 94 136 5E A

59 073 3B ; 95 137 5F _

60 074 3C < 96 140 60 '

61 075 3D = 97 141 61 a

62 076 3E > 98 142 62 b

63 077 3F ? 99 143 63 c

64 100 40 @ 100 144 64 d

65 101 41 A 101 145 65 e

66 102 42 B 102 146 66 f

67 103 43 C 103 147 67 g

68 104 44 D 104 150 68 h

69 105 45 E 105 151 69 i

70 106 46 F 106 152 6A j

71 107 47 G 107 153 6B k

72 110 48 H 108 154 6C 1

73 111 49 I 109 155 6D m

74 112 4A J 110 156 6E n

75 113 4B K 111 157 6F o

76 114 4C L 112 160 70 p

77 115 4D M 113 161 71 q

78 116 4E N 114 162 72 r

79 117 4F O 115 163 73 s

80 120 50 P 116 164 74 t

81 121 51 Q 117 165 75 u

Page 509

Table A-1. ASCII Character Chart (Continued)

Dec. Oct. Hex. Char.

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B {

124 174 7C |

125 175 7D }

126 176 7E ~

127 177 7F DEL

Page 511

B
Ranges

Tables B-1 and B-2 list the ranges of various variable types.

Table B-1. 32-bit UNIX Machine

Name Bits Low Value High Value Accuracy

int 32 -2,147,483,648 2,147,483,647

int 32 -2,147,483,648 2,147,483,647

short int 16 -32,768 32,767

long int 32 -2,147,483,648 2,147,483,647

unsigned int 32 0 4,294,967,295

unsigned short int 16 0 65,535

unsigned long int 32 0 4,294,967,295

char 8 System Dependent

unsigned char 8 0 255

float 32 -3.4E+38 3.4E+38 6 digits

double 64 -1.7E+308 1.7E+308 15 digits

long double 64 -1.7E+308 1.7E+308 15 digits

Table B-2 Turbo-C++, Borland C++, and Most Other 16-bit Systems

Name Bits Low Value High Value Accuracy

int 16 -32,768 32,767

short int 16 -32,768 32,767

long int 32 -2,147,483,648 2,147,483,647

unsigned int 16 0 65,535

Page 512

Table B-2. Turbo-C++, Borland C++, and Most Other 16-bit Systems (Continued)

Name Bits Low Value High Value Accuracy

unsigned short int 16 0 65,535

unsigned long int 32 0 4,294,967,295

char 8 -128 127

unsigned char 8 0 255

float 32 -3.4E+38 3.4E+38 6 digits

double 64 -1.7E+308 1.7E+308 15 digits

long double 80 -3.4E+4932 3.4E+4932 17 digits

Page 513

C
Operator Precedence Rules

Practical Subset of the Operator Precedence Rules

Table C-1. Practical Operator Precedence Rules

Precedence Operator

1 * (multiply) / %

2 + –

Put parentheses around everything else.

Standard Rules

Table C-2. Standard C++ Precedence Rules

Precedence Operators

1 () [] -> .

:: ::* ->* .*

2 ! ~ ++ -- (type)

- (unary) * (de-reference)

& (address of) sizeof

3 * (multiply) / %

4 + -

5 << >>

6 < <= > >=

7 == !=

8 & (bitwise AND)

Page 514

Table C-2. Standard C++ Precedence Rules (Continued)

Table C-2. Standard C++ Precedence Rules (Continued)

Precedence Operators

9 ^

10 |

11 &&

12 | |

13 ?:

14 = += -= etc.

15 ,

Page 515

D
Computing sine Using a Power Series

This program is designed to compute the sine function using a power series. A very limited
floating-point format is used to demonstrate some of the problems that can occur when using
floating point.

The program computes each term in the power series and displays the result. It continues
computing terms until the last term is so small that it doesn't contribute to the final result. For
comparison purposes, the result of the library function sin is displayed as well as the
computed sine.

The program is invoked by:

 sine value

where value is an angle in radians. For example, to compute sin(0) we use the command:

 % sine 0
 x**l O.OOOE+00
 1! 1.OOOE+00
 x**1/1! O.OOOE+00
 1 term computed
 sin(O.OOOE+00)=
 0.OOOE+00
 Actual sin(0)=0

And to compute sin(ππ) we use the command:

 % sine 3.141
 x**1 3.141E+00
 1! 1.OOOE+00
 x**1/1! 3.141E+00

 total 3.141E+00

 x**3 3.099E+01
 3! 6.000E+00

Page 516

 x**3/3! 5.165E+00
 total -2.024E+00

 x**5 3.057E+02
 5! 1.200E+02
 x**5/5! 2.548E+00
 total 5.239E-01

 x**7 3.016E+03
 7! 5.040E+03
 x**7/7! 5.985E-01
 total -7.457E-02

 x**9 2.976E+04
 9! 3.629E+05
 x**9/9! 8.201E-02
 total 7.438E-03

 x**11 2.936E+05
 11! 3.992E+07
 x**11/1! 7.355E-03
 total 8.300E-05

 x**13 2.897E+06
 13! 6.227E+09
 x**13/13! 4.652E-04
 total 5.482E-04

 x**15 2.858E+07
 15! 1.308E+12
 x**15/15! 2.185E-05
 total 5.263E-04

 x**17 2.819E+08
 17! 3.557E+14
 x**17/17! 7.927E-07
 total 5.271E-04

 x**19 2.782E+09
 19! 1.217E+17
 x**19/19! 2.287E-08
 total 5.271E-04

 x**21 2.744E+10
 21! 5.109E+19
 x**21/21! 5.371E-10
 11 term computed
 sin(3.141E+00)=
 5.271E-04
 Actual sin(3.141)=0.000592654

Page 517

Makefile

Makefilefor UNIX

Example D-1. sin/Makefile

sine: sine.cc
 g++ -g -Wall -o sine sine.cc -lm

clean:
 rm sine
Makefile for Turbo-C++
[File: sin/Makefile.dos]

Makefile for Borland's Turbo-C++ compiler

CC = tcc

Flags
-N -- Check for stack overflow
-v -- Enable debugging
-w -- Turn on all warnings
-ml -- Large model
-A -- Force ANSI compliance

CFLAGS = -N -v -w -ml -A

sine.exe: sine.c
 $(CC) $(CFLAGS) -esine sine.c

Program: sine. cc

Example D-2. sine/sine cc

/**
 * sine -- compute sine using very simple floating *
 * arithmetic *
 * *
 * Usage: *
 * sine <value> *
 * *
 * <value> is an angle in radians *
 * *
 * Format used in f.fffe+X *
 * *
 * f.fff is a 4-digit fraction *
 * + is a sign (+ or -) *
 * X is a single-digit exponent *
 * *
 * sin(x) = x - x**3 + x**5 - x**7 *
 * ----- ---- ---- *
 * 3! 5! 7! *
 * *

Page 518

Example D-2 sine/sine.cc (Continued)

 * Warning: This program is intended to show some of *
 * problems with floating point. It is not *
 * intended to be used to produce exact values for *
 * the sine function. *
 * *
 * Note: Even though we specify only one digit for the *
 * exponent, two are used for some calculations. *
 * This is due to the fact that printf has no *
 * format for a single-digit exponent. *
 **/
#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

main(int argc, char *argv[])
{
 float total; // Total of series so far
 float new_total;// Newer version of total
 float term_top;// Top part of term
 float term_bottom;// Bottom of current term
 float term; // Current term
 float exp; // Exponent of current term
 float sign; // +1 or -1 (changes on each term)
 float value; // Value of the argument to sin
 int index; // Index for counting terms

 char *float_2_ascii(float number); // Turn floating point to
ASCII
 float fix_float(float number); // Round to correct digits
 float factorial(float number); // Compute n!

 if (argc != 2) {
 cerr << "Usage is:\n";
 cerr << " sine <value>\n";
 exit (8);
 }

 value = fix_float(atof(&argv[1][0]));

 total = 0.0;
 exp = 1.0;
 sign = 1.0;

 for (index = 0; /* Take care of below */ ; ++index)
 term_top = fix_float(pow(value, exp));
 term_bottom = fix_float(factorial(exp));
 term = fix_float(term_top / term_bottom);
 cout << x**" << int(exp) << " " <<
 float_2_ascii(term_top) << '\n';
 cout << exp << "! " << float_2_ascii(term_bottom) <<
'\n';

 cout << "x**" << int(exp) << "/" << int(exp) << "! " <<
 float_2_ascii(term) << "\n";

Page 519

Example D-2 sine/sine cc (Continued)

 new_total = fix_float(total + sign * term);
 if (new_total == total)
 break;

 total = new_total;
 sign = -sign;
 exp = exp + 2.0;
 cout <<" total "<< float_2_ascii(total) << '\n';
 cout <<'\n';
 }
 cout << index +1 << " term computed\n";
 cout << "sin(" << float_2_ascii(value) << ")=\n";
 cout << " " << float_2_ascii(total) << '\n';
 cout << "Actual sin(" << atof(&argv[1][0]) << ")=" <<
 sin(atof(&argv[1][0])) << '\n';
 return (0);
}
/**
 * float_2_ascii -- turn a floating point string *
 * into ASCII *
 * *
 * Parameters *
 * number -- number to turn into ASCII *
 * *
 * Returns *
 * pointer to the string containing the number *
 * *
 * Warning: Uses static storage, so later calls *
 * overwrite earlier entries *
 **/
char float_2_ascii(float number)
{
 static char result[10]; // Place to put the number

 sprintf(result, "%8.3E", number);
 return (result);
}
/**
 * fix_float -- turn high-precision numbers into *
 * low-precision numbers to simulate a *
 * very dumb floating-point structure *
 * *
 * Parameters *
 * number -- number to take care of *
 * *
 * Returns *
 * number accurate to 5 places only *
 * *
 * Note: This works by changing a number into ASCII and *
 * back. Very slow, but it works. *

 **/

Page 520

Example D-2. sine/sine.cc (Continued)

float fix_float(float number)
{
 float result; // Result of the conversion
 char ascii[10]; // ASCII version of number

 (void)sprintf(ascii, "%8.4e", number);
 (void)sscanf(ascii, "%e", &result);
 return (result);
}

/**
 * factorial -- compute the factorial of a number *
 * *
 * Parameters *
 * number -- number to use for factorial *
 * *
 * Returns *
 * factorial(number) or number! *
 * *
 * Note: Even though this is a floating-point routine, *
 * using numbers that are not whole numbers *
 * does not make sense *
 **/
float factorial(float number)
{
 if (number <= 1.0)
 return (number);
 else
 return (number *factorial(number - 1.0));
}

Page 521

Glossary

^ Symbol for the bitwise exclusive OR operator.

~ Symbol for the bitwise complement operator. Inverts all bits.

! Symbol for the logical NOT operator.

!= Not-equal relational operator.

{} See curly braces.

| Symbol for the bitwise OR operator.

|| Symbol for the logical OR operator.

% Symbol for the modulus operator.

& 1. Symbol for the bitwise AND operator.

2. A symbol used to precede a variable name (as in &x). Means the address of the named
variable (address of x). Used to assign a value to a pointer variable.

Used to declare a reference variable.

&& Symbol for the logical AND operator (used in comparison operations).

* 1. Symbol for the multiply operator.

2. Symbol used to precede a pointer variable name that means get the value stored at the
address pointed to by the pointer variable. (*x means get the value stored at x.) Sometimes
known as the de-referencing operator or indirect operator.

+ Symbol for the add operator.

++ Symbol for the incrementation operator.

- Symbol for the subtract operator.

Page 522

-- Symbol for the decrementation operator.

-> Used to obtain a member from a class or structure pointer.

->* Indicates the item pointed to by a "pointer to member."

/ Symbol for the divide operator.

< Less-than relational operator.

<< 1.Symbol for the left shift operator.

2.Used by the iostream package for output.

:: Scope operator. Used to indicate which class a particular identifier belongs to.

::* Used to declare a pointer to a class member.

<= Less-than-or-equal-to relational operator.

== Equal relational operator.

> Greater-than relational operator.

>= Greater-than-or-equal-to relational operator.

>> 1.Symbol for the right shift operator.

2.Used by the iostream package for input.

'\0'

End-of-string character (the NULL character).

#define
A C++ preprocessor directive that defines a substitute text for a name.

#endif
The closing bracket to a preprocessor macro section that began with an #ifdef
directive.

#ifdef
Preprocessor directive that checks to see whether a macro name is defined. If defined, the
code following it is included in the source.

#ifndef
Preprocessor directive that checks to see whether a macro name is undefined. If it is
currently undefined, the code following is included in the macro expansion.

#include
A preprocessor directive that causes the named file to be inserted in place of the
#include.

#undef
A preprocessor directive that cancels a #define.

Page 523

_ptr
A convention used in this book. All pointer variables end with the extension _ptr.

A

abstract class
A class containing one or more pure virtual functions.

accuracy
A quantitative measurement of the error inherent in the representation of a real number.

address
A value that identifies a storage location in memory.

AND
A Boolean operation that yields 0 if either operand is 0 and 1 if both operands are 1.

ANSI C
Any version of C that conforms to the specifications of the American National Standards
Institute Committee X3J.

ANSI C++
Any version of C++ that conforms to the specifications of the American National
Standards Institute. At the time of this writing, the standards exist only in draft form and
there are still a lot of details to be worked out.

array

A collection of data elements arranged to be indexed in one or more dimensions. In C++,
arrays are stored in contiguous memory.

ASCII
American Standard Code for Information Interchange. A code to represent characters.

assignment statement
An operation that stores a value in a variable.

auto
A C++ keyword used to create temporary variables.

automatic variable
See temporary variable.

B

base class
A class that is used as the base for a derived class.

bit
Binary digit; either of the digits 0 or 1.

Page 524

bit field
A group of contiguous bits taken together as a unit. This C++ language feature allows the
access of individual bits.

bit flip
The inversion of all bits in an operand. See also complement.

bit operator
See bitwise operator.

bitmapped graphics
Computer graphics where each pixel in the graphic output device is controlled by a single
bit or a group of bits.

bitwise operator
An operator that performs Boolean operations on two operands, treating each bit in an
operand as individual bits and performing the operation bit by bit on corresponding bits.

block
A section of code enclosed in curly braces.

Borland C++
A version of the C++ language for personal computers developed by Borland. This is the
high-end version of Borland's Turbo-C++ product.

boxing (a comment)
The technique of using a combination of asterisks, vertical and horizontal rules, and other
typographic characters to draw a box around a comment in order to set it off from the code.

break
A statement that terminates the innermost execution of for, while, switch, and
do/while statements.

breakpoint
A location in a program where normal execution is suspended and control is turned over to
the debugger.

buffered I/O
Input/output where intermediate storage (a buffer) is used between the source and
destination of an I/O stream.

byte
A group of eight bits.

C

C
A general-purpose computer programming language developed in 1974 at Bell
Laboratories by Dennis Ritchie. C is considered to be a medium- to high-level language.

Page 525

C++
A language based on C invented in 1980 by Bjarne Stroustrup. First called ''C with
classes," it has evolved into its own language.

C++ code
Computer instructions written in the C++ language.

C++ compiler
Software that translates C++ source code into machine code.

C++ syntax
See syntax.

call by reference
A parameter-passing mechanism where the actual parameter is not passed to a function,
but instead a pointer is used to point to it. (See also call by value.)

call by value
A procedure call where the parameters are passed by passing the values of the
parameters. (See also call by reference.)

case
Acts as a label for one of the alternatives in a switch statement.

cast
To convert a variable from one type to another type by explicitly indicating the type
conversion.

cerr

Standard error stream for C++. (Corresponds to C's stderr.)

CFront
A program to translate C++ code into C code. This program was the basis for the first
C++ compilers. Currently not used for most compilers, as many native C++ compilers
now exist.

CGA
Color graphics adapter. A common color graphics card for the IBM PC.

char
A C++ keyword used to declare variables that represent characters or small integers.

cin
Character in. Standard input stream for C++. (Corresponds to C's stdin.)

class
A data structure consisting of different data types, protections for the members, and
functions to manipulate them.

Page 526

class (of a variable)
See storage class.

clear a bit
The operation of setting an individual bit to zero. This is not a defined operation in C++.

clog
Standard log file for C++.

code design
A document that describes in general terms how the program is to perform its function.

coding
The act of writing a program in a computer language.

command-line options
Options to direct the course of a program, such as a compiler, that are entered from the
computer console.

comment
Text included in a computer program for the sole purpose of providing information about
the program. Comments are a programmer's notes to himself and future programmers. The
text is ignored by the compiler.

comment block
A group of related comments that convey general information about a program or a section
of program.

compilation
The translation of source code into machine code.

compiler
A system program that does compilation.

compiling
See compilation.

complement
An arithmetic or logical operation. A logical complement is the same as an invert or NOT

operation.

computer language
See programming language.

conditional compilation
The ability to selectively compile parts of a program based on the truth of conditions tested
in conditional directives that surround the code.

Page 527

continue
A flow control statement that causes the next execution of a loop to begin.

control statement
A statement that determines which statement is to be executed next based on a conditional
test.

control variable
A variable that is systematically changed during the execution of the loop. When the
variable reaches a predetermined value, the loop is terminated.

conversion specification
A C string used by the printf family of functions that specifies how a variable is to be
printed.

cout
Standard output for C++ programs. (Corresponds to C's stdout.)

curly braces
One of the characters { or }. They are used in C++ to delimit groups of elements to treat
them as a unit.

D

debugging
The process of finding and removing errors from a program.

decision statement
A statement that tests a condition created by a program and changes the flow of the program
based on that decision.

declaration
A specification of the type and name of a variable to be used in a program.

default
Serves as a case label if no case value match is found within the scope of a switch.

define statement
See #define.

delete
A directive that returns a class or variable created by new to the heap.

de-referencing operator
The operator that indicates access to thc value pointed to by a pointer variable or an
addressing expression. See also *

derived class
A class built on top of another, baseass.

Page 528

directive
A command to the preprocessor (as opposed to a statement to produce machine code).

double
A C++ language keyword to declare a variable that contains a real number. The number
usually requires twice as much storage as type float.

double linked list
A linked list with both forward and backward pointers. See also linked list.

double quotation mark
ASCII character 34. Used in C++ to delimit character strings.

E

EGA
Enhanced graphics adapter. A common graphics card for the IBM PC.

else
A clause in an if statement specifying the action to take in the event that the statement
following the if conditional is false.

enum
A C++ keyword that defines an enumerated data type.

enumerated data type
A data type consisting of a named set of values. The C++ compiler assigns an integer to
each member of the set.

EOF
End-of-file character defined in stdio.h.

escape character
A special character used to change the meaning of the character(s) that follow. This is
represented in C++ by the backslash character, \.

exclusive OR
A Boolean operation that yields 0 if both operands are the same and 1 if they are different.

executable file
A file containing machine code that has been linked and is ready to be run on a computer.

exponent
The component of a floating-point number that represents the integer power to which the
number base is raised in order to determine the represented number.

exponent overflow
A condition resulting from a floating-point operation where the result is an exponent too
large to fit within the bit field allotted to the exponent.

Page 529

exponent underflow
A condition resulting from a floating-point operation where the result is an exponent too
large in negative value to fit within the bit field allotted to the exponent.

extern
C++ keyword used to indicate that a variable or function is defined outside the current file.

F

fast prototyping
A top-down programming technique that consists of writing the smallest portion of a
specification that can be implemented that will still do something.

fclose
A function that closes a file. From the old C-style I/O package stdio.

fflush
A routine to force the flushing of a buffer. From the old C-style I/O package stdio.

fgetc
A function that reads a single character. From the old C-style I/O package stdio.

fgets
A stream input library function that reads a single line. From the old C-style I/O package
stdio.

FILE
A macro definition in stdio that declares a file variable. From the old C-style I/O package
stdio.

file
A group of related records treated as a unit.

float
A C++ keyword to declare a variable that can hold a real number.

floating point

A numbering system represented by a fraction and an exponent. The system handles very
large and very small numbers.

floating-point exception (core dumped)
An error caused by a divide-by-0 or other illegal arithmetic operation. It is a somewhat
misleading error because it is caused by integer as well as floating-point errors.

floating-point hardware
Circuitry that can perform floating-point operations directly without resorting

Page 530

to software. In personal computers, it is found in the math coprocessor. More advanced
processors such as the 80486 have floating-point units built in.

fopen
A function that opens a file for stream I/O. From the old C-style I/O package stdio.

fprintf
A function to convert binary data to character data and write it to a file. From the old
C-style I/O package stdio.

fputc
A function that writes a single character. From the old C-style I/O package stdio.

fputs
A function that writes a single line. From the old C-style I/O package stdio.

fread
A binary I/O input function. From the old C-style I/O package stdio.

free
A C function that returns data to the memory pool. Obsolete in C++. This has been replaced
by the C++ delete operator See also malloc.

Free Software Foundation
A group of programmers who create and distribute high-quality software for free. Among
their products are the editor emacs and the C++ compiler g++. Their address is: Free
Software Foundation, Inc., 675 Massachusetts Ave., Cambridge, MA 02139, (617)
876-3296.

friend
A function that although not a member of a class is able to access the private members of
that class.

fscanf
An input routine similar to scanf. From the old C-style I/O package stdio.

fstream.h
The C++ package for file I/O.

function
A procedure that returns a value.

fwrite
A binary I/O output function. From the old C-style I/O package stdio.

G

generic pointer
A pointer that can point to any variable without restriction as to type of variable. A pointer
to storage without regard to content.

Page 531

Ghostscript
A Postscript-like interpreter that is freely available from the Free Software Foundation.

global variables
Variables that are known throughout an entire program.

guard digit
An extra digit of precision used in floating-point calculations to ensure against loss of
accuracy.

H

header file
See include file.

heap
A portion of memory used by new to get space for the structures and classes returned by
new. Space is returned to this pool by using the delete operator.

hexadecimal number
A base-16 number.

high-level language
A level of computer language that is between machine language and natural (human)
language.

I

I/O manipulators
Functions that when "output" or "input" cause no I/O, but set various conversion flags or
parameters.

IEEE floating-point standard
IEEE standard 754, which standardizes floating-point format, precision, and certain
non-numerical values.

if
A statement that allows selective execution of parts of a program based on the truth of a
condition.

implementation dependence
The situation where the result obtained from the operation of computer or software is not
standardized because of variability among computer systems. A particular operation may
yield different results when run on another system.

include file
A file that is merged with source code by invocation of the preprocessor directive
#include. Also called a header file.

Inclusive OR
See OR.

Page 532

index
A value, variable, or expression that selects a particular element of an array.

indirect operator
See de-referencing operator.

information hiding
A code design system that tries to minimize the amount of information passed between
modules. The idea is to keep as much information as possible hidden inside the modules
and make information public only if absolutely necessary.

instruction
A group of bits or characters that defines an operation to be performed by the computer.

int
C++ keyword for declaring an integer.

integer
A whole number.

interactive debugger
A program that aids in the debugging of programs.

invert operator
A logical operator that performs a NOT.

iostreamr.h
Standard C++ I/O package.

L

left shift
The operation of moving the bits in a bit field left by a specified amount and filling the
vacated positions with zeros.

library
A collection of files.

linked list
A collection of data nodes. Each node consists of a value and a pointer to the next item in
the list.

local include files
Files from a private library that can be inserted by the preprocessor at the directive
#include "filename".

local variable
A variable whose scope is limited to the block in which it is declared.

Page 533

logical AND
A Boolean operation that returns true if its two arguments are both true. When used on
integers, each bit is operated on separately.

logical operator
A C++ operator that performs a logical operation on its two operands and returns a true or
a false value.

logical OR
A Boolean operation that returns true if any one of its two arguments is true. When used on
integers, each bit is operated on separately.

long
A qualifier to specify a data type with longer than normal accuracy.

M

machine code
Machine instructions in a binary format that can be recognized directly by the machine
without further translation.

machine language
See machine code.

macro
A short piece of text, or text template, that can be expanded into a longer text.

macro processor
A program that generates code by replacing values into positions in a defined template.

magnitude (of a number)
The value of a number without regard to sign.

maintenance (of a program)
Modification of a program because of changing conditions external to the computer system.

make
A utility of both UNIX and MS-DOS/Windows that manages the compilation of programs.

Makefile
The file that contains the commands for the utility make.

malloc
A C procedure that manages a memory heap. This function is now obsolete. The C++
operator new supersedes this function.

mask
A pattern of bits for controlling the retention or elimination of another group of bits.

Page 534

member
An element of a class or structure.

module
One logical part of a program.

MS-DOS
An operating system for IBM personal computers developed by Microsoft.

N

new
C++ operator to get a new variable from the heap.

new-line character
A character that causes an output device to go to the beginning of a new line.

nonsignificant digits
Leading digits that do not affect the value of a number (0s for a positive number, Is for a
negative number in complement form).

normalization
The shifting of a floating-point fraction (and adjustment of the exponent) so there are no
leading nonsignificant digits in the fraction.

NOT
A Boolean operation that yields the logical inverse of the operand. NOT 1 yields a 0 and
NOT 0 yields a 1.

not a number
A special value defined in IEEE 754 to signal an invalid result from a floating-point
operation

NULL
A constant of value 0 that points to nothing.

null pointer
A pointer whose bit pattern is all zeros. This indicates that the pointer does not point to
valid data.

O

object-oriented design
A design methodology where the programmer bases his or her design on data objects
(classes) and the connections between them.

octal number
A base-eight number.

ones complement
An operation that flips all the bits in a integer. Ones become zeros and zeros become ones.

operator
A symbol that represents an action to be performed.

Page 535

OR
A Boolean operation that yields a 1 if either of the operands is a 1 or yields a zero if both
of the operands are 0.

overflow error
An arithmetic error caused by the result of an arithmetic operation being greater than the
space the computer provides to store the result.

P

packed structure
A data-structure technique whereby bit fields are only as large as needed, regardless of
word boundaries.

pad byte
A byte added to a structure whose sole purpose is to ensure memory alignment.

parameter
A data item to which a value may be assigned. Often means the arguments that are passed
between a caller and a called procedure.

parameterized macro
A macro consisting of a template with insertion points for the introduction of parameters.

parameters of a macro
The values to be inserted into the parameter positions in the definition of a macro. The
insertion occurs during the expansion of the macro.

permanent variable
A variable that is created before the program starts, is initialized before the program starts,
and retains its memory during the entire execution of the program.

pixel
The smallest element of a display that can be individually assigned intensity and color.

From Picture Element.

pointer
A data type that holds the address of a location in memory.

pointer arithmetic
C++ allows three arithmetic operations on pointers:

1. A numeric value can be added to a pointer.

2. A numeric value can be subtracted from a pointer.

3. One pointer can be subtracted from another pointer.

pointer variable
See pointer.

Page 536

Portable C compiler
A C compiler written by Stephen Johnson making it relatively easy to adapt the compiler to
different computer architectures.

precision
A measure of the ability to distinguish between nearly equal values.

preprocessor
A program that performs preliminary processing with the purpose of expanding macro
code templates to produce C++ code.

preprocessor directive
A command to the preprocessor.

printf
A C library routine that produces formatted output. From the old C-style I/O package stdio.

private
A C++ keyword indicating that the members that follow are to be accessible only from
inside the class or by friends of the class.

procedure
A program segment that can be invoked from different parts of a program or programs. It
does not return a value (function of type void).

program
A group of instructions that cause a computer to perform a sequence of operations.

program header
The comment block at the beginning of a program.

program specification
A written document that states what a program is to do.

programmer

An individual who writes programs for a computer.

programming (a computer)
The process of expressing the solution to a problem in a language that represents
instructions for a computer.

programming language
A scheme of formal notation used to prepare computer programs.

protected
A C++ keyword indicating that the members that follow are accessible inside the class,
inside the class's friends, or inside any derived classes, but are not accessible to the
outside world.

Page 537

pseudocode
A coding technique where precise descriptions of procedures are written in easy-to-read
language constructs without the bother of precise attention to the syntax rules of a computer
language.

public
A C++ keyword indicating that the members to follow are accessible outside the class.

pure virtual function
A virtual function that does not have a default body. The class containing a pure virtual
function cannot be used directly but must be the base for another class. (See also derived
classes and abstract classes.)

Q

qualifier
A word used to modify the meaning of a data declaration.

R

radix
The positive integer by which the weight of the digit place is multiplied to obtain the
weight of the next higher digit in the base of the numbering system.

real number
A number that may be represented by a finite or infinite numeral in a fixedradix numbering
system.

recursion
Recursion occurs when a function calls itself directly or indirectly. (For a recursive
definition, see recursion.)

redirect
The command-line option >file allows the user to direct the output of a program into a
file instead of to the screen. A similar option, <file, exists for taking input from a file
instead of the keyboard.

reduction in strength
The process of substituting cheap operations for expensive ones.

relational operator
An operator that compares two operands and reports either true or false based on whether
the relationship is true or false.

release
The completion of a programming project to the point where it is ready for general use.

replay file
A file that is used instead of the standard input for keyboard data.

Page 538

return statement
A statement that signals the completion of a function and causes control to return to the
caller.

revision
The addition of significant changes to the program.

right shift
The operation of moving the bits in a bit field right by a specified amount.

round
To delete or omit one or more of the least significant digits in a positional representation
and adjust the part retained in accordance with some specific rule, e.g., minimize the error.

rounding error
An error due to truncation in rounding.

S

save file
A debugging tool where all the keystrokes typed by the user are saved in a file for future
use. See also replay file.

scanf
A library input function that reads numbers directly from the keyboard. Hard to use. In most
cases an fgets/sscanf combination is used. From the old C-style I/O package stdio.

scope
The scope of a variable is the portion of a program where the name of the variable is
known.

segmentation violation
An error caused by a program trying to access memory outside its address space. Caused
by de-referencing a bad pointer.

set a bit
The operation of setting a specified bit to 1. This is not a defined operation in C++.

setw
An I/O manipulator to set the width of the next output.

shift
The operation of moving the bits in a bit field either left or right.

short
An arithmetic data type that is the same size as, or smaller than, an integer.

side effect
An operation performed in addition to the main operation of a statement such

Page 539

as incrementing a variable in an assignment statement: result = begin++ - end;.

significand
The most significant digit of a floating-point number without regard to placement of the
radix point.

significant digit
A digit that must be kept to preserve a given accuracy.

single quotation mark
ASCII character 39. Used in C++ to delimit a single character.

sizeof
Operator that returns the size, in bytes, of a data type of variable.

source code
Symbolic coding in its original form before it is translated by a computer.

source file
A file containing source code.

specification
A document that describes what a program does.

sprintf
Similar to fprintf except it uses a string output. From the old C-style I/O package stdio.

sscanf
A library input routine. From the old C-style I/O package stdio.

stack
An area of memory used to hold a list of data and instructions on a temporary basis.

stack overflow
An error caused by a program using too much temporary space (stack space) for its
variables. Caused by a big program or by infinite recursion.

stack variable
See temporary variable.

static
A storage class attribute. Inside a set of curly braces, it indicates a permanent variable.
Outside a set of curly braces, it indicates a file-local variable. For class members it
denotes a variable or function that is instance independent. See Table 14-1 for a complete
list of uses.

stderr
Predefined standard error file. From the old C-style I/O package stdio.

Page 540

stdin
Predefined input source. From the old C-style I/O package stdio.

stdio.h
The old C-style I/O package.

stdout
Predefined standard output. From the old C-style I/O package stdio.

storage class
An attribute of a variable definition that controls how the variable will be stored in
memory.

string
A sequence of characters or an array of characters.

struct
A C++ keyword that identifies a structure data type.

structure
A hierarchical set of names that refers to an aggregate of data items that may have different
attributes.

style sheet
A document that describes the style of programming used by a particular company or
institution.

Sunview
A graphics and windowing system available on SUN workstations.

switch
A multiway branch that transfers control to one of several case statements based on the
value of an index expression.

syntax
Rules that govern the construction of statements.

syntax error
An error in the proper construction of a C++ expression.

T

temporary variable
A variable whose storage is allocated from the stack. The variable is initialized each time
the block in which it is defined is entered. It exists only during the execution of that block.

test a bit
The operation of determining whether a particular bit is set. This is not a defined operation
in C++.

test plan
A specification of the tests that a program must undergo.

Page 541

text editor
Software used to create or alter text files.

translation
Creation of a new program in an alternate language logically equivalent to an existing
program in a source language.

tree
A hierarchical data structure.

truncation
An operation on a real number whereby any fractional part is discarded.

Turbo-C++
A version of the C++ language for personal computers developed by Borland.

typecast
See cast.

typedef
A operator used to create new types from existing types.

typing statement
A statement that establishes the characteristics of a variable.

U

unbuffered I/O
I/O in which each read or write results in a system call.

union
A data type that allows different data names and data types to be assigned to the same
storage location.

UNIX
A popular multiuser operating system first developed by Ken Thompson and Dennis
Ritchie of the Bell Telephone Laboratories.

unsigned

A qualifier for specifying int and char variables that do not contain negative numbers.

upgrading (of a program)
Modification of a program to provide improved performance or new features.

V

value
A quantity assigned to a constant.

variable
A name that refers to a value. The data represented by the variable name can, at different
times during the execution of a program, assume different values.

variable name
The symbolic name given to a section of memory used to store a variable.

Page 542

version
A term used to identify a particular edition of software. A customary practice is to include
a version number. Whole numbers indicate major rewrites. Fractions indicate minor
rewrites or corrections of problems.

virtual
A C++ keyword indicating that a member function can be overridden by a function in a
derived class.

void
A data type in C++. When used as a parameter in a function call, it indicates there is no
return value. void * indicates that a generic pointer value is returned. When used in
casts, it indicates that a given value is to be discarded.

volatile
A C++ keyword that indicates that the value of a variable or constant can be changed at any
time. This attribute is used for memory-mapped I/O, shared memory applications, and other
advanced programming.

W

while
An iterative statement that repeats a statement as long as a given condition is true.

X

X Window System
A graphics and windowing system, available from the X Consortium, that is currently
running on many computing systems.

Z

zero-based counting

A system of counting where the first object is given the count zero rather than one.

Page 543

Index

-- (decrement) operator, 79, 80, 325

- (for command-line options), 242

- (negative) operator, 324

- (subtraction) operator, 52, 323

- (unary) operator, 322

! (logical NOT) operator, 86, 326

!= (not equal to) operator, 86, 323

'(quotation mark), 59

''(quotation mark), 59

with include files, 159

for strings, 60, 65

(preprocess) operator, 162

diagnostic tag, 106

% (modulus) operator, 52, 323

%= (modulus into) operator, 79, 325

%c conversion, 274

%d conversion, 273

%e conversion, 274

%f conversion, 274

%ld conversion, 274

%lu conversion, 274

%o conversion, 274

%s conversion, 274

%u conversion, 274

%x conversion, 274

& (address of) operator, 229, 322, 324

(see also pointers)

& (bitwise AND) operator, 168-170, 323

& (for reference variables), 75

&& (logical AND) operator, 86, 326

&= (AND into) operator, 325

() (default class function) operator, 330

overloading, 495

() parentheses

with macro parameters, 160

and simple operators, 52

* (dereference) operator, 229, 324

* (multiplication) operator, 52, 323

*= (multiply by) operator, 79, 325

+ (addition) operator, 52, 323

+ (positive) operator, 324

++ (increment) operator, 79, 80, 325

+= (increase) operator, 79, 325

, (comma) operator, 330, 495

. (dot) operator, 362

/ (division) operator, 52, 58, 323

/* */ comment markers, 36

/= (divide into) operator, 79, 325

:construct, 495

:: (scope) operator, 382, 496

; (semicolon), 51

with if-else statements, 87

and preprocessor directives, 152

< (less than) operator, 86, 323

<< (left shift) operator, 172, 323

<< (number-to-character) operator, 256

<< (output) operator, 53, 273, 322, 326-329

<<= (shift left) shortcut operator, 325

<= (less than or equal to) operator, 86, 324

= (assignment) operator, 56

for classes, 211

versus == (equal to) operator, 95

Page 544

= = (equal to) operator, 86, 323

versus = (assignment) operator, 95

-= (decrease) operator, 79, 325

-> (class member) operator, 330

> (greater than) operator, 86

-> (structure pointer) operator, 362

->* (pointer to member) operator, 330

>= (greater than or equal to) operator, 86, 324

> (greater than) operator, 323

>> (character-to-number) operator, 260

>> (input) operator, 67, 322, 326-329

>> (right shift) operator, 172, 323

>>= (shift right) shortcut operator, 325

? construct, 495

[] (index) operator, 329

\ (backslash)

as escape character, 59

in preprocessor directives, 152

\0 character, 64, 237

\b (backspace character), 59

\f (form-feed character), 59

\n (newline character), 59

\r (return character), 59

\t (tab character), 59

^ (exclusive OR) operator, 171, 323

A= (exclusive OR into) operator, 325

{} (curly braces), 69, 86

and structures, 187

| (bitwise OR) operator, 171, 323

to merge flags, 265

|= (OR into) operator, 325

| | (logical OR) operator, 86, 326

~ (bitwise NOT) operator, 171, 324

~ (tilde) in class destructor names, 206

A

abstract classes, 393, 458

stat, 461

accuracy of floating-point

arithmetic, 347-352

float versus double datatypes, 350

add function (for complex numbers), 321

adding

complex numbers, 321

element to linked list, 360

floating-point numbers, 344

addition (+) operator, 52, 323

address of (&) operator, 229, 322, 324

(see also pointers)

addresses, variable, 228

alignment problems and portability, 449

ampersand (&)

for reference variables, 75

(see also AND operator)

AND (&&) operator, logical, 86, 326

AND (&) operator, binary, 168-170, 323

AND into (&=) operator, 325

apostrophe (see quotation mark)

argc and argv arguments, 241

arguments, command-line, 241

arrays, 63-64

of bits (see bitmapped graphics)

index operator [], 329

infinite, module for (example), 413-429

initializing, 69, 71, 195

multidimensional, 70-71, 141

as parameters, 141

and pointers, 232-237

 optimizing, 315

of structures, 195

(see also structures)

ASCII characters, 59

ASCII files (see files, ASCII)

assembly language, 10

assignment (=) operator, 56

for classes, 211

versus == (equal to) operator, 95

assignment statements, 5, 56-57

placement of, 92

author, comments about, 39

auto qualifier, 132

auto variable class, 77

automatic

generation of member functions, 210

variables, 132

B

backslash (\)

as escape character, 59

in preprocessor directives, 152

backspace character (\b), 59

bad member function, 253

Page 545

base classes, 381

initializing, 386

search order, 389

binary files, 260

with multiple structures, 270

binary I/O, 262, 276

binary operations (see bits)

binary operators, 322

- (subtraction), 323

% (modulus), 323

& (AND), 168-170, 323

 versus logical AND (&&), 169

* (multiplication), 323

+ (addition), 323

/ (division), 323

<< (left shift), 172, 323

>> (right shift), 172, 323

^ (exclusive OR), 171, 323

| (OR), 171, 323

 to merge flags, 265

~ (NOT), 171, 324

binary search, debugging, 296

binary trees, 368-373

nodes, 368

recursion with, 371

bit fields, 193

bit flip operator - (see NOT operator, binary)

bitmapped graphics, 176-181

bits, 55

operations on, 167-182

muliplication versus shifting, 172

setting, clearing, and testing, 173-176

bitwise operators (see binary operators)

<blank> modifier, 415

blocks, 129

stack of, 131

(see also local variables)

boldface in comments, 38

Boolean operators (see bits, operations on)

Borland C++ compiler, 15

Makefile for, 104

bottom-up programming, 147

brackets {} (see curly braces)

branching statements, 85

if statements, 85-88

switch statements, 120-125

break command (debugger), 292

(see also gdb debugger)

break statements, 91, 125

in switch statements, 121, 123

browsers, class, 109

byte order and portability, 448

bytes, 55, 167

pad, 450

C

%c conversion, 274

C language, 3

binary I O, 276

and C++ language, 485-491

compiler, 151

conversion routines, 273

I/O (input/output), 270

handling exceptions in, 489

programming tools for, 109

C++ compiler

Borland, 15

g++, 15

Microsoft Visual, 15

Turbo, 15

UNIX CC. 14

C++ file I/O, 252-256

C++ language, 4

compared with C language. 485-491

programming tools for, 109

standard functions in, 5

C++ preprocessor, 151-165

#define directive, 151-157

#include directive. 159

call by address, 141, 146

call by value, 135, 138, 146

and copy constructors, 209

callback functions. 144

<carriage return> character, 261

case labels (see switch statements)

case sensitivity, 42, 54

cast operators, 192, 331

catch keyword, 404

cerr (console error) class variable, 252

CFront templates. 445

char variable type, 73, 77

character(s)

ASCII, 59

constants. 59

(see also strings)

data (see files, ASCII)

Page 546

character(s) (continued)

special, 59

treated as bits, 173-176

variables, 73

character-to-number (>>) operator, 260

character-type modules, 458

cin (console input) class variable. 67-69, 252

class keyword, 203

class member (->) operator, 330

class, variable (see variables, classes of)

classes, 4, 197-216, 355

() operator for, 330

abstract, 393, 458

accessing members of, 203

assignment (=) operator for, 211

base, 381

browsers for, 109

complex, 332-341

constant members of, 220

constructors and destructors, 205-211

copy constructors, 208-210

default constructors, 210

derived, 381-387

friends of (see friend classes)

hierarchy of, 458

I/O stream, 51

member functions, 210

member variables, 202

members of static, 222

and pointers, 355

problems reading, 489

programming style for, 212-214

pure virtual functions, 461

search order of, 389

standard, 51

stat, 461

and structures, 488

templates of, 440-442

virtual, 393-395

clearing bits, 173-176

clog (console log) class variable, 252

close member function, 253

close system call, 266

COBOL, 11

code (see programs; source files)

comma (,) operator, 330, 495

command-line

arguments, 241

debugging switch, 290

comment boxes, 37

comments, 36, 110

in headers, 39, 50

marking variable units, 41

styles for, 38

comparing strings (see strcmp function)

compiler

Borland C++, 15

construction of, 431

g++, 15, 420

Microsoft Visual C++, 15

Turbo-C++, 15

UNIX CC, 14

compiling, conditional, 157-159

complex class, 332-341

complex numbers, 319-341

adding, 321

concatenating expressions (,) operator, 330

concatenating strings (see strcat function)

conditional

breakpoints, 307

clauses (see branching statements)

compilation, 157-159

statements (see: construct; ? construct; switch statements)

confessional method of debugging, 309

const keyword, 220

versus #define directive, 156

const parameters, 136

reference, 139

const variable type, 74

constant call by value, 146

constants

character, 59

class members as, 220

declaring, 74, 151-157

#define versus const, 156

hexadecimal, 78

naming, 42

octal, 78

pointers as, 232

constructors, class, 205-211

copy, 208-210

default, 210

in derived classes, 396-398

Page 547

overloading, 207

parameterized, 207

cont command (debugger), 293

(see also gdb debugger)

continue statements, 92, 125

control statements, 5

control variables, 118-120

(see also for statements)

conversion

flags, 256

integer-to-floating-point, 58

routines for, 256

C-style I/O, 270, 273

copy constructors, 208-210

copying strings (see strcpy function)

core files, 307

cout (console out) class, 51, 53, 252

for debugging, 290

diagnostic use of, 106

temporary, 290

in Turbo-C++, 251

cross-references, 109

ctype.h include file, 373

curly braces {}, 69, 86

and structures, 187

D

%d conversion, 273

data

inputting, 67-69

protecting, 201

stacks of (see stacks)

datatypes, 511

changing (see cast operators)

classes, 201-216

defining special, 190

enum (enumerated), 191-193, 221

pointers, 227-247

stacks, 197-203

structures, 185-187

unions, 188-190

debugger as browser, 110

debugging, 35, 99, 106-108, 281-309

binary search, 296

confessional method of, 309

divide-and-conquer method, 290

interactively (see interactive debugging)

playback file, 287

saving keystrokes, 284

with text editor, 292

using a program switch, 290

within program code, 290

dec I/O manipulator, 258

decimal numbers, 256

decimal places for numbers, 74

declaring

constants, 74, 151-157

#define versus const, 156

file variables, 270

functions, 133

pointers, 229

structures, 187

style of, 500

templates, 436

variables, 41, 54, 132

decrease (-=) operator, 79, 325

decrement (--) operator, 79, 80, 325

default

constructors, 210

parameters, 143

statements, in switch statements (see switch statements)

#define directive, 151-157, 501

versus const keyword. 156

versus enum statement, 191

versus typedef statement, 191

defining variable types, 190

delete function, 486

delete operator, 330, 358

using brackets [] with, 358

deleting derived classes, 397

dereference (*) operator, 229, 324

derived classes, 381-387

constructors and destructors, 396-398

deleting, 397

hiding members functions in, 395

search order, 389

designing

file formats, 268-270

modules, 433

programs, 457-459, 500

destructors, 205-207, 210

calling virtual functions from, 397

in derived classes, 396-398

names for, 206

virtual, 397

Page 548

diagnostic cout, 106

disk files, I O with, 252

divide by 0 error, 307

divide into (/=) operator, 79, 325

divide-and-conquer debugging method, 290

dividing floating-point numbers, 58, 346

division () operator, 52, 58, 323

do while loops (see while loops)

documentation, Oualline's law of, 39

dot () operator, 362

double keyword, 348

double qualifier, 74, 77

versus float datatype, 350

double quote (see quotation mark)

double-linked lists, 365

E

%e conversion, 274

elements, array, 63-64

else statements, 87

#endif directive, 157, 501

endl I/O manipulator, 259

end-of-line puzzle, 261

end-of-string character, 237

end-of-string marker, 64

ends I/O manipulator, 259

enum (enumerated) datatype, 191-193, 221

equal to (==) operator. 86, 323

versus = (assignment) operator, 95

errors

eliminating from code (see debugging)

handling within programs, 403–411

infinite recursion, 148

roundoff (floating-point), 347

runtime (see runtime errors)

stack overflow, 131

escape character (\), 59

evaluation order, 79-81

exceptions, 403-411

in C, 489

runtime library, 410

exclusive OR (^) operator, 171, 323

exclusive OR into (^=) operator, 325

executable programs, 12

exponential notation, 57

expressions, simple, 51

extended precision (see long double qualifier)

extern modifier, 414-416

extern variable class, 77

F

%f conversion, 274

"// fall through" comment, 123

fast prototyping, 102

fclose (file close) function, 271

fgetc (get character) function, 271

fgets (get string) function, 272

file formats, comments on, 40

filenames, portability of, 451

files

ASCII, 251-261

binary, 260

with multiple structures, 270

changing modification date of, 424

core, 307

designing formats for, 268-270

directing debugging information

into, 292

disk, 252

header, 159

I/O with (see I/O)

identification numbers for, 270

include (see include files)

multiple (see modules)

object (see object files)

playback, for debugging, 287

source (see source files)

standard unbuffered, 265

types of, and portability, 452

variables for, 270

find function (linked lists), 361

flags

conversion, 256

open, 265

float datatype, 74, 77

versus double datatype, 350

float keyword, 57

float h include file, 350

floating-point numbers, 57-59, 74

arithmetic, 343-352

accuracy of, 347-352

guard digit, 344

overflow and underflow, 346

Page 549

floating-point numbers (continued)

arithmetic (continued)

roundoff error, 347, 348

speed of, 350

converting to integers, 58

dividing, 58

versus integers, 316

flush command. 308

flush I/O manipulator, 259, 264

fopen (file open) function, 271

for statements, 117-120

formatting

files, 268-270

floating-point numbers, 343

programs, 43-45

form-feed character (\f), 59

FORTRAN, 11

fputc (put character) function, 272

fputs (put string) function, 272

fractional numbers

fread routine, 276

free function (C language), 486-488

friend classes, 217-219

friend directive. 218

fscanf function, 275

fstream class. 252

fstream.h file, 252

functions, 133-146

callback, 144

as class members, 203

inline, 144, 313

versus parameterized macros, 162

K&R style, 485

length of, 45

as operators, 322-330

overloading, 142

parameters of, 133-146

arrays as, 141

const, 136

reference, 137-141

recursive, 148-149

static, 223

templates of, 436-440

virtual, 387-393

pure, 393

functions, standard (see standard functions)

fwrite routine, 276

G

-g (compiler option), 14

g++ compiler, 15, 420

Makefile for, 104

templates in, 444

gdb debugger, 292-296

example of using, 298-307

generating templates, 436

getline member function, 254

global variables, 129-131

goto statements, 493

programming without. 43

graphics, bitmapped, 176-181

greater than (>) operator, 86, 323

greater than or equal to (>=) operator, 86, 324

guard digits, 344

(see also floating-point numbers)

H

header files, 159

headers, 416-418

comments in. 39, 50

help, online UNIX, 32

hex I/O manipulator, 258

hexadecimal numbers, 59, 78, 167, 256

hiding member functions, 395

hierarchy, class, 458

high-level languages. 11

hyphen (-) for command-line options, 242

I

I/O (input output), 251-279

binary, 262

C-style, 276

C++ file package, 252-256

conversion routines, 256

C-style, 270

with disk files. 252

manipulators, 258

operators

<< (output), 326-329

>> (input), 326-329

unbuffered, 264-268

I/O stream classes, 51

Page 550

IDE (integrated development environment), 13

if statements, 85-88

with else statement, 87

(see also ? construct;: construct; switch statements)

#ifdef directive, 501

#ifndef directive, 157

ifstream

::bad, 253

::close, 253

:.open, 252

implementing templates, 442-445

#include directive, 159

include files, 159, 416-418

ctype.h, 373

float.h, 350

fstream.h, 252

iomanip.h, 258

iostream.h, 252

local, 159

nested, 160

stdio.h, 270

inclusive OR operator (see OR operator)

increase (+=) operator, 79, 325

increment (++) operator, 79, 80, 325

indentation, 43, 86

styles of, 44

tools for, 109

index [] operator, 329

index, array, 63

infinite arrays, module for (example), 413-429

infinite recursion error, 148

info command (debugger), 295

(see also gdb debugger)

init function, 202

initializing

arrays 69, 71, 195

base classes, 386

stacks, 199, 202

automatically, 205

strings, 70

structures, 187

temporary variables, 131

variables, 69

inline directive, and classes, 211

inline functions, 144, 313, 315-316

versus parameterized macros, 162

input (>>) operator, 67, 322, 326-329

inputting data, 67-69

int (integer) keyword, 54

int number type, 77

long versus short, 72

(see also size qualifiers, variables)

integers, 55

converting to floating-point

numbers, 58

dividing, 58

signed versus unsigned, 72

integrated development environment (IDE), 13

interactive debugging, 292-296

conditional breakpoint trick, 307

invert (-) operator (see NOT operator, binary)

iomanip.h file, 258

ios

::app flag, 255

::ate flag, 255

::binary flag, 256, 261

::dec flag, 257

::fixed flag, 257

::hex flag, 257

::in flag, 255

:internal flag, 257

::left flag, 256

::nocreate flag, 256

::noreplace flag, 256

::oct flag, 257

::out flag, 255

::right flag, 257

::scientific flag, 257

:.showbase flag, 257

::showpoint flag, 257

:showpos flag, 257

::skipws flag, 256

::stdio flag, 257

::trunc flag, 256

::unitbuf flag, 257

::uppercase flag, 257

iostream

class, 252

::fill, 258

::precision, 258

:-setf, 256

::unsetf, 256

iostream.h include file, 51, 159, 252

Page 551

ipfx member function, 327

isalpha macro, 373

istream

class, 252

:·getline, 254

··ipfx, 327

italics in comments, 38

J

justification, 256

K

K&R-style functions, 485

L

L character, for long integers, 72

labels for goto statements, 494

languages

assembly (machine), 10

C (see C language)

C++ (see C++ language)

other high-level, 11

%1d conversion, 274

left shift (<<) operator, 172, 323

length function, 66

less than (<) operator, 86, 323

less than or equal to (<=) operator, 86, 324

letters (see character constants)

libraries, standard, 12, 51

LIFO (last-in-first-out) order, 197

linear programs, 85

<line-feed> character, 261

linked lists, 356, 359-368

double-linked, 365

ordered, 362

linkers, 12

list command (debugger), 293

(see also gdb debugger)

lists, linked (see linked lists)

local include files, 159

local variables, 129-131

static, 131

logical operators, 326

! (NOT), 86, 326

&& (AND), 86, 326

versus bitwise AND, 169

| | (OR), 86, 326

and relational operators, 86

long double qualifier, 74

long int keyword, 61

long int type, 72

long qualifier, 77

longjmp function (C language), 489

looping statements, 85, 88-92

and break statements, 91

control variables in (see control variables)

for statements, 117-120

optimizing order of, 310, 314

while loops, 88-93, 493

%lu conversion, 274

M

machine language, 10

macros

parameterized, 160-162

replacement, 152

magic numbers, 270, 449

main function, 133

make program, 103-105, 420-424

Makefile, 103-105. 501

for multiple files, 420-424

malloc function (C language), 486-488

man pages (UNIX), 32

manipulators, I/O (see I/O manipulators)

markers, end-of-string, 64

member functions

automatically generated, 210

hiding, 395

inline, 211

operators as, 330-331

static, 223

member variables, 202

access privileges to, 202

constant, 220

static, 222

memory leak, 359

memset library routine, 313, 425

merging flags, 265

Microsoft C++ compiler, 15

templates, 443

modification date, changing, 424

modules, 5, 413-434

character-type, 458

Page 552

modules (continued)

design guidelines for, 433

dividing task into, 429

Makefile for, 420-424

for nonportable code, 447

private versus public parts, 414

token, 457

modulus (%) operator, 52, 323

modulus into (%=) operator, 79, 325

more than (see greater than)

Morse code, 80

multidimensional arrays, 70-71

as parameters, 141

multiplication (*) operator, 52, 323

multiply by (*=) operator, 79, 325

multiplying

floating-point numbers, 345

versus shifting, 172

N

naming

class destructors, 206

constants, 42

functions, 142

variables, 41, 54, 500

negative (-) operator, 324

negatives (see signed qualifier)

nested include files, 160

new function, 486

new operator, 330, 355-357

newline character (\n), 59

next command (debugger), 293

(see also gdb debugger)

nodes, tree, 368

NOT (!) operator, logical, 86, 326

NOT (~) operator, binary, 171, 324

not equal to (!=) operator, 86, 323

NUL character, 64, 237

null effect warning, 52

NULL pointers, 232

and portability, 450

numbers

complex (see complex numbers)

conversions for, 256

determining parity of, with &, 170

floating-point (see floating-point numbers)

hexadecimal (see hexadecimal)

number of decimal places for, 74

octal (see octal numbers)

sign of, 77

number-to-character (<<) operator, 256

O

%o conversion, 274

O_APPEND open flag, 265

O_BINARY open flag, 265

O_CREAT open flag, 265

O_EXCL open flag, 265

O_RDONLY open flag, 265

O_RDWR open flag, 265

O_TRUNC open flags, 265

O_WRONLY open flag, 265

object files, 12, 14

object-oriented design (OOD), 4

oct I/O manipulator, 258

octal character codes, 59

octal numbers, 78, 256

ofstream class, 252

open flags, 255

ones complement operator ~ (see NOT operator, binary)

open flags, 265

open member function, 252

open system call, 264

operation cost, 315

operator functions, 322-330

operator member functions, 330-331

operator precedence, 513

operators

binary (see binary operators)

bitwise (see binary operators)

I/O (see I/O operators)

logical (see logical oeprators)

overloading, 319-342

relational (see relational operators)

unary (see unary operators)

optimizing programs, 309-317

calculation speed, 350

considering operation costs, 315

considering powers of two, 311-314

inline functions, 315-316

integers versus floating-point numbers, 316

loop order, 310, 314

pointers versus arrays, 315

Page 553

options, command-line command, 242

OR (^) operator, exclusive, 171

OR (|) operator, binary, 171, 323

to merge flags, 265

OR (| |) operator, logical, 86, 326

OR into (| =) operator, 325

order of operations, 79-81

ordered linked lists, 362

ostream

class, 252

parameter, 327

::read, 262

::write, 262

Oualline's law of documentation, 39

output (<<) operator, 53, 273, 322, 326-329

output files, 255

output redirection, 292

overflow error, 131

overflow, floating-point, 346

overloading

() (default class function)

operator, 495

class constructors, 207

functions, 142

operators, 319-342

P

packed structures, 193

pad bytes, 450

parameters

in class constructors, 207

default, 143

function, 133-146

arrays as, 141

reference, 137-141

in macros, 160-162

versus inline functions, 162

types of, 146

unused, 143

parentheses ()

in simple operators, 52

with macro parameters, 160

parity, determining with &, 170

PASCAL, 11

permanent variables, 131-132

playback file, 287

pointers, 227-247, 355-380

->* operator, 330

and arrays, 232-237

optimizing, 315

binary trees (see binary trees)

and classes, 355

constant, 232

NULL, 232

to other pointers, 230

printing value of, 233

and structures, 240, 355

pop function, 203

popping stacks (removing data), 197-201

portability, 447-453

alignment problems, 449

byte order, 448

of file types, 452

filenames, 451

and modularity, 447

NULL pointers, 450

of templates, 445

word size, 448

positive (+) operator, 324

power series, 351

sine function computed as, 515-520

powers of two, 311-314

#pragma

interface (GNU g++), 444

-Jgx option (Turbo-C++), 444

precedence, operator, 513

precision (decimal places) of numbers, 74

precision of floating-point

arithmetic, 347-352

prefix operator (see decrement operator; increment operator)

preprocess (#) operator, 162

preprocessor directives, C++, 151-165

backslash (\) in, 152

#define, 151-157

#include, 159

parentheses () with, 500

semicolons (;) with, 152

print command (debugger), 293

(see also gdb command)

printf functions, 273

printing

binary trees, 373

Page 554

printing (continued)

debugging information, 292

pointer values, 233

private

member variables, 202

module parts, 414

programs, 5, 12

basic structure of, 50

changing control variables, 118

debugging, 35, 99, 106-108, 281-309

switch for, 290

decision-making in (see branching statements)

defining special datatypes, 190

designing, 457-459, 500

for different machines, 157-159

format of, 43-45

handling errors in, 403-411

minimizing roundoff error, 348

optimizing, 309-317

calculation speed, 350

placement of assignment statements, 92

portability of, 447-453

revising and updating, 99, 108, 464

specifications for, 97, 100

splitting into modules, 413-434

templates, 435-446

testing, 99, 105, 463

tools for, 109

working with UNIX operating system, 99

wrapper, 12

writing style (see style, programming)

protected member variables, 202

protecting data in stacks, 201

pseudocode, 101

_ptr extension (see pointers)

public

member functions, 434

module parts, 414

public member variables, 202

pure virtual functions, 393, 461

push function, 203

pushing stacks (entering data), 197-201, 382

put member function, 261

Q

qualifiers, 76

auto, 132

quotation mark ('), 59

quotation mark (''), 59

with include files, 159

for strings, 60, 65

R

ranges of, 511

read member function, 262

reading strings, 272

real numbers (see floating-point numbers)

recursion, 148-149

with binary trees, 371

infinite, 148

redirecting output, 292

redirection I/O, 252

reference parameters, 137-141

const, 139

reference variables, 75

references, in comments, 39

register qualifier, 310

register variable class, 76

relational operators, 86, 323

!= (not equal to), 86, 323

< (less than), 86, 323

<= (less than or equal to), 86, 324

== (equal to), 86, 323

> (greater than), 86, 323

>= (greater than or equal to), 86, 324

and logical operators, 86

remainder (see modulus)

replacement macros, 152

reserved words, 54

resetiosflags I/O manipulator, 258

return character (\r), 59

return statement, 134-139

(see also functions)

return(0), 50

revising programs, 99, 108, 464

revision history in comments, 40

right shift (>>) operator, 172, 323

roundoff error (floating-point), 347, 348

run command (debugger), 292

(see also gdb debugger)

Page 555

runtime errors, 307-308

runtime execeptions, 410

S

%s conversion, 274

saving keystrokes for debugging, 284

scanf function, 275

scientific notation, 57

scope (:) operator, 382, 496

scope, variable, 129-131

search order, virtual functions, 389

search, binary, 296

searching binary trees. 369

segmentation fault (core dumped), 298

Segmentation Violation error, 307

semicolon (;), 51

with if-else statements, 87

and preprocessor directives, 152

setbase I/O manipulator, 258

setf member function, 256

setfill I/O manipulator, 259

setiosflags I/O manipulator, 258

setjmp function (C language), 489

setprecision I/O manipulator, 258

setting bits, 173-176

setw I/O manipulator, 258

shift operators

left (<<), 172

left (<<=) shortcut, 325

right (>>), 172

right (>>=) shortcut, 325

short int type, 72

short qualifier, 77

side effects, 79

signed integers, 72

signed qualifier, 77

simple variables, 5

sine function, power series, 515-520

single quote (see quotation mark)

single-precision floating-point numbers (see float datatype)

size qualifiers, variables, 77

sizeof operator, 254

source files (source code), 12

special characters, 59

specialized class templates, 442

specialized template functions, 439

specifications, program, 97, 100

speed of floating-point calculations, 350

splitting strings. 237-240

spreadsheets, 432

sscanf function, 275

stack overflow error, 307

stack trace, 299

stacks, 131, 197-203, 381

class datatype (see classes)

exceptions for, 405-410

initializing, 199, 202

structures versus classes. 201

standard classes, 51

cin (console input), 67-69

cout (see cout class)

standard files

C, 271

unbuffered, 265

standard functions, C++, 5

standard libraries, 12

stat class, 461

statements

assignment (see assignment statements)

branching (see branching statements)

declaration (see declaring variables)

looping (see looping statements)

static

definition of, 224

member functions, 223

member variables, 222

variables, 131

static keyword, 224, 416

static modifier, 415

static variable class, 76

stderr (standard error) file, 271

stdin (standard input) file, 271

stdio.h include file, 270

stdout (standard output) file, 271

step command (debugger), 293

(see also gdb debugger)

storage class, variable, 131-132

strcat (string concatenate) function, 65

strchr function, 237

strcmp (string compare) function, 65, 66, 88

strcpy (string copy) function, 65

streams, 252

string h library, 65

Page 556

strings, 60, 64-67

comparing (see strcmp function)

concatenating (see strcat function)

copying (see strcpy function)

end-of-string character, 237

end-of-string markers, 64

functions for, 65

getting length of (see length function)

initializing, 70

reading, 272

splitting, 237-240

variable-length, 65

strlen (string length) function, 65

struct keyword, 186

in C versus C++, 486

structure pointer (->) operator, 362

structured programming

techniques, 146-147

structures, 5, 185-187, 355

arrays of, 195

and classes, 488

initializing, 187

packed, 193

and pointers, 240, 355

stacks (see stacks)

versus classes, 201

(see also unions)

style, programming, 35-47, 97-113, 499-503

classes, 212-214

commenting. 38

structured programming techniques, 146-147

subtracting

floating-point numbers, 344

subtraction (-) operator, 52, 323

suffix operator (see decrement operator; increment operator)

switch statements, 120-125, 500

switches, command-line command, 242

T

tab character (\t), 59

templates. 435-46

CFront-style, 445

of classes, 440-442

of functions, 436-440

in g++ compiler, 444

implementing, 442-445

in Microsoft C++ compiler, 443

portable, 445

specialized, 439

in Turbo-C++ compiler, 444

in Visual C++ compiler, 443

temporary variables, 131-132

testing

bits, 173-176

programs, 99, 105, 463

text (see character constants; strings)

text editor

debugging with, 292

modules of, 430

text editor as browser, 110

things, 227

this keyword, 331

tilde (~) in class destructor names, 206

token modules, 457

tokens, 431

top-down programming, 147

touch command, 424

trees, 356

trees, binary, 368-373

nodes, 368

recursion with, 371

try keyword, 405

Turbo-C++ compiler, 15

cout, handling in, 251

Makefile for, 104

templates, 444

typecast operation, 192

typedef statements, 190

types, variable, 53

U

%u conversion, 274

unary operators, 322, 324

- (negative), 324

& (address of), 324

* (dereference), 324

+ (positive), 324

~ (ones complement), 324

unbuffered I/O, 264-268

#undef directive, 501

underflow, floating-point, 346

unequal to (!=) operator, 86, 323

unions, 188-190

Page 557

units for variables, 41

UNIX

online help for, 32

working with, 99

UNIX CC compiler, 14

-D switch, 158

Makefile for, 103

unpacked structures (see packed structures)

unsetf member function, 256

unsigned integers, 72

unsigned qualifier, 77

unused parameters, 143

updating programs, 99, 108

upgrading programs, 35

V

variable types, 53

variable-length strings, 65

variables, 41

addresses of, 228

automatic, 132

changing datatypes (see cast operators)

character, 73

classes of, 76

control (see control variables)

conversions for numbers, 256

declaring, 54, 132

defining special datatypes, 190

for files, 270

global, 129-131

initializing, 69

local, 129-131

member (see member variables)

naming, 54, 500

permanent versus temporary, 131-132

pointers, 227-247

reference, 75

and reserved words, 54

scope of, 129-131

signed versus unsigned, 77

simple, 5

size qualifiers, 77

static, 131

storage class of, 131-132

unchanging (see constants)

(see also datatypes)

version information in data files, 269

virtual

classes, 393-395

destructors, 397

functions, 387-393

called from destructor, 397

pure, 393, 461

search order, 389

virtual keyword, 389, 397

Visual C++ compiler templates, 443

volatile keyword, 76

W

walkthrough debugging, 309

warning, null effect, 52

where command (debugger), 293

(see also gdb debugger)

while loops, 88-93, 493

and assignment statements. 93

and break statements, 91

and continue statements, 92

versus for statements, 117

whitespace, 43, 67, 256, 259

(see also formatting programs)

wildcards, command-line, 241

word size and portability, 448

wrapper programs, 12

write member function, 262

write system call. 266

writing programs (see programs)

ws I/O manipulator, 259

X

%x conversion, 274

x++ vs. ++x, 80

XOR operator (see exclusive OR)

operator, 171

Page 583

About the Author

Steve Oualline wrote his first program when he was eleven. It had a bug in it. Since that time
he has studied practical ways of writing programs so that the risk of generating a bug is
reduced. He has worked for Motorola and Celerity Computing, and is currently a special
consultant for Hewlett Packard, working in the research department of their Ink-Jet division.

Colophon

The animal on the cover of Practical C++ Programming is an Eastern chipmunk, a striped
ground squirrel found mostly in eastern North America. Eastern chipmunks have five dark and
two light stripes on their backs, extending from head to rump, and two stripes on their long,
bushy tails. They are distinguished from other ground squirrels by the white stripes above and
below their eyes. The coloration of chipmunks throughout North America varies, but is quite
uniform within regions.

Chipmunks often make their homes in sparse forests or farms, where they can build the
entrances to their lodges in stone walls, broken trees, or thick underbrush. The lodges consist
of a maze of tunnels leading to a large leaf-lined nest. Chipmunks spend most of the daylight
hours outdoors, but head for their lodges before nightfall. Although they are excellent climbers,

chipmunks live primarily on the ground.

Chipmunks eat nuts, seeds, insects, and occasionally birds' eggs. Like all ground squirrels, they
have large cheek pouches, sometimes extending as far back as their shoulders, in which they
can store food. They collect and store nuts and seeds through the summer and fall. When the
weather starts to get cool, all the chipmunks in a region will suddenly disappear into their
lodges where they begin hibernation. On warm winter days one can often see chipmunk
pawprints in the snow, as they will sometimes wake up and leave their lodges for brief periods
when the temperature rises.

Mating season for Eastern chipmunks is mid-March to early April. The gestation period is 31
days, after which a litter of three to six is born. Baby chipmunks leave the lodge after one
month, and are mature by July.

The chipmunk most likely got its name from the noise it makes, which sounds like a loud
"cheep." You can occasionally see a chipmunk hanging upside down from a tree branch
"cheeping" its call.

Page 584

Edie Freedman designed the cover of this book, using a 19th-century engraving from the Dover
Pictorial Archive. The cover layout was produced with Quark XPress 3.3 using the ITC
Garamond font. Whenever possible, our books use RepKover, a durable and flexible lay-flat
binding. If the page count exceeds RepKover's limit, perfect binding is used.

The inside layout was designed by Edie Freedman, with modifications by Nancy Priest, and
implemented in FrameMaker by Mike Sierra. The text and heading fonts are ITC Garamond
Light and Garamond Book. The illustrations that appear in the book were created in Aldus
Freehand 5.0 by Chris Reilley and Michelle Willey. This colophon was written by Clairemarie
Fisher O'Leary.

	Table of Contents
	Preface
	I: The Basics
	II: Simple Programming
	III: Advanced Types and Classes
	IV: Advanced Programming Concepts
	V: Other Language Features
	D: Computing sine Using a Power Series

	Preface
	Scope of This Handbook
	How This Book Is Organized
	How to Read This Book If You Already Know C
	Font Conventions
	Obtaining Source Code
	Comments and Questions

	I The Basics
	1 What Is C++?
	A Brief History of C++
	C++ Organization
	How to Learn C++

	2 The Basics of Program Writing
	Programs from Conception to Execution
	Creating a Real Program
	Creating a Program Using a Command- Line Compiler
	Creating a Program Using an Integrated Development Environment
	Getting Help in UNIX
	Getting Help in an Integrated Development Environment
	Programming Exercises

	3 Style
	Comments
	C++ Code
	Naming Style
	Coding Religion
	Indentation and Code Format
	Clarity
	Simplicity
	Consistency and Organization
	Further Reading
	Summary

	4 Basic Declarations and Expressions
	The Elements of a Program
	Basic Program Structure
	Simple Expressions
	The cout Output Class
	Variables and Storage
	Variable Declarations
	Integers
	Assignment Statements
	Floating Point Numbers
	Floating Point Versus Integer Divide
	Characters
	Programming Exercises
	Answers to Chapter Questions

	5 Arrays, Qualifiers, and Reading Numbers
	Arrays
	Strings
	Reading Data
	Initializing Variables
	Multidimensional Arrays
	Types of Integers
	Types of Floats
	Constant and Reference Declarations
	Qualifiers
	Hexadecimal and Octal Constants
	Operators for Performing Shortcuts
	Side Effects
	Programming Exercises
	Answers to Chapter Questions

	6 Decision and Control Statements
	if Statement
	else Statement
	How Not to Use strcmp
	Looping Statements
	while Statement
	Break Statement
	continue Statement
	The Assignment Anywhere Side Effect
	Programming Exercises
	Answers to Chapter Questions

	7 The Programming Process
	Setting Up
	The Specification
	Code Design
	The Prototype
	The Makefile
	Testing
	Debugging
	Maintenance
	Revisions
	Electronic Archaeology
	Mark Up the Program
	Use the Debugger
	Use the Text Editor as a Browser
	Add Comments
	Programming Exercises

	II Simple Programming
	8 More Control Statements
	for Statement
	switch Statement
	switch, break, and continue
	Programming Exercises
	Answers to Chapter Questions

	9 Variable Scope and Functions
	Scope and Storage Class
	Functions
	Summary of Parameter Types
	Structured Programming Basics
	Recursion
	Programming Exercises
	Answers to Chapter Questions

	10 The C++ Preprocessor
	# define Statement
	Conditional Compilation
	# include Files
	Parameterized Macros
	Advanced Features
	Summary
	Programming Exercises
	Answers to Chapter Questions

	11 Bit Operations
	Bit Operators
	The AND Operator (&)
	Bitwise OR (|)
	The Bitwise Exclusive OR (^)
	The Ones Complement Operator (NOT) (~)
	The Left and Right Shift Operators (<<, >>)
	Bitmapped Graphics
	Programming Exercises
	Answers to Chapter Questions

	III Advanced Types and Classes
	12 Advanced Types
	Structures
	Unions
	typedef
	enum Type
	Bit Fields or Packed Structures
	Arrays of Structures
	Programming Exercises

	13 Simple Classes
	Stacks
	Designing a Stack
	Improved Stack
	Using a Class
	Introduction to Constructors and Destructors
	Automatically Generated Member Functions
	Shortcuts
	Style
	Programming Exercises

	14 More on Classes
	Friends
	Constant Functions
	Constant Members
	Static Member Variables
	Static Member Functions
	The Meaning of static
	Programming Exercises

	15 Simple Pointers
	const Pointers
	Pointers and Printing
	Pointers and Arrays
	Splitting Strings
	Pointers and Structures
	Command- Line Arguments
	Programming Exercises
	Answers to Chapter Questions

	IV Advanced Programming Concepts
	16 File Input/ Output
	C++ File I/ O
	Conversion Routines
	Binary and ASCII Files
	The End- of- Line Puzzle
	Binary I/ O
	Buffering Problems
	Unbuffered I/ O
	Designing File Formats
	C- Style I/ O Routines
	C- Style Conversion Routines
	C- Style Binary I/ O
	Programming Exercises
	Answers to Chapter Questions

	17 Debugging and Optimization
	Debugging
	Serial Debugging
	Divide and Conquer
	Debug- Only Code
	Debug Command- Line Switch
	Going Through the Output
	Interactive Debuggers
	Debugging a Binary Search
	Runtime Errors
	The Confessional Method of Debugging
	Optimization
	The Power of Powers of 2
	How to Optimize
	Case Study: Inline Functions Versus Normal Functions
	Case Study: Optimizing a Color- Rendering Algorithm
	Programming Exercises
	Answers to Chapter Questions

	18 Operator Overloading
	Operator Functions
	Operator Member Functions
	Full Definition of the Complex
	Programming Exercises
	Answers to Chapter Questions

	19 Floating Point
	Floating- Point Format
	Floating Addition/ Subtraction
	Multiplication
	Division
	Overflow and Underflow
	Roundoff Error
	Accuracy
	Minimizing Roundoff Error
	Determining Accuracy
	Precision and Speed
	Power Series
	Programming Exercises

	20 Advanced Pointers
	Pointers, Structures, and Classes
	delete Operator
	Linked List
	Ordered Linked Lists
	Double- linked List
	Trees
	Printing a Tree
	The Rest of the Program
	Data Structures for a Chess Program
	Programming Exercises
	Answers to Chapter Questions

	21 Advanced Classes
	Derived Classes
	Virtual Functions
	Virtual Classes
	Function Hiding in Derived Classes
	Constructors and Destructors in Derived Classes
	Summary
	Programming Exercises
	Answers to Chapter Questions

	V Other Language Features
	22 Exceptions
	Stack Exceptions
	Runtime Library Exceptions
	Programming Exercises

	23 Modular Programming
	Modules
	Public and Private
	The extern Modifier
	Headers
	The Body of the Module
	A Program to Use Infinite Arrays
	The Makefile for Multiple Files
	Using the Infinite Array
	Dividing a Task into Modules
	Module Division Example: Text Editor
	Compiler Construction
	Spreadsheet
	Module Design Guidelines
	Programming Exercises

	24 Templates
	What Is a Template?
	Templates: The Hard Way
	Function Specialization
	Class Templates
	Class Specialization
	Implementation Difficulties
	Summary
	Programming Exercises

	25 Portability Problems
	Modularity
	Word Size
	Byte- Order Problem
	Alignment Problem
	NULL- Pointer Problem
	Filename Problems
	File Types
	Summary
	Answers to Chapter Questions

	26 Putting It All Together
	Requirements
	Code Design
	Token Module
	Coding
	Functional Description
	Testing
	Revisions
	A Final Warning
	Program Files
	UNIX Makefile for CC (Generic Unix)
	Microsoft Visual C++ Makefile
	Programming Exercises

	27 From C to C++
	Overview
	K& R- Style Functions
	struct
	malloc and free
	Turning Structures into Classes
	setjmp and longjmp
	Summary
	Programming Exercise

	C++' s Dustier Corners
	do/ while
	goto
	The ?: Construct
	The Comma Operator
	Overloading the () Operator
	Pointers to Members
	Vampire Features
	Answers to Chapter Questions

	29 Programming Adages
	General
	Design
	Declarations
	switch Statement
	Preprocessor
	Style
	Compiling
	The Ten Commandments for C++ Programmers
	Final Note
	Answers to Chapter Questions

	VI Appendixes
	A ASCII Table
	B Ranges
	C Operator Precedence Rules
	Practical Subset of the Operator Precedence Rules
	Standard Rules

	D Computing sine Using a Power Series
	Makefile
	Program: sine. cc

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	About the Author
	Colophon

